-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
508 lines (439 loc) · 19.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# This file implements most of the training and data logic.
import json
import os
import pickle
import sys
from collections import defaultdict
from datetime import datetime
from functools import lru_cache
import numpy as np
import torch
from loguru import logger
from sklearn.model_selection import ParameterGrid, train_test_split
from tqdm import tqdm
from backbones import feedforward_text, get_outputs
from datasets_all import dataset_info
logger.remove()
log_format = "<green>{time:HH:mm:ss}</green> <level>{message}</level>"
logger.add(sys.stdout, colorize=True, format=log_format)
logfile_name = f"logs/runs/{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.log"
logger.add(logfile_name, format=log_format)
torch.set_num_threads(1)
# Change backbone_name to the backbone you want to use; we use ResNet-50 by default
# backbone_name = "B32-best"
backbone_name = "R50-openai"
# backbone_name = "L14-openai"
# backbone_name = "L14-best"
@lru_cache(maxsize=None)
def get_cached_data(dataset_name, splits=None):
"""Return a dictionary of features, labels, and domains for a dataset. Handles normalization and whitening of features."""
print(f"Getting cached data for {dataset_name}...")
normalize = lambda x: x / np.linalg.norm(x, axis=1, keepdims=True)
mean_and_std_fn = f"features/{dataset_name}-{backbone_name}-mean_and_std.pkl"
if os.path.exists(mean_and_std_fn):
"""Loading cached mean and std from train split"""
with open(mean_and_std_fn, "rb") as f:
tr_f_mean, tr_f_std = pickle.load(f)
else:
tr_outputs = get_outputs(dataset_name, backbone_name, "train")
tr_x = tr_outputs["features"]
tr_f_n = normalize(tr_x)
tr_f_mean, tr_f_std = tr_f_n.mean(0), tr_f_n.std(0)
with open(mean_and_std_fn, "wb") as f:
pickle.dump((tr_f_mean, tr_f_std), f)
if splits is None:
splits = ["train", "val", "test"]
all_outputs = dict()
for split in splits:
all_outputs[split] = get_outputs(dataset_name, backbone_name, split)
data = dict()
for split in all_outputs.keys():
split_features = all_outputs[split]["features"]
split_labels = all_outputs[split]["labels"]
split_domains = all_outputs[split]["domains"]
norm_split_features = normalize(split_features)
data[split] = {
"labels": torch.from_numpy(split_labels).long(),
"domains": torch.from_numpy(split_domains).long(),
"feats": torch.from_numpy(split_features).float(),
"feats_n": torch.from_numpy(norm_split_features).float(),
}
whiten = lambda x: (x - tr_f_mean) / tr_f_std
data[split]["feats_n_w"] = whiten(data[split]["feats_n"])
return data
@torch.no_grad()
def evaluate(net, x, y, masks=None):
criterion = torch.nn.CrossEntropyLoss(reduction="none")
logits = net(x).detach().cpu()
y = y.detach().cpu()
corrects = logits.argmax(1) == y
loss = criterion(logits, y).float().mean().item()
if masks is None:
l_masks = [(y == l).bool() for l in np.unique(y)]
l_losses = torch.stack([criterion(logits[m], y[m]).mean() for m in l_masks])
crossval_loss = l_losses.max().item()
acc = corrects.float().mean().item()
else:
raw_loss = criterion(logits, y)
ml_loss = torch.stack([raw_loss[m].mean() for m in masks])
ml_acc = torch.stack([corrects[m].float().mean() for m in masks])
ml_loss = ml_loss[~torch.isnan(ml_loss)]
ml_acc = ml_acc[~torch.isnan(ml_acc)]
crossval_loss = ml_loss.max().item()
acc = ml_acc.min().item()
return {
"crossval_loss": crossval_loss, # cross-validation with worst-group loss
"loss": loss,
"acc": acc,
"corrects": corrects.numpy(),
"logits": logits.numpy(),
}
def get_loss(preds, labels, masks):
lbl_cpu = labels.cpu()
criterion = torch.nn.CrossEntropyLoss(reduction="none")
raw_loss = criterion(preds, labels)
if masks is None: # Standard ERM, no group splits
split_masks = [(lbl_cpu == l).bool() for l in np.unique(lbl_cpu)]
split_losses = torch.stack([raw_loss[m].mean() for m in split_masks])
loss = raw_loss.mean() # standard cross-entropy
# loss = split_losses.mean() # class-balanced ERM
# loss = split_losses.max() # worst-class ERM
else:
split_losses = torch.stack([raw_loss[m].mean() for m in masks])
split_losses = split_losses[~torch.isnan(split_losses)] # filter out NaNs
# loss = split_losses.mean() # DFR
loss = split_losses.max() # Group DRO
return loss
def _train(steps, all_data, num_classes, masks, lr, weight_decay):
"""One run of training."""
