-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathsegmentation.py
executable file
·392 lines (354 loc) · 18.8 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from collections import namedtuple
from net import *
from net.losses import StdLoss, YIQGNGCLoss, GradientLoss, ExtendedL1Loss, GrayLoss
from net.noise import get_noise, NoiseNet
from utils.image_io import *
from net.downsampler import *
from skimage.measure import compare_psnr
from cv2.ximgproc import guidedFilter
SegmentationResult = namedtuple("SegmentationResult", ['mask', 'learned_mask', 'left', 'right', 'psnr'])
class Segmentation(object):
def __init__(self, image_name, image, plot_during_training=True,
first_step_iter_num=2000,
second_step_iter_num=4000,
bg_hint=None, fg_hint=None,
show_every=500,
downsampling_factor=0.1, downsampling_number=0):
self.image = image
if bg_hint is None or fg_hint is None:
raise Exception("Hints must be provided")
self.image_name = image_name
self.plot_during_training = plot_during_training
self.downsampling_factor = downsampling_factor
self.downsampling_number = downsampling_number
self.mask_net = None
self.show_every = show_every
self.bg_hint = bg_hint
self.fg_hint = fg_hint
self.left_net = None
self.right_net = None
self.images = None
self.images_torch = None
self.left_net_inputs = None
self.right_net_inputs = None
self.mask_net_inputs = None
self.left_net_outputs = None
self.right_net_outputs = None
self.second_step_done = False
self.mask_net_outputs = None
self.parameters = None
self.gngc_loss = None
self.fixed_masks = None
self.blur_function = None
self.first_step_iter_num = first_step_iter_num
self.second_step_iter_num = second_step_iter_num
self.input_depth = 2
self.multiscale_loss = None
self.total_loss = None
self.gngc = None
self.blur = None
self.current_gradient = None
self.current_result = None
self.best_result = None
self.learning_rate = 0.001
self._init_all()
def _init_nets(self):
pad = 'reflection'
left_net = skip(
self.input_depth, 3,
num_channels_down=[8, 16, 32],
num_channels_up=[8, 16, 32],
num_channels_skip=[0, 0, 0],
upsample_mode='bilinear',
filter_size_down=3,
filter_size_up=3,
need_sigmoid=True, need_bias=True, pad=pad, act_fun='LeakyReLU')
self.left_net = left_net.type(torch.cuda.FloatTensor)
right_net = skip(
self.input_depth, 3,
num_channels_down=[8, 16, 32],
num_channels_up=[8, 16, 32],
num_channels_skip=[0, 0, 0],
upsample_mode='bilinear',
filter_size_down=3,
filter_size_up=3,
need_sigmoid=True, need_bias=True, pad=pad, act_fun='LeakyReLU')
self.right_net = right_net.type(torch.cuda.FloatTensor)
mask_net = skip_mask(
self.input_depth, 1,
num_channels_down=[8, 16, 32],
num_channels_up=[8, 16, 32],
num_channels_skip=[0, 0, 0],
filter_size_down=3,
filter_size_up=3,
upsample_mode='bilinear',
need_sigmoid=True, need_bias=True, pad=pad, act_fun='LeakyReLU')
self.mask_net = mask_net.type(torch.cuda.FloatTensor)
def _init_images(self):
self.images = get_imresize_downsampled(self.image, downsampling_factor=self.downsampling_factor,
downsampling_number=self.downsampling_number)
self.images_torch = [np_to_torch(image).type(torch.cuda.FloatTensor) for image in self.images]
if self.bg_hint is not None:
assert self.bg_hint.shape[1:] == self.image.shape[1:], (self.bg_hint.shape[1:], self.image.shape[1:])
self.bg_hints = get_imresize_downsampled(self.bg_hint, downsampling_factor=self.downsampling_factor,
downsampling_number=self.downsampling_number)
self.bg_hints_torch = [np_to_torch(bg_hint).type(torch.cuda.FloatTensor) for bg_hint in self.bg_hints]
else:
self.bg_hints = None
if self.fg_hint is not None:
assert self.fg_hint.shape[1:] == self.image.shape[1:]
self.fg_hints = get_imresize_downsampled(self.fg_hint, downsampling_factor=self.downsampling_factor,
downsampling_number=self.downsampling_number)
self.fg_hints_torch = [np_to_torch(fg_hint).type(torch.cuda.FloatTensor) for fg_hint in self.fg_hints]
else:
self.fg_hints = None
def _init_noise(self):
input_type = 'noise'
# self.left_net_inputs = self.images_torch
self.left_net_inputs = [get_noise(self.input_depth,
