-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatFunctions.js
executable file
·513 lines (467 loc) · 17.5 KB
/
statFunctions.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
"use strict";
//========================================================================
// This js file contains functions to compute
// * the standard normal distribution CDF: pnorm()
// * the chi-square distribution CDF: pchisq()
// * the t-ditribution CDF: pt()
// * the F-distribution CDF: pf()
// * the inverse of the above CDFs: qnorm(), qchisq(), qt(), qf()
//
// Several auxiliary functions are needed (n, m are positive integers)
// * bisection(): find the root of f(x)=0 using the method of bisection
// (used to calculate the inverse of the CDFs)
// * ln(Gamma(n/2)): gamnln()
// * incomplete gamma function P(n/2,x): gammp()
// * incomplete gamma function Q(n/2,x): gammq()
// * incomplete beta function I_x(n/2,m/2): betai()
//========================================================================
// Find the root of f(x)=0 using the method of bisection.
// f: function with one argument.
// x1 and x2 are real numbers such that x1 < x2 and f(x1)*f(x2) < 0.
// Warning: won't check if conditions about x1 and x2 are satisfied.
// They bracket the root, and are updated inside the function.
// releps sets the relative accuracy of the root: the relative accuracy
// condition is satisfied if (x2-x1) < releps*|x|
// abseps sets the absolute accuracy of the root: the absolute accuracy condition
// is satisfied if (x2-x1) < abseps or |f(x)| < abseps
// The function returns x when the relative accuracy condition OR the absolute
// accuracy condition is satisfied.
function bisection(f, x1,x2, releps, abseps) {
var sign = function(z) {
if (z > 0) {
return 1;
} else if (z < 0) {
return -1;
} else {
return 0;
}
}
var f1 = sign(f(x1));
var f2 = sign(f(x2));
var x = 0.5*(x1+x2);
var fx = f(x);
while(x2-x1 > abseps && x2-x1 > releps*Math.abs(x) && Math.abs(fx) > abseps) {
if (fx*f1 > 0) {
x1 = x;
f1 = sign(fx);
} else {
x2 = x;
f2 = sign(fx);
}
x = 0.5*(x1+x2);
fx = f(x);
}
return x;
}
// p-value for normal distribution: equivalent to R's pnorm(-z):
// pnorm(z) = 1-F_{normal}(z), where F_{normal} is the cdf of the
// normal distribution.
// This function calculates the p-value with a relative error < 1.2e-7
function pnorm(z) {
var x = Math.SQRT1_2*Math.abs(z);
// compute erfc(x) using an approximation formula (max rel error = 1.2e-7)
// see https://en.wikipedia.org/wiki/Error_function#Numerical_approximation
var t = 1.0/(1+0.5*x);
var t2 = t*t;
var t3 = t2*t;
var t4 = t2*t2;
var t5 = t2*t3;
var t6 = t3*t3;
var t7 = t3*t4;
var t8 = t4*t4;
var t9 = t4*t5;
var tau = -x*x - 1.26551223 + 1.00002368*t + 0.37409196*t2 + 0.09678418*t3 - 0.18628806*t4 + 0.27886807*t5 - 1.13520398*t6 + 1.48851587*t7 - 0.82215223*t8 + 0.17087277*t9;
var p = 0.5*t*Math.exp(tau);
if (z < 0) {
p = 1-p;
}
return p;
}
// inverse of pnorm
// z from right-tail p: same as R's qnorm(p, lower.tail=FALSE)
// Use bisection to find z.
// Relative accuracy are set by the parameter eps
function qnorm(p) {
if (p==0.5) {
return 0;
}
if (p < 1e-300 || p > 1-3e-16) {
return 1/0;
}
// Set relative accuracy parameter
var eps = 1.e-6;
var pval = p;
if (p > 0.5) {
pval = 1-p;
}
// Start bisection search...
// Set the upper and lower bound of z according to the inequalities
// of erfc function described in
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions :
// erfc(x) \leq exp(-x^2) for x>0, and
// erfc(x) \geq sqrt(2e/pi) sqrt(b-1)/b exp(-b x^2) for x>0 and b>1
// The lower bound below comes from setting b=2.