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if masks is not None:
masks = [m.to(dtype=torch.bool) for m in masks]
tr_N, D = all_data["train"]["feats_n_w"].shape
net = torch.nn.Linear(D, num_classes)
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
tr_idxs, val_idxs = train_test_split(np.arange(tr_N), test_size=0.2)
data = {
"x_tr": all_data["train"]["feats_n_w"][tr_idxs],
"y_tr": all_data["train"]["labels"][tr_idxs],
"x_id_val": all_data["train"]["feats_n_w"][val_idxs],
"y_id_val": all_data["train"]["labels"][val_idxs],
"x_val": all_data["val"]["feats_n_w"],
"y_val": all_data["val"]["labels"],
"x_test": all_data["test"]["feats_n_w"],
"y_test": all_data["test"]["labels"],
}
data = {k: v.to(device) for k, v in data.items()}
if masks is not None:
data["m_tr"] = [m[tr_idxs] for m in masks]
data["m_id_val"] = [m[val_idxs] for m in masks]
else:
data["m_tr"] = None
data["m_id_val"] = None
net.to(device)
patience = 0
best_val_loss = float("inf")
for i in tqdm(range(steps)):
preds = net(data["x_tr"])
loss = get_loss(preds, data["y_tr"], data["m_tr"])
optimizer.zero_grad()
loss.backward()
optimizer.step()
val_loss = get_loss(net(data["x_id_val"]), data["y_id_val"], data["m_id_val"])
if val_loss < best_val_loss:
best_val_loss = val_loss
patience = 0
crossval_metrics = {
"id_val": evaluate(net, data["x_id_val"], data["y_id_val"], masks=data["m_id_val"]),
# "val": evaluate(net, data["x_val"], data["y_val"]),
# "test": evaluate(net, data["x_test"], data["y_test"]),
}
else:
patience += 1
if patience > 20:
break
crossval_metrics["net"] = net.cpu()
return crossval_metrics
def calculate_accs(logits, labels, domains):
corrects = logits.argmax(1) == np.array(labels)
metrics = {"avg": corrects.mean().item()}
num_d = len(np.unique(domains))
groups = np.array(labels) * num_d + np.array(domains)
groups_sorted = sorted(np.unique(groups))
groupwise_accs = {g: corrects[groups == g].mean() for g in groups_sorted}
metrics.update(groupwise_accs)
return metrics
def get_classwise_metrics(nets, data):
assert isinstance(nets, list)
x, y = data["feats_n_w"], data["labels"]
evals = [evaluate(net, x, y) for net in nets]
logits = np.stack([e["logits"] for e in evals])
metrics = {}
corrects = logits.argmax(-1) == np.array(y)
metrics["probs"] = torch.tensor(logits).softmax(-1).mean(0).numpy()
metrics["preds"] = metrics["probs"].argmax(-1)
metrics["acc"] = corrects.mean().item()
metrics["classwise_accs"] = [
corrects[:, y == class_idx].mean().item() for class_idx in np.unique(y)
]
metrics["labels"] = y
print(f"Overall acc: {metrics['acc']*100:.2f}%")
return metrics
def get_metrics(nets, data):
"""Takes list of nets, returns metrics for each net."""
