-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_lightning.py
73 lines (57 loc) · 1.96 KB
/
train_lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from share_funcs import get_model, get_loaders, get_criterion, get_optimizer
class MyLightninModule(pl.LightningModule):
def __init__(self, num_class):
super(MyLightninModule, self).__init__()
self.model = get_model(num_class=num_class)
self.criterion = get_criterion()
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
# REQUIRED
x, y = batch
y_hat = self.forward(x)
loss = self.criterion(y_hat, y)
logs = {'train_loss': loss}
return {'loss': loss, 'log': logs, 'progress_bar': logs}
def validation_step(self, batch, batch_idx):
# OPTIONAL
x, y = batch
y_hat = self.forward(x)
preds = torch.argmax(y_hat, dim=1)
return {'val_loss': self.criterion(y_hat, y), 'correct': (preds == y).float()}
def validation_end(self, outputs):
# OPTIONAL
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
acc = torch.cat([x['correct'] for x in outputs]).mean()
logs = {'val_loss': avg_loss, 'val_acc': acc}
return {'avg_val_loss': avg_loss, 'log': logs}
def configure_optimizers(self):
# REQUIRED
optimizer, scheduler = get_optimizer(model=self.model)
return [optimizer], [scheduler]
@pl.data_loader
def train_dataloader(self):
# REQUIRED
return get_loaders()[0]
@pl.data_loader
def val_dataloader(self):
# OPTIONAL
return get_loaders()[1]
def main():
epochs = 5
num_class = 10
output_path = './output/lightning'
model = MyLightninModule(num_class=num_class)
# most basic trainer, uses good defaults
trainer = Trainer(
max_nb_epochs=epochs,
default_save_path=output_path,
gpus=[0],
# use_amp=False,
)
trainer.fit(model)
if __name__ == '__main__':
main()