// Upper bound is multiplied by a safety factor 1.01;
// lower bound is multiplied by a safety factor 0.99.
var sqrt_2pioe = 1.520346901066281;
var min_arg = 2*pval*sqrt_2pioe;
var minz = 0.0;
if (min_arg < 1.0) {
minz = 0.99*Math.sqrt( -Math.log(min_arg) );
}
var maxz = 1.01*Math.sqrt( -2*Math.log(2*pval) );
var fun = function(z) {return pnorm(z) - pval;}
var z = bisection(fun, minz,maxz, eps, 0);
if (p > 0.5) {z = -z;}
return z;
}
// Returns ln(Gamma(n/2)) for n=1,2,...
// Warning: won't check the argument
function gamnln(n) {
// Tabulated values of ln(Gamma(n/2)) for n<201
var lg = [0.5723649429247001, 0, -0.1207822376352452, 0, 0.2846828704729192, 0.6931471805599453, 1.200973602347074, 1.791759469228055, 2.453736570842442, 3.178053830347946, 3.957813967618717, 4.787491742782046, 5.662562059857142, 6.579251212010101, 7.534364236758733, 8.525161361065415, 9.549267257300997, 10.60460290274525, 11.68933342079727, 12.80182748008147, 13.94062521940376, 15.10441257307552, 16.29200047656724, 17.50230784587389, 18.73434751193645, 19.98721449566188, 21.2600761562447, 22.55216385312342, 23.86276584168909, 25.19122118273868, 26.53691449111561, 27.89927138384089, 29.27775451504082, 30.67186010608068, 32.08111489594736, 33.50507345013689, 34.94331577687682, 36.39544520803305, 37.86108650896109, 39.3398841871995, 40.8315009745308, 42.33561646075349, 43.85192586067515, 45.3801388984769, 46.91997879580877, 48.47118135183522, 50.03349410501914, 51.60667556776437, 53.19049452616927, 54.78472939811231, 56.38916764371993, 58.00360522298051, 59.62784609588432, 61.26170176100199, 62.9049908288765, 64.55753862700632, 66.21917683354901, 67.88974313718154, 69.56908092082364, 71.257038967168, 72.9534711841694, 74.65823634883016, 76.37119786778275, 78.09222355331531, 79.82118541361436, 81.55795945611503, 83.30242550295004, 85.05446701758153, 86.81397094178108, 88.58082754219767, 90.35493026581838, 92.13617560368709, 93.92446296229978, 95.71969454214322, 97.52177522288821, 99.33061245478741, 101.1461161558646, 102.9681986145138, 104.7967743971583, 106.6317602606435, 108.4730750690654, 110.3206397147574, 112.1743770431779, 114.0342117814617, 115.9000704704145, 117.7718813997451, 119.6495745463449, 121.5330815154387, 123.4223354844396, 125.3172711493569, 127.2178246736118, 129.1239336391272, 131.0355369995686, 132.9525750356163, 134.8749893121619, 136.8027226373264, 138.7357190232026, 140.6739236482343, 142.617282821146, 144.5657439463449, 146.5192554907206, 148.477766951773, 150.4412288270019, 152.4095925844974, 154.3828106346716, 156.3608363030788, 158.3436238042692, 160.3311282166309, 162.3233054581712, 164.3201122631952, 166.3215061598404, 168.3274454484277, 170.3378891805928, 172.3527971391628, 174.3721298187452, 176.3958484069973, 178.4239147665485, 180.4562914175438, 182.4929415207863, 184.5338288614495, 186.5789178333379, 188.6281734236716, 190.6815611983747, 192.7390472878449, 194.8005983731871, 196.86618167289, 198.9357649299295, 201.0093163992815, 203.0868048358281, 205.1681994826412, 207.2534700596299, 209.3425867525368, 211.435520202271, 213.5322414945632, 215.6327221499328, 217.7369341139542, 219.8448497478113, 221.9564418191303, 224.0716834930795, 226.1905483237276, 228.3130102456502, 230.4390435657769, 232.5686229554685, 234.7017234428182, 236.8383204051684, 238.9783895618343, 241.1219069670290, 