-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimple_base_graph.py
223 lines (168 loc) · 8.4 KB
/
simple_base_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
from dynamic_graph import *
import math
import re
import copy
import random
import torch
from dynamic_graph import *
import math
import re
import copy
import random
import sympy
class HyperHyperCube(DynamicGraph):
def __init__(self, n_nodes, seed=0, max_degree=1):
self.state = np.random.RandomState(seed)
self.max_degree = max_degree
if n_nodes == 1:
super().__init__([torch.eye(1)])
else:
if list(sympy.factorint(n_nodes))[-1] > max_degree+1:
print(f"Can not construct {max_degree}-peer graphs")
node_list = list(range(n_nodes))
factors_list = self.split_node(node_list, n_nodes)
#print(factors_list)
super().__init__(self.construct(node_list, factors_list, n_nodes))
def construct(self, node_list, factors_list, n_nodes):
w_list = []
for k in range(len(factors_list)):
#print(factors_list)
w = torch.zeros((n_nodes, n_nodes))
b = torch.zeros(n_nodes)
for i_idx in range(len(node_list)):
for nk in range(1, factors_list[k]):
i = node_list[i_idx]
j = int(i + np.prod(factors_list[:k]) * nk) % n_nodes
if b[i] < factors_list[k]-1 and b[j] < factors_list[k]-1:
#print("g", i, j, b[i], b[j])
b[i] += 1
b[j] += 1
w[i, j], w[j, i] = 1/factors_list[k], 1/factors_list[k]
w[i, i], w[j, j] = 1/factors_list[k], 1/factors_list[k]
w_list.append(w)
return w_list
def split_node(self, node_list, n_nodes):
factors_list = []
rest = n_nodes
for factor in reversed(range(2, self.max_degree+2)):
while rest % factor == 0:
factors_list.append(factor)
rest = int(rest / factor)
if rest == 1:
break
factors_list.reverse()
return factors_list
class SimpleBaseGraph(DynamicGraph):
def __init__(self, n_nodes, max_degree=1, seed=0, inner_edges=True):
self.state = np.random.RandomState(seed)
self.inner_edges = inner_edges
self.max_degree = max_degree
self.n_nodes = n_nodes
super().__init__(self.construct())
def construct(self):
node_list_list, n_nodes_list = self.split_nodes()
node_list_list_list = self.split_nodes2(node_list_list)
L = len(node_list_list)
if self.n_nodes == 1:
return [torch.eye(1)]
elif max(list(sympy.factorint(self.n_nodes))) <= self.max_degree + 1:
return HyperHyperCube(self.n_nodes, max_degree=self.max_degree).w_list
# construct k-peer HyperHyperCube
hyperhyper_cubes = [HyperHyperCube(len(node_list_list[i]), max_degree=self.max_degree) for i in range(L)]
hyperhyper_cubes2 = [HyperHyperCube(len(node_list_list_list[i][0]), max_degree=self.max_degree) for i in range(L)]
max_length_of_hyper = len(hyperhyper_cubes[0].w_list)
b = torch.zeros(L)
true_b = torch.tensor([len(hyperhyper_cube.w_list) for hyperhyper_cube in hyperhyper_cubes2])
w_list = []
m = -1
while True:
m += 1
w = torch.zeros((self.n_nodes, self.n_nodes))
isolated_nodes = None
all_isolated_nodes = None
for l in reversed(range(L)):
if m < max_length_of_hyper:
length = len(hyperhyper_cubes[l].w_list)
w += self.extend(hyperhyper_cubes[l].w_list[m % length], node_list_list[l])
elif m < max_length_of_hyper + l:
if isolated_nodes is None:
isolated_nodes = copy.deepcopy(node_list_list_list[m - max_length_of_hyper])
all_isolated_nodes = [node for nodes in isolated_nodes for node in nodes]
for i in node_list_list[l]:
a_l = len(isolated_nodes)
for k in range(a_l):
j = isolated_nodes[k].pop(-1)
all_isolated_nodes.remove(j)
w[i, j] = n_nodes_list[m - max_length_of_hyper] / sum(n_nodes_list[m - max_length_of_hyper:]) / a_l
w[j, i] = n_nodes_list[m - max_length_of_hyper] / sum(n_nodes_list[m - max_length_of_hyper:]) / a_l
w[j, j] = 1 - w[i, j]
w[i, i] = 1 - n_nodes_list[m - max_length_of_hyper] / sum(n_nodes_list[m - max_length_of_hyper:])
elif m == max_length_of_hyper + l and l != L-1:
while len(all_isolated_nodes) > 1 and self.inner_edges:
sampled_nodes = all_isolated_nodes[:min(self.max_degree+1,len(all_isolated_nodes))]
for node_id in sampled_nodes:
all_isolated_nodes.remove(node_id)
for i in sampled_nodes:
for j in sampled_nodes:
w[i, j] = 1 / len(sampled_nodes)
w[j, i] = 1 / len(sampled_nodes)
w[i, i] = 1 / len(sampled_nodes)
w[j, j] = 1 / len(sampled_nodes)
else:
if n_nodes_list[l] < self.max_degree+1:
length = len(hyperhyper_cubes[l].w_list)
w += self.extend(hyperhyper_cubes[l].w_list[int(b[l] % length)], node_list_list[l])
else:
a_l = len(node_list_list_list[l])
for k in range(a_l):
length = len(hyperhyper_cubes2[l].w_list)
w += self.extend(hyperhyper_cubes2[l].w_list[int(b[l] % length)], node_list_list_list[l][k])
b[l] += 1
# add self-loop
for i in range(self.n_nodes):
if w[i, i] == 0:
w[i,i] = 1.0
w_list.append(w)
#if (b >= true_b).all():
# break
if b[0] == len(hyperhyper_cubes2[0].w_list):
break
return w_list
def diag(self, X, Y):
new_W = torch.zeros((X.size()[0] + Y.size()[0], X.size()[0] + Y.size()[0]))
new_W[0:X.size()[0], 0:X.size()[0]] = X
new_W[X.size()[0]:, X.size()[0]:] = Y
return new_W
def extend(self, w, node_list):
new_w = torch.zeros((self.n_nodes, self.n_nodes))
for i in range(len(node_list)):
for j in range(len(node_list)):
new_w[node_list[i], node_list[j]] = w[i, j]
return new_w
def split_nodes(self):
factor = (self.max_degree + 1)**int(math.log(self.n_nodes, self.max_degree+1))
n_nodes_list = []
while sum(n_nodes_list) != self.n_nodes:
rest = self.n_nodes - sum(n_nodes_list)
if rest >= factor:
n_nodes_list.append((rest // factor) * factor)
factor = int(factor/(self.max_degree + 1))
node_list = list(range(self.n_nodes))
node_list_list = []
for i in range(len(n_nodes_list)):
node_list_list.append(node_list[sum(n_nodes_list[:i]):sum(n_nodes_list[:i+1])])
return node_list_list, n_nodes_list
def split_nodes2(self, node_list_list):
"""
len(node_list) can be written as a_l * (max_degree + 1)^{p_l} where al \in \{1, 2, \cdots, k\}.
"""
node_list_list_list = []
for node_list in node_list_list:
n_nodes = len(node_list)
power = math.gcd(n_nodes, (self.max_degree+1) ** int(math.log(n_nodes, self.max_degree+1)))
rest = int(n_nodes / power)
node_list_list_list.append([])
for i in range(rest):
node_list_list_list[-1].append(node_list[i*power:(i+1)*power])
return node_list_list_list