assert isinstance(nets, list)
x, y, d = data["feats_n_w"], data["labels"], data["domains"]
evals = [evaluate(net, x, y) for net in nets]
_metrics = [calculate_accs(e["logits"], y, d) for e in evals]
metrics = {k: np.stack([m[k] for m in _metrics]) for k in _metrics[0].keys()}
logits = np.stack([e["logits"] for e in evals])
probs = torch.tensor(logits).softmax(-1).mean(0).numpy()
preds = probs.argmax(1)
metrics.update({"probs": probs, "preds": preds})
return metrics
def get_training_results(dataset_name, subset_idx=None, masks=None, max_steps=3000, repeats=3):
"""Full training loop with hyperparameter search."""
all_data = get_cached_data(dataset_name)
if subset_idx is not None:
# If subset_idx is specified, only use a subset of the training data
assert all(idx in range(all_data["train"]["feats_n_w"].shape[0]) for idx in subset_idx)
all_data["train"] = {k: v[subset_idx] for k, v in all_data["train"].items()}
if masks is not None:
masks = [m[subset_idx] for m in masks]
num_classes = dataset_info[dataset_name]["num_classes"]
if dataset_name == "waterbirds":
lrs = [0.01]
wds = [0.01]
elif dataset_name == "celeba":
lrs = [0.1]
wds = [0.01]
logger.info(f"Dataset={dataset_name}. Hyperparameter grid lrs={lrs}, wds={wds}")
param_grid = {"lr": lrs, "weight_decay": wds}
grid = ParameterGrid(param_grid)
best_loss = float("inf")
for hparams in grid:
logger.info(f"Training with hyperparameters: {hparams}")
metrics_all = []
for _ in range(repeats):
_metrics = _train(
max_steps, all_data, num_classes, masks, hparams["lr"], hparams["weight_decay"]
)
metrics_all.append(_metrics)
id_val_losses = [m["id_val"]["crossval_loss"] for m in metrics_all]
avg_loss = np.mean(id_val_losses)
if avg_loss < best_loss:
best_hparams, best_loss = hparams, avg_loss
best_nets = [m["net"] for m in metrics_all]
logger.info(f"Best params = {best_hparams}")
full_results = dict()
for split in ["val", "test"]:
split_metrics = get_metrics(best_nets, all_data[split])
full_results[f"{split}_avg"] = split_metrics["avg"].mean()
if not "group_split" in dataset_info[dataset_name]:
logger.info(f"full_results[{split}_avg] = {full_results[f'{split}_avg']}")
text_items = [f"Avg: {full_results[f'{split}_avg']*100:.1f}"]
full_results[f"{split}_text"] = "\n".join(text_items)
continue
groups = np.array([0, 1, 2, 3])
split_group_grid = np.stack([split_metrics[g] for g in groups])
full_results[f"{split}_worst"] = np.min(split_group_grid, axis=0).mean()
group_split = dataset_info[dataset_name]["group_split"]
train_group_ratio = group_split / group_split.sum()
tr_w_metrics = split_group_grid * train_group_ratio[:, None]
full_results[f"{split}_adj_avg"] = np.sum(tr_w_metrics, axis=0).mean()
full_results[f"{split}_gap"] = (
full_results[f"{split}_adj_avg"] - full_results[f"{split}_worst"]
)
logger.info(
f"{full_results[f'{split}_worst']*100:.1f} & {full_results[f'{split}_adj_avg']*100:.1f} & {full_results[f'{split}_gap']*100:.1f} & "
)
text_items = [f"Adj Avg: {full_results[f'{split}_adj_avg']*100:.1f}"]
text_items.append(
f"Worst: {full_results[f'{split}_worst']*100:.1f} (gap={full_results[f'{split}_gap']*100:.1f})"
)
split_group_avg = split_group_grid.mean(axis=1)
group_names = dataset_info[dataset_name]["group_names"]
group_text = " ".join(
[f"{gname}={split_group_avg[g]*100:.1f}" for g, gname in zip(groups, group_names)]
)
text_items.append(group_text)
full_results[f"{split}_text"] = "\n".join(text_items)
return {
"nets": best_nets,
"metrics": full_results,
"val_text": full_results["val_text"],
"test_text": full_results["test_text"],
}
def train_with_groups(dataset_name):
all_data = get_cached_data(dataset_name)
train_y = all_data["train"]["labels"]
train_d = all_data["train"]["domains"]
num_d = len(np.unique(train_d))
train_g = train_y * num_d + train_d
group_masks = [train_g == g for g in np.unique(train_g)]
return get_training_results(dataset_name=dataset_name, masks=group_masks)
def get_text_embedding(_prompts):
prompts = [f"an image of a {p}" for p in _prompts]
print(f"Getting text embedding for {len(prompts)} prompts...")