243.2688490029827, 245.4191923732478, 247.5729140961868, 249.7299914986334, 251.8904022097232, 254.0541241548883, 256.2211355500095, 258.3914148957209, 260.5649409718632, 262.7416928320802, 264.9216497985528, 267.1047914568685, 269.2910976510198, 271.4805484785288, 273.6731242856937, 275.8688056629533, 278.0675734403662, 280.2694086832001, 282.4742926876305, 284.6822069765408, 286.893133295427, 289.1070536083976, 291.3239500942703, 293.5438051427607, 295.7666013507606, 297.9923215187034, 300.2209486470141, 302.4524659326413, 304.6868567656687, 306.9241047260048, 309.1641935801469, 311.4071072780187, 313.652829949879, 315.9013459032995, 318.1526396202093, 320.4066957540055, 322.6634991267262, 324.9230347262869, 327.1852877037753, 329.4502433708053, 331.7178871969285, 333.9882048070999, 336.2611819791985, 338.5368046415996, 340.815058870799, 343.0959308890863, 345.3794070622669, 347.6654738974312, 349.9541180407703, 352.2453262754350, 354.5390855194408, 356.835382823613, 359.1342053695754];
if (n < 201) {
return lg[n-1];
}
// For n>200, use the approx. formula given by numerical recipe
// relative error < 2e-10
var coef = [76.18009172947146, -86.50532032941677, 24.01409824083091, -1.231739572450155, 1.208650973866179e-3, -5.395239384953e-6];
var stp = 2.5066282746310005;
var x = 0.5*n;
var y = x;
var tmp = x + 5.5;
tmp = (x+0.5)*Math.log(tmp) - tmp;
var ser = 1.000000000190015;
for (var i=0; i<6; i++) {
y = y + 1;
ser = ser + coef[i]/y;
}
var gamln = tmp + Math.log(stp*ser/x);
return gamln;
}
// Returns the incomplete gamma function P(n/2,x) evaluated by
// series representation. Algorithm from numerical recipe.
// Assume that n is a positive integer and x>0, won't check arguments.
// Relative error controlled by the eps parameter
function gser(n,x) {
var maxit = 100000000;
var eps = 1.e-8;
var gln = gamnln(n);
var a = 0.5*n;
var ap = a;
var sum = 1.0/a;
var del = sum;
for (var n=1; n<maxit; n++) {
ap++;
del = del*x/ap;
sum += del;
if (del < sum*eps) { break;}
}
return sum*Math.exp(-x + a*Math.log(x) - gln);
}
// Returns the incomplete gamma function Q(n/2,x) evaluated by
// its continued fraction representation. Algorithm from numerical recipe.
// Assume that n is a postive integer and x>0, won't check arguments.
// Relative error controlled by the eps parameter
function gcf(n,x) {
var maxit = 100000000;
var eps = 1.e-8;
var gln = gamnln(n);
var a = 0.5*n;
var b = x+1-a;
var fpmin = 1.e-300;
var c = 1/fpmin;
var d = 1/b;
var h=d;
for (var i=1; i<maxit; i++) {
var an = -i*(i-a);
b += 2;
d = an*d + b;
if (Math.abs(d) < fpmin) { d = fpmin; }
c = b + an/c;
if (Math.abs(c) < fpmin) { c = fpmin; }
d = 1/d;
var del = d*c;
h = h*del;
if (Math.abs(del-1) < eps) { break; }
}
return h*Math.exp(-x + a*Math.log(x) - gln);
}
// Returns the incomplete Gamma function P(n/2,x)
// Assume n is a positive integer, x>0 , won't check arguments
function gammp(n,x) {
if (x < 0.5*n+1) {
return gser(n,x);
} else {
return 1-gcf(n,x);
}
}
// Returns the incomplete Gamma function Q(n/2,x)
// Assume n is a positive integer, x>0 , won't check arguments
function gammq(n,x) {
if (x < 0.5*n+1) {
return 1-gser(n,x);
} else {
return gcf(n,x);
}
}
// Evaluates incomplete beta function by modified Lentz's method
// Algorithm from numerical recipe
function betacf(a,b,x) {
var maxit = 100000000;
var qab = a+b;
var qap = a+1.0;
var qam = a-1.0;
