-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cqn_as_bigym.py
377 lines (331 loc) · 13.6 KB
/
train_cqn_as_bigym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import logging
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
import os
os.environ["MKL_SERVICE_FORCE_INTEL"] = "1"
os.environ["MUJOCO_GL"] = "egl"
from pathlib import Path
import hydra
import numpy as np
import torch
from dm_env import specs
import bigym_src.bigym_env as bigym_env
import utils
from logger import Logger
from bigym_src.replay_buffer_action_sequence import (
ReplayBufferStorage,
make_replay_loader,
)
from video import TrainVideoRecorder, VideoRecorder
torch.backends.cudnn.benchmark = True
def make_agent(rgb_obs_spec, low_dim_obs_spec, action_spec, action_sequence, cfg):
cfg.rgb_obs_shape = rgb_obs_spec.shape
cfg.low_dim_obs_shape = low_dim_obs_spec.shape
# Action sequence
cfg.action_shape = (action_sequence, *action_spec.shape)
return hydra.utils.instantiate(cfg)
class Workspace:
def __init__(self, cfg):
self.work_dir = Path.cwd()
print(f"workspace: {self.work_dir}")
self.cfg = cfg
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self.setup()
self.agent = make_agent(
self.train_env.rgb_observation_spec(),
self.train_env.low_dim_observation_spec(),
self.train_env.action_spec(),
self.cfg.action_sequence,
self.cfg.agent,
)
self.timer = utils.Timer()
self.logger = Logger(
self.work_dir, self.cfg.use_tb, self.cfg.use_wandb, self.cfg
)
self._update_step = 0
self._global_step = 0
self._global_episode = 0
def setup(self):
# create envs
self.train_env = bigym_env.make(
self.cfg.task_name,
self.cfg.enable_all_floating_dof,
self.cfg.action_mode,
self.cfg.demo_down_sample_rate,
self.cfg.episode_length,
self.cfg.frame_stack,
self.cfg.camera_shape,
self.cfg.camera_keys,
self.cfg.state_keys,
self.cfg.render_mode,
self.cfg.normalize_low_dim_obs,
)
if self.cfg.temporal_ensemble:
self.train_temporal_ensemble = utils.TemporalEnsembleControl(
self.cfg.episode_length,
self.train_env.action_spec(),
self.cfg.action_sequence,
)
self.eval_temporal_ensemble = utils.TemporalEnsembleControl(
self.cfg.episode_length,
self.train_env.action_spec(),
self.cfg.action_sequence,
)
# create replay buffer
self.initialize_loader()
self.video_recorder = VideoRecorder(
self.work_dir if self.cfg.save_video else None
)
self.train_video_recorder = TrainVideoRecorder(
self.work_dir if self.cfg.save_train_video else None
)
@property
def update_step(self):
return self._update_step
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
@property
def replay_iter(self):
if self._replay_iter is None:
replay_iter = iter(self.replay_loader)
demo_replay_iter = iter(self.demo_replay_loader)
self._replay_iter = utils.DemoMergedIterator(replay_iter, demo_replay_iter)
return self._replay_iter
def eval(self):
"""We use train env for evaluation, because it's convenient"""
step, episode, total_reward = 0, 0, 0
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
while eval_until_episode(episode):
episode_step = 0
time_step = self.train_env.reset()
if self.cfg.temporal_ensemble:
self.eval_temporal_ensemble.reset()
self.video_recorder.init(self.train_env, enabled=(episode == 0))
while not time_step.last():
if (
self.cfg.temporal_ensemble
or episode_step % self.cfg.action_sequence == 0
):
with torch.no_grad(), utils.eval_mode(self.agent):
action = self.agent.act(
time_step.rgb_obs,
time_step.low_dim_obs,
self.global_step,
eval_mode=True,
)
action = action.reshape([self.cfg.action_sequence, -1])
if self.cfg.temporal_ensemble:
self.eval_temporal_ensemble.register_action_sequence(action)
if self.cfg.temporal_ensemble:
sub_action = self.eval_temporal_ensemble.get_action()
else:
sub_action = action[episode_step % self.cfg.action_sequence]
time_step = self.train_env.step(sub_action)
self.video_recorder.record(self.train_env)
total_reward += time_step.reward
step += 1
episode_step += 1
episode += 1
self.video_recorder.save(f"{self.global_frame}.mp4")
with self.logger.log_and_dump_ctx(self.global_frame, ty="eval") as log:
log("episode_reward", total_reward / episode)
log("episode_length", step * self.cfg.action_repeat / episode)
log("episode", self.global_episode)
log("step", self.global_step)
def train(self):
# predicates
train_until_step = utils.Until(
self.cfg.num_train_frames, self.cfg.action_repeat
)
seed_until_step = utils.Until(self.cfg.num_seed_frames, self.cfg.action_repeat)
eval_every_step = utils.Every(
self.cfg.eval_every_frames, self.cfg.action_repeat
)
do_eval = False
episode_step, episode_reward = 0, 0
time_step = self.train_env.reset()
if self.cfg.temporal_ensemble:
self.train_temporal_ensemble.reset()
if self.cfg.use_compile:
update_fn = torch.compile(self.agent.update)
act_fn = torch.compile(self.agent.act)
torch.set_float32_matmul_precision("high")
else:
update_fn = self.agent.update
act_fn = self.agent.act
self.replay_storage.add(time_step)
self.demo_replay_storage.add(time_step)
self.train_video_recorder.init(time_step.rgb_obs[0])
metrics = None
while train_until_step(self.global_step):