input_type,
(image.shape[2], image.shape[3])).type(torch.cuda.FloatTensor).detach()
for image in self.images_torch]
self.right_net_inputs = self.left_net_inputs
input_type = 'noise'
self.mask_net_inputs = [get_noise(self.input_depth,
input_type,
(image.shape[2], image.shape[3])).type(torch.cuda.FloatTensor).detach()
for image in self.images_torch]
def _init_parameters(self):
self.parameters = [p for p in self.left_net.parameters()] + \
[p for p in self.right_net.parameters()] + \
[p for p in self.mask_net.parameters()]
def _init_losses(self):
data_type = torch.cuda.FloatTensor
self.gngc_loss = YIQGNGCLoss().type(data_type)
self.l1_loss = nn.L1Loss().type(data_type)
self.extended_l1_loss = ExtendedL1Loss().type(data_type)
self.blur_function = StdLoss().type(data_type)
self.gradient_loss = GradientLoss().type(data_type)
self.gray_loss = GrayLoss().type(data_type)
def _init_all(self):
self._init_images()
self._init_losses()
self._init_nets()
self._init_parameters()
self._init_noise()
def optimize(self):
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# step 1
optimizer = torch.optim.Adam(self.parameters, lr=self.learning_rate)
for j in range(self.first_step_iter_num):
optimizer.zero_grad()
self._step1_optimization_closure(j)
self._finalize_iteration()
if self.plot_during_training:
self._iteration_plot_closure(j)
optimizer.step()
self._update_result_closure()
if self.plot_during_training:
self._step_plot_closure(1)
# self.finalize_first_step()
# step 2
optimizer = torch.optim.Adam(self.parameters, lr=self.learning_rate)
for j in range(self.second_step_iter_num):
optimizer.zero_grad()
self._step2_optimization_closure(j)
self._finalize_iteration()
if self.second_step_done:
break
if self.plot_during_training:
self._iteration_plot_closure(j)
optimizer.step()
self._update_result_closure()
if self.plot_during_training:
self._step_plot_closure(2)
def finalize_first_step(self):
left = torch_to_np(self.left_net_outputs[0])
right = torch_to_np(self.right_net_outputs[0])
save_image(self.image_name + "_1_left", left)
save_image(self.image_name + "_1_right", right)
save_image(self.image_name + "_hint1", self.bg_hint)
save_image(self.image_name + "_hint2", self.fg_hint)
save_image(self.image_name + "_hint1_masked", self.bg_hint * self.image)
save_image(self.image_name + "_hint2_masked", self.fg_hint * self.image)
def finalize(self):
save_image(self.image_name + "_left", self.best_result.left)
save_image(self.image_name + "_learned_mask", self.best_result.learned_mask)
save_image(self.image_name + "_right", self.best_result.right)
save_image(self.image_name + "_original", self.images[0])
# save_image(self.image_name + "_fg_bg", ((self.fg_hint - self.bg_hint) + 1) / 2)
save_image(self.image_name + "_mask", self.best_result.mask)
def _update_result_closure(self):
self._finalize_iteration()
self._fix_mask()
self.current_result = SegmentationResult(mask=self.fixed_masks[0],
left=torch_to_np(self.left_net_outputs[0]),
right=torch_to_np(self.right_net_outputs[0]),
learned_mask=torch_to_np(self.mask_net_outputs[0]),
psnr=self.current_psnr)
if self.best_result is None or self.best_result.psnr <= self.current_result.psnr:
self.best_result = self.current_result
def _fix_mask(self):
"""
fixing the masks using soft matting
:return:
"""
masks_np = [torch_to_np(mask) for mask in self.mask_net_outputs]
new_mask_nps = [np.array([guidedFilter(image_np.transpose(1, 2, 0).astype(np.float32),
mask_np[0].astype(np.float32), 50, 1e-4)])
for image_np, mask_np in zip(self.images, masks_np)]
def to_bin(x):
v = np.zeros_like(x)
v[x > 0.5] = 1
return v
self.fixed_masks = [to_bin(m) for m in new_mask_nps]
def _initialize_step1(self, iteration):
self._initialize_any_step(iteration)
def _initialize_step2(self, iteration):
self._initialize_any_step(iteration)
def _initialize_any_step(self, iteration):
if iteration == self.second_step_iter_num - 1:
reg_noise_std = 0
elif iteration < 1000:
reg_noise_std = (1 / 1000.) * (iteration // 100)
else:
reg_noise_std = 1 / 1000.