var c = 1.0;
var d = 1 - qab*x/qap;
var fpmin = 1.e-300;
var eps = 1.e-8;
if (Math.abs(d) < fpmin) { d = fpmin;}
d = 1.0/d;
var h=d;
for (var m=1; m<maxit; m++) {
var m2 = 2*m;
var aa = m*(b-m)*x/((qam+m2)*(a+m2));
d = 1+aa*d;
if (Math.abs(d) < fpmin) { d = fpmin;}
c = 1+aa/c;
if (Math.abs(c) < fpmin) { c = fpmin;}
d = 1.0/d;
h = h*d*c;
aa = -(a+m)*(qab+m)*x/((a+m2)*(qap+m2));
d = 1+aa*d;
if (Math.abs(d) < fpmin) { d = fpmin;}
c = 1+aa/c;
if (Math.abs(c) < fpmin) { c = fpmin;}
d = 1.0/d;
var del = d*c;
h = h*del;
if (Math.abs(del-1.0) < eps) { break;}
}
return h;
}
// Returns the incomplete beta function I_x(n/2,m/2) for positive integers n and m
// and 0<=x<=1
// Warning: won't check arguments
// Algorithm from numerical recipe
function betai(n,m,x) {
var bt;
var a = 0.5*n;
var b = 0.5*m;
if (x==0 || x==1) {
bt = 0.0;
} else {
bt = Math.exp(gamnln(m+n)-gamnln(n)-gamnln(m) + a*Math.log(x) + b*Math.log(1-x) );
}
var beti;
if (x < (a+1.0)/(a+b+2)) {
// use continued fraction directly
beti = bt*betacf(a,b,x)/a;
} else {
// use continued fraction after making the symmetry transformation
beti = 1.0 - bt*betacf(b,a,1-x)/b;
}
return beti;
}
// p-value for chi^2 distribution
// When ptype=1: returns 1-F_{chi^2}(chi2; n)
// When ptype=2: returns the cdf F_{chi^2}(chi2; n)
// same as R's function pchisq(chi2,n,lower.tail=FALSE) for ptype = 1
// same as R's function pchisq(chi2,n) for ptype = 2
function pchisq(chi2,n,ptype) {
if (ptype==1) {
return gammq(n, 0.5*chi2);
} else {
return gammp(n, 0.5*chi2);
}
}
// inverse of pchisq
// same as R's function qchisq(p,n,lower.tail=FALSE) for ptype = 1
// same as R's function qchisq(p,n) for ptype = 2
// Assume that 0 <= p <= 1 and n is positive integer.
// Won't check arguments.
// Find root using bisection, relative accuracy set by eps
function qchisq(p,n,ptype) {
// Special cases
if (ptype==1) {
if (p==0) { return 1/0; }
if (p==1) { return 0;}
}
if (ptype==2) {
if (p==0) {return 0;}
if (p==1) {return 1/0;}
}
var eps = 1.e-6
// bracket the root
var min = 0;
var sd = Math.sqrt(2.0*n);
var max = 2*sd;
var s = 1;
if (ptype==2) {s=-1;}
// pchisq is decreasing for ptype=1, increasing for ptype=2
while (s*pchisq(max,n,ptype) > p*s) {
min = max;
max += 2*sd;
}
var fun = function(x) {return pchisq(x,n,ptype)-p;}
return bisection(fun, min,max, eps, 0);
}
// ptype = 0: calculate P(<t) = F_t(t;n)
// ptype = 1: calculate P(>t) = 1 - F_t(t;n)
// ptype = 2: calculate P(>|t|) = 2[1-F_t(|t|;n)]
// ptype = 3: calculate P(<|t|) = 1 - 2[1-F_t(|t|;n)]
function pt(t,n,ptype) {
var x = 1.0*n/(t*t+n);
var p = betai(n,1,x);
if (ptype==0) {
if (t > 0) {
p = 1-0.5*p;
} else {
p = 0.5*p;
}
} else if (ptype==1) {
if (t > 0) {
p = 0.5*p;
} else {
p = 1-0.5*p;
}
} else if (ptype==3) {
p = 1-p;
}
return p;
}
// inverse of pt
// ptype = 0: Calculate t so that P(<t) = p
// ptype = 1: Calculate t so that P(>t) = p
// ptype = 2: Calculate t so that P(>|t|) = p
// ptype = 3: Calculate t so that P(<|t|) = p
// Relative accuracy set by eps
function qt(p,n,ptype) {
if (p==0) {
if (ptype==1 || ptype==2) {
return 1/0;
} else if (ptype==0) {
return -1/0;
} else {
return 0;
}
}
if (p==1) {
if (ptype==0 || ptype==3) {
return 1/0;
} else if (ptype==1) {
return -1/0;
} else {
return 0;
}
}
var eps = 1.e-6;
// Want to find t for which pt(t,n,ptype) = p. Turn it into the equation
// pt(|t|,n,1) = p1.