cache_path = f"features/textemb_{backbone_name}.pkl"
if os.path.exists(cache_path):
with open(cache_path, "rb") as f:
cache = pickle.load(f)
else:
cache = {}
if isinstance(prompts, str):
prompt = prompts
if prompt in cache:
return cache[prompt]
else:
text_features = feedforward_text([prompt], backbone_name)
cache[prompt] = text_features[0]
with open(cache_path, "wb") as f:
pickle.dump(cache, f)
return cache[prompt]
else:
noncached_prompts = list(filter(lambda x: x not in cache, prompts))
if len(noncached_prompts) > 0:
text_features = feedforward_text(noncached_prompts, backbone_name)
for prompt, text_feature in zip(noncached_prompts, text_features):
cache[prompt] = text_feature
with open(cache_path, "wb") as f:
pickle.dump(cache, f)
return np.stack([cache[p] for p in prompts])
def get_similarities(prompt, split, dataset_name):
all_data = get_cached_data(dataset_name)
n_img_embs = np.array(all_data[split]["feats_n"])
text_embedding = get_text_embedding(prompt)
n_text_embs = text_embedding / np.linalg.norm(text_embedding)
similarities = n_text_embs @ n_img_embs.T
return similarities
def get_masks(reweight_dict):
dataset_name = reweight_dict["dataset_name"]
all_masks = []
for class_name, params in reweight_dict["cutoffs"].items():
prompt, cutoff = params["prompt"], params["sim_cutoff"]
class_to_idx = dataset_info[dataset_name]["class_to_idx"]
class_idx = class_to_idx[class_name]
all_data = get_cached_data(dataset_name)
class_mask = all_data["train"]["labels"] == class_idx
train_similarities = get_similarities(prompt, "train", dataset_name)
attribute_mask = train_similarities > cutoff
left_mask = np.logical_and(class_mask, ~attribute_mask)
right_mask = np.logical_and(class_mask, attribute_mask)
all_masks += [left_mask, right_mask]
n_left, n_right = left_mask.sum(), right_mask.sum()
frac_left, frac_right = n_left / class_mask.sum(), n_right / class_mask.sum()
logger.info(f"Class {class_name} has {class_mask.sum()} images total")
logger.info(f"{n_left} / {n_right} split ({frac_left*100:.1f}% / {frac_right*100:.1f}%)")
return all_masks
def reweight_and_train(reweight_dict):
dataset_name = reweight_dict["dataset_name"]
all_masks = get_masks(reweight_dict)
training_results = get_training_results(dataset_name=dataset_name, masks=all_masks)
fn = f"leaderboard_{dataset_name}_{backbone_name}.json"
leaderboard_path = os.path.join("logs", fn)
if os.path.exists(leaderboard_path):
with open(leaderboard_path, "r") as f:
current_leaderboard = json.load(f)
else:
current_leaderboard = []
metrics_to_save = [
"val_avg",
"val_adj_avg",
"val_worst",
"val_gap",
"test_avg",
"test_adj_avg",
"test_worst",
"test_gap",
]
metrics_dict = {k: training_results["metrics"][k] for k in metrics_to_save}
metrics_dict["cutoff_params"] = reweight_dict["cutoffs"]
current_leaderboard.append(metrics_dict)
with open(leaderboard_path, "w") as f:
json.dump(current_leaderboard, f, indent=4)
return training_results
def get_nets(dataset_name, zero_shot=False):
"""Get cached linear probe networks for a dataset."""