if time_step.last():
self._global_episode += 1
self.train_video_recorder.save(f"{self.global_frame}.mp4")
# wait until all the metrics schema is populated
if metrics is not None:
# log stats
elapsed_time, total_time = self.timer.reset()
episode_frame = episode_step * self.cfg.action_repeat
with self.logger.log_and_dump_ctx(
self.global_frame, ty="train"
) as log:
log("fps", episode_frame / elapsed_time)
log("total_time", total_time)
log("episode_reward", episode_reward)
log("episode_length", episode_frame)
log("episode", self.global_episode)
log("buffer_size", len(self.replay_storage))
log("step", self.global_step)
# do evaluation before resetting the environment
if do_eval:
self.logger.log(
"eval_total_time", self.timer.total_time(), self.global_frame
)
self.eval()
do_eval = False
# reset env
time_step = self.train_env.reset()
if self.cfg.temporal_ensemble:
self.train_temporal_ensemble.reset()
self.replay_storage.add(time_step)
self.demo_replay_storage.add(time_step)
self.train_video_recorder.init(time_step.rgb_obs[0])
# try to save snapshot
if self.cfg.save_snapshot:
self.save_snapshot()
episode_step = 0
episode_reward = 0
# set a flag to initate evaluation when the current episode terminates
if self.global_step >= self.cfg.eval_every_frames and eval_every_step(
self.global_step
):
do_eval = True
# sample action
if (
self.cfg.temporal_ensemble
or episode_step % self.cfg.action_sequence == 0
):
with torch.no_grad(), utils.eval_mode(self.agent):
# Here, use eval_mode = True
action = act_fn(
time_step.rgb_obs,
time_step.low_dim_obs,
self.global_step,
eval_mode=True,
)
action = action.reshape([self.cfg.action_sequence, -1])
if self.cfg.temporal_ensemble:
self.train_temporal_ensemble.register_action_sequence(action)
# try to update the agent
if (
not seed_until_step(self.global_step)
and self.global_step % self.cfg.agent.update_every_steps == 0
):
for _ in range(self.cfg.num_update_steps):
batch = next(self.replay_iter)
batch = utils.to_torch_pixel_tensor_dict(batch, self.device)
metrics = update_fn(batch)
self._update_step += 1
self.agent.update_target_critic(self.update_step)
self.logger.log_metrics(metrics, self.global_frame, ty="train")
# take env step
if self.cfg.temporal_ensemble:
sub_action = self.train_temporal_ensemble.get_action()
else:
sub_action = action[episode_step % self.cfg.action_sequence]
# Here, add noise to sub_action
sub_action = self.agent.add_noise_to_action(sub_action, self.global_step)
time_step = self.train_env.step(sub_action)
episode_reward += time_step.reward
self.replay_storage.add(time_step)
self.demo_replay_storage.add(time_step)
self.train_video_recorder.record(time_step.rgb_obs[0])
episode_step += 1
self._global_step += 1
def load_rlbench_demos(self):
if self.cfg.num_demos != 0:
demos = self.train_env.get_demos(self.cfg.num_demos)
for demo in demos:
for time_step in demo:
self.replay_storage.add(time_step)
self.demo_replay_storage.add(time_step)
print(f"Total buffer size: {len(self.replay_storage)}")
print(f"Demo size: {len(self.demo_replay_storage)}")
else:
logging.warning("Not using demonstrations")
def initialize_loader(self):
data_specs = (
self.train_env.rgb_raw_observation_spec(),
self.train_env.low_dim_raw_observation_spec(),
self.train_env.action_spec(),
specs.Array((1,), np.float32, "reward"),
specs.Array((1,), np.float32, "discount"),
specs.Array((1,), np.float32, "demo"),
)
self.replay_storage = ReplayBufferStorage(
data_specs, self.work_dir / "buffer", self.cfg.use_relabeling
)
self.demo_replay_storage = ReplayBufferStorage(
data_specs,
self.work_dir / "demo_buffer",
self.cfg.use_relabeling,
is_demo_buffer=True,
)
self.replay_loader = make_replay_loader(
self.work_dir / "buffer",
self.cfg.replay_buffer_size,
self.cfg.batch_size,
self.cfg.replay_buffer_num_workers,
self.cfg.save_snapshot,
self.cfg.nstep,
self.cfg.discount,
self.cfg.action_sequence,
self.cfg.frame_stack,
fill_action="last_action",
)
self.demo_replay_loader = make_replay_loader(
self.work_dir / "demo_buffer",
self.cfg.replay_buffer_size,
self.cfg.demo_batch_size,
self.cfg.replay_buffer_num_workers,
self.cfg.save_snapshot,
self.cfg.nstep,
self.cfg.discount,
self.cfg.action_sequence,
self.cfg.frame_stack,
fill_action="last_action",
)
self._replay_iter = None
def save_snapshot(self):
snapshot = self.work_dir / "snapshot.pt"
keys_to_save = ["agent", "timer", "_global_step", "_global_episode"]
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open("wb") as f:
torch.save(payload, f)
def load_snapshot(self):
snapshot = self.work_dir / "snapshot.pt"
with snapshot.open("rb") as f:
payload = torch.load(f)
for k, v in payload.items():
self.__dict__[k] = v
@hydra.main(config_path="cfgs", config_name="config_cqn_as_bigym")
def main(cfg):
from train_cqn_as_bigym import Workspace as W
root_dir = Path.cwd()
workspace = W(cfg)
snapshot = root_dir / "snapshot.pt"
if snapshot.exists():
print(f"resuming: {snapshot}")
workspace.load_snapshot()
workspace.load_rlbench_demos()
workspace.train()
if __name__ == "__main__":
main()