var p1=p;
if (ptype==0 && p>0.5) {
p1 = 1-p;
} else if (ptype==1 && p>0.5) {
p1 = 1-p;
} else if (ptype==2) {
p1 = 0.5*p;
} else if (ptype==3) {
p1 = 0.5*(1-p);
}
// Find tmax and tmin to bracket t with pt(t,n,1) = p1
var tmp = (gamnln(n+1) - gamnln(n))/n + (0.5-1.0/n)*Math.log(n);
tmp = tmp - Math.log(p1)/n - 0.5*Math.log(Math.PI)/n;
var tmax = Math.exp(tmp);
var tmin = Math.exp(tmp - (0.5+0.5/n)*Math.log(2.0));
if (tmin*tmin < n) {
tmp = Math.exp(gamnln(n) - gamnln(n+1) + 0.5*(n+1)*Math.log(2.0));
tmp = tmp*p1*Math.sqrt(n*Math.PI);
tmin = Math.sqrt(n)+ Math.sqrt(1.0/n) - tmp;
tmin = Math.max(tmin, 0);
}
if (pt(tmin,n,1) < p1) {
//console.log("Warning! tmin is wrong!", tmin,p1);
tmin = 0.5*tmin;
while (pt(tmin,n,1) < p1) {
tmin = 0.5*tmin;
}
}
if (pt(tmax,n,1) > p1) {
//console.log("Warning! tmax is wrong!",tmax,p1);
tmax = 2*tmax;
while (pt(tmax,n,1) > p1) {
tmax = 2*tmax;
}
}
// Find t using the bisection method
var fun = function(x) {return pt(x,n,1)-p1;}
var t = bisection(fun, tmin,tmax, eps, 0);
if ( (ptype==0 && p<0.5) || (ptype==1 && p>0.5) ) {
t = -t;
}
return t;
}
// ptype=1: compute P(>F, df1, df2) = 1-F_F(F; df1,df2)
// ptype=2: compute P(<F, df1,df2) = F_F(F; df1,df2)
// Assume df1 and df2 are positive integers, and F>=0 (won't check arguments)
function pf(F,df1,df2,ptype) {
if (F==0) {
if (ptype==1) {
return 1;
} else {
return 0;
}
}
if (ptype==1) {
var x = df2/(df1*F + df2);
return betai(df2,df1,x);
} else {
var x = df1*F/(df1*F + df2);
return betai(df1,df2,x);
}
}
// inverse of pf
// ptype=1: compute F s.t. P(>F, df1, df2) = p
// ptype=2: compute F s.t. P(<F, df1,df2) = p
// Assume df1 and df2 are positive integers, and 0<= p <=1 (won't change arguments)
// relative accuracy set by eps
function qf(p,d1,d2,ptype) {
if (p==0) {
if (ptype==1) {
return 1/0;
} else {
return 0;
}
}
if (p==1) {
if (ptype==1) {
return 0;
} else {
return 1/0;
}
}
var eps = 1.e-6;
// Find lower and upper values to bracket the root for bisection search
var Fmax;
var Fmin;
var s = 3-2*ptype; // 1 or -1: p decreases or increases with F
var f21 = 1.0;
var p21 = pf(f21, d1,d2, ptype);
if (s*pf(f21,d1,d2,ptype) > s*p) {
Fmin = f21;
Fmax = 2*f21;
while (s*pf(Fmax,d1,d2,ptype) > s*p) {
Fmin = Fmax;
Fmax = 2*Fmax;
}
} else {
Fmax = f21;
Fmin = 0.5*f21;
while (s*pf(Fmin,d1,d2,ptype) <= s*p) {
Fmax = Fmin;
Fmin = 0.5*Fmin;
}
}
var fun = function(x) {return pf(x,d1,d2,ptype)-p;}
return bisection(fun, Fmin,Fmax, eps, 0);
}