os.makedirs("checkpoints", exist_ok=True)
fn = f"checkpoints/{backbone_name}-{dataset_name}.pkl"
if os.path.exists(fn):
print(f"Loading cached networks for {dataset_name}...")
with open(fn, "rb") as f:
nets = pickle.load(f)
return nets
print(f"Training networks for {dataset_name}...")
training_results = get_training_results(dataset_name, repeats=1)
nets = training_results["nets"]
with open(fn, "wb") as f:
pickle.dump(nets, f)
return nets
def small_data_experiment(dataset_name):
all_results = defaultdict(list)
if dataset_name == "waterbirds":
repeats = 25
run_repeats = 5
Ns = [75, 100, 200, 300, 400, 500, 1000, 2000]
prompt = "a bird in the ocean"
c1 = c2 = 0.18
wbird_setting = {
"dataset_name": dataset_name,
"cutoffs": {
"landbird": {"prompt": prompt, "sim_cutoff": c1},
"waterbird": {"prompt": prompt, "sim_cutoff": c2},
},
}
elif dataset_name == "celeba":
Ns = [100, 300, 1000, 3000, 10000, 30000, 100000]
repeats = 5
run_repeats = 5
prompt = "an image of a man"
c1 = c2 = 0.17
wbird_setting = {
"dataset_name": dataset_name,
"cutoffs": {
"nonblond": {"prompt": prompt, "sim_cutoff": c1},
"blond": {"prompt": prompt, "sim_cutoff": c2},
},
}
all_data = get_cached_data(dataset_name=dataset_name)
train_N = all_data["train"]["labels"].shape[0]
for N in Ns:
for _ in range(repeats):
subset_idx = np.random.choice(train_N, N, replace=False)
_results = get_training_results(
dataset_name=dataset_name, subset_idx=subset_idx, repeats=run_repeats
)
all_results[f"random_{N}_avg"] = _results["metrics"]["test_adj_avg"]
all_results[f"random_{N}_worst"] = _results["metrics"]["test_worst"]
masks = get_masks(wbird_setting)
num_masks = len(masks)
for N in Ns:
for _ in range(repeats):
imgs_per_mask = N // num_masks
subset_idx = []
for m in masks:
idx = np.where(m)[0]
mask_N = min(imgs_per_mask, len(idx))
subset_idx += list(np.random.choice(idx, mask_N, replace=False))
if len(subset_idx) < N: # add more images not yet sampled
not_sampled = np.array(list(set(range(train_N)) - set(subset_idx)))
subset_idx += list(np.random.choice(not_sampled, N - len(subset_idx)))
assert len(subset_idx) == N
_results = get_training_results(
dataset_name=dataset_name, subset_idx=subset_idx, masks=masks, repeats=run_repeats
)
all_results[f"interact_{N}_avg"] = _results["metrics"]["test_adj_avg"]
all_results[f"interact_{N}_worst"] = _results["metrics"]["test_worst"]
avg_results = {k: np.mean(v) for k, v in all_results.items()}
aggregated_results = {
"random_avg": [avg_results[f"random_{N}_avg"] for N in Ns],
"random_worst": [avg_results[f"random_{N}_worst"] for N in Ns],
"interact_avg": [avg_results[f"interact_{N}_avg"] for N in Ns],
"interact_worst": [avg_results[f"interact_{N}_worst"] for N in Ns],
}
logger.info(Ns)
logger.info(", ".join(map(lambda x: f"{x*100:.1f}", aggregated_results["interact_avg"])))
logger.info(", ".join(map(lambda x: f"{x*100:.1f}", aggregated_results["interact_worst"])))
logger.info(", ".join(map(lambda x: f"{x*100:.1f}", aggregated_results["random_avg"])))
logger.info(", ".join(map(lambda x: f"{x*100:.1f}", aggregated_results["random_worst"])))