right_net_inputs = []
left_net_inputs = []
mask_net_inputs = []
# creates left_net_inputs and right_net_inputs by adding small noise
for left_net_original_input, right_net_original_input, mask_net_original_input \
in zip(self.left_net_inputs, self.right_net_inputs, self.mask_net_inputs):
left_net_inputs.append(
left_net_original_input + (left_net_original_input.clone().normal_() * reg_noise_std))
right_net_inputs.append(
right_net_original_input + (right_net_original_input.clone().normal_() * reg_noise_std))
mask_net_inputs.append(
mask_net_original_input + (mask_net_original_input.clone().normal_() * reg_noise_std))
# applies the nets
self.left_net_outputs = [self.left_net(left_net_input) for left_net_input in left_net_inputs]
self.right_net_outputs = [self.right_net(right_net_input) for right_net_input in right_net_inputs]
self.mask_net_outputs = [self.mask_net(mask_net_input) for mask_net_input in mask_net_inputs]
self.total_loss = 0
self.gngc = 0
self.blur = 0
def _step1_optimization_closure(self, iteration):
"""
the real iteration is step * self.num_iter_per_step + iteration
:param iteration:
:param step:
:return:
"""
self._initialize_step1(iteration)
if self.fg_hints is not None and self.bg_hints is not None:
self._step1_optimize_with_hints(iteration)
else:
self._step1_optimize_without_hints(iteration)
def _step2_optimization_closure(self, iteration):
"""
the real iteration is step * self.num_iter_per_step + iteration
:param iteration:
:param step:
:return:
"""
self._initialize_step2(iteration)
if self.fg_hints is not None and self.bg_hints is not None:
self._step2_optimize_with_hints(iteration)
else:
self._step2_optimize_without_hints(iteration)
def _step1_optimize_without_hints(self, iteration):
self.total_loss += sum(self.l1_loss(torch.ones_like(mask_net_output) / 2, mask_net_output) for
mask_net_output in self.mask_net_outputs)
self.total_loss.backward(retain_graph=True)
def _step1_optimize_with_hints(self, iteration):
"""
optimization, where hints are given
:param iteration:
:return:
"""
self.total_loss += sum(self.extended_l1_loss(left_net_output, image_torch, fg_hint) for
left_net_output, fg_hint, image_torch
in zip(self.left_net_outputs, self.fg_hints_torch, self.images_torch))
self.total_loss += sum(self.extended_l1_loss(right_net_output, image_torch, bg_hint) for
right_net_output, bg_hint, image_torch
in zip(self.right_net_outputs, self.bg_hints_torch, self.images_torch))
self.total_loss += sum(self.l1_loss(((fg_hint - bg_hint) + 1) / 2, mask_net_output) for
fg_hint, bg_hint, mask_net_output in
zip(self.fg_hints_torch, self.bg_hints_torch, self.mask_net_outputs))
self.total_loss.backward(retain_graph=True)
def _step2_optimize_without_hints(self, iteration):
for left_out, right_out, mask_out, original_image_torch in zip(self.left_net_outputs,
self.right_net_outputs,
self.mask_net_outputs,
self.images_torch):
self.total_loss += 0.5 * self.l1_loss(mask_out * left_out + (1 - mask_out) * right_out,
original_image_torch)
self.current_gradient = self.gray_loss(mask_out)
