-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslomo.py
200 lines (168 loc) · 8.36 KB
/
slomo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import os.path
import sys
import numpy as np
import torch
import torchvision.transforms as transforms
from imageio import imsave
from tqdm import tqdm
import dataloaders
import networks
import utils
from dataloaders import custom_transform as tr
from parsers import parser
def init_set():
with utils.TimerBlock("\nParsing Arguments") as block:
args = parser.parse_args()
args.rank = int(os.getenv('RANK', 0))
os.makedirs(args.torch_home, exist_ok=True)
os.environ['TORCH_HOME'] = args.torch_home
args.network_class = utils.module_to_dict(networks)[args.model]
args.dataset_class = utils.module_to_dict(dataloaders)[args.val_dataset]
block.log('save_video_root: {}'.format(args.output))
block.log('video_file_path: {}'.format(args.video))
if not os.path.exists(args.output):
os.makedirs(args.output)
ids = ""
for i in args.gpu_ids:
ids += (str(i) + ', ')
os.environ["CUDA_VISIBLE_DEVICES"] = ids[:-2]
with utils.TimerBlock("Building {} Model".format(args.model)) as block:
model = args.network_class()
block.log('Number of parameters: {val:,}'.format(
val=sum([p.data.nelement() if p.requires_grad else 0 for p in model.parameters()])))
block.log('Initializing CUDA')
assert torch.cuda.is_available(), 'Code supported for GPUs only at the moment'
model = model.cuda()
torch.manual_seed(args.seed)
block.log("Attempting to Load checkpoint '{}'".format(args.resume))
if args.resume and os.path.isfile(args.resume):
checkpoint = torch.load(args.resume, map_location='cpu')
# Partial initialization
if 'state_dict' in checkpoint:
input_dict = checkpoint['state_dict']
else:
input_dict = checkpoint
curr_dict = model.state_dict()
state_dict = {}
for key in input_dict:
if 'module' in key:
key_ = key[7:]
else:
key_ = key
state_dict[key_] = input_dict[key]
if key_ not in curr_dict:
print(key_)
continue
if curr_dict[key_].shape != input_dict[key].shape:
state_dict.pop(key_)
print("key {} skipped because of size mismatch.".format(key_))
model.load_state_dict(state_dict, strict=False)
if 'epoch' in checkpoint:
epoch = checkpoint['epoch']
else:
epoch = 0
block.log("Successfully loaded checkpoint (at epoch {})".format(epoch))
elif args.resume:
block.log("No checkpoint found at '{}'.\nAborted.".format(args.resume))
sys.exit(0)
else:
epoch = 0
block.log("Random initialization, checkpoint not provided.")
return args, model, epoch
def build_dataloader(args, data_root):
with utils.TimerBlock("Building {} Dataset".format(args.dataset)) as block:
vkwargs = {
'batch_size': args.test_batch_size,
'num_workers': args.workers,
'pin_memory': True,
'drop_last': False
}
transform = transforms.Compose([tr.Normalize(), tr.PadImage(args.stride), tr.ToTensor()])
video_dataset = args.dataset_class(root=data_root, transform=transform)
video_loader = torch.utils.data.DataLoader(video_dataset, shuffle=False, **vkwargs)
block.log('Number of Validation Images: {}:({} mini-batches)'.format(len(video_loader.dataset),
len(video_loader)))
return video_loader
def extract_frames(video, out_dir, args):
error = ""
print('{} -i {} -vsync 0 {}/%06d.png'.format(os.path.join(args.ffmpeg_dir, "ffmpeg"), video, out_dir))
retn = os.system('{} -i "{}" -vsync 0 {}/%06d.png'.format(os.path.join(args.ffmpeg_dir, "ffmpeg"), video, out_dir))
if retn:
error = "Error converting file:{}. Exiting.".format(video)
return error
def create_video(dir, video, args):
error = ""
print('{} -r {} -i {}/%d.png -pix_fmt yuv420p -vcodec libx264 {}'.format(os.path.join(args.ffmpeg_dir, "ffmpeg"),
args.fps, dir,
os.path.join(args.output, video)))
retn = os.system('{} -r {} -i {}/%d.png -pix_fmt yuv420p -vcodec libx264 "{}"'.format(
os.path.join(args.ffmpeg_dir, "ffmpeg"), args.fps, dir, os.path.join(args.output, video)))
if retn:
error = "Error creating output video. Exiting."
return error
def main():
# init setting
args, model, _ = init_set()
model.eval()
extraction_dir = os.path.join(args.extract_dir, args.folder_name)
if not os.path.isdir(extraction_dir):
os.makedirs(extraction_dir)
for video in args.video:
print(video)
video_name, _ = os.path.splitext(os.path.basename(video))
# Create extraction folder and extract frames
with utils.TimerBlock("Convert Video to frames of %s" % video_name) as block:
extraction_path = os.path.join(extraction_dir, video_name, "input")
output_path = os.path.join(extraction_dir, video_name, "output")
if not os.path.isdir(extraction_path):
os.makedirs(extraction_path)
if not os.path.isdir(output_path):
os.makedirs(output_path)
error = extract_frames(os.path.join(video), extraction_path, args)
if error:
block.log(error)
exit(1)
# dataloader
data_loader = build_dataloader(args, extraction_path)
tr = transforms.Compose([transforms.ToPILImage()])
# Interpolate frames
with utils.TimerBlock("Interpolate frames of %s" % video_name) as block:
num_batches = len(data_loader)
frame_counter = 1
with torch.no_grad():
for i, batch in enumerate(tqdm(data_loader, total=num_batches)):
inputs = [b.cuda() for b in batch['image']]
im0, im1 = inputs[0], inputs[-1]
batch_size, _, _, _ = im0.shape
for batch_index in range(batch_size):
h, w = batch['ishape'][0][batch_index], batch['ishape'][1][batch_index]
(tr(inputs[0][batch_index].cpu().detach()[:, :h, :w])).save(
os.path.join(output_path,
str(frame_counter + args.sf * batch_index) + ".png"))
frame_counter += 1
for intermediate_index in range(1, args.sf):
t = intermediate_index / args.sf
outputs = model(im0, im1, t) * 255.0
for batch_index in range(batch_size):
h, w = batch['ishape'][0][batch_index], batch['ishape'][1][batch_index]
im = np.round((outputs[batch_index].cpu().numpy()[:, :h, :w].transpose(1, 2, 0)).clip(
0, 255.0)).astype(np.uint8)
tmp_filename = os.path.join(output_path,
str(frame_counter + args.sf * batch_index) + ".png")
os.makedirs(os.path.dirname(tmp_filename), exist_ok=True)
imsave(tmp_filename, im)
frame_counter += 1
# Set counter accounting for batching of frames
frame_counter += args.sf * (batch_size - 1)
if i + 1 == num_batches:
h, w = batch['ishape'][0][batch_size - 1], batch['ishape'][1][batch_size - 1]
(tr(inputs[-1][batch_size - 1].cpu().detach()[:, :h, :w] / 255.0)).save(
os.path.join(output_path,
str(frame_counter + 1) + ".png"))
frame_counter += 1
block.log("FrameCount = %d" % frame_counter)
with utils.TimerBlock("Create slow motion video of %s" % video_name) as block:
create_video(output_path, os.path.basename(video), args)
if __name__ == '__main__':
main()