# self.current_gradient = self.gradient_loss(mask_out)
self.total_loss += (0.01 * (iteration // 100)) * self.current_gradient
self.total_loss.backward(retain_graph=True)
def _step2_optimize_with_hints(self, iteration):
if iteration <= 1000:
self.total_loss += sum(self.extended_l1_loss(left_net_output, image_torch, fg_hint) for
left_net_output, fg_hint, image_torch
in zip(self.left_net_outputs, self.fg_hints_torch, self.images_torch))
self.total_loss += sum(self.extended_l1_loss(right_net_output, image_torch, bg_hint) for
right_net_output, bg_hint, image_torch
in zip(self.right_net_outputs, self.bg_hints_torch, self.images_torch))
for left_out, right_out, mask_out, original_image_torch in zip(self.left_net_outputs,
self.right_net_outputs,
self.mask_net_outputs,
self.images_torch):
self.total_loss += 0.5 * self.l1_loss(mask_out * left_out + (1 - mask_out) * right_out,
original_image_torch)
self.current_gradient = self.gray_loss(mask_out)
# self.current_gradient = self.gradient_loss(mask_out)
iteration = min(iteration, 1000)
self.total_loss += (0.001 * (iteration // 100)) * self.current_gradient
self.total_loss.backward(retain_graph=True)
def _finalize_iteration(self):
left_out_np = torch_to_np(self.left_net_outputs[0])
right_out_np = torch_to_np(self.right_net_outputs[0])
original_image = self.images[0]
mask_out_np = torch_to_np(self.mask_net_outputs[0])
self.current_psnr = compare_psnr(original_image, mask_out_np * left_out_np + (1 - mask_out_np) * right_out_np)
# TODO: run only in the second step
if self.current_psnr > 30:
self.second_step_done = True
def _iteration_plot_closure(self, iter_number):
if self.current_gradient is not None:
print('Iteration {:5d} total_loss {:5f} grad {:5f} PSNR {:5f} '.format(iter_number, self.total_loss.item(),
self.current_gradient.item(),
self.current_psnr),
'\r', end='')
else:
print('Iteration {:5d} total_loss {:5f} PSNR {:5f} '.format(iter_number, self.total_loss.item(),
self.current_psnr),
'\r', end='')
if iter_number % self.show_every == self.show_every - 1:
self._plot_with_name(iter_number)
def _step_plot_closure(self, step_number):
"""
runs at the end of each step
:param step_number:
:return:
"""
self._plot_with_name("step_{}".format(step_number))
def _plot_with_name(self, name):
if self.fg_hint is not None and self.bg_hint is not None:
plot_image_grid("left_right_hints_{}".format(name),
[np.clip(self.fg_hint, 0, 1),
np.clip(self.bg_hint, 0, 1)])
for i, (left_out, right_out, mask_out, image) in enumerate(zip(self.left_net_outputs,
self.right_net_outputs,
self.mask_net_outputs, self.images)):
plot_image_grid("left_right_{}_{}".format(name, i),
[np.clip(torch_to_np(left_out), 0, 1),
np.clip(torch_to_np(right_out), 0, 1)])
mask_out_np = torch_to_np(mask_out)
plot_image_grid("learned_mask_{}_{}".format(name, i),
[np.clip(mask_out_np, 0, 1), 1 - np.clip(mask_out_np, 0, 1)])
plot_image_grid("learned_image_{}_{}".format(name, i),
[np.clip(mask_out_np * torch_to_np(left_out) + (1 - mask_out_np) * torch_to_np(right_out),
0, 1), image])