-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets_all.py
425 lines (350 loc) · 15.5 KB
/
datasets_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# https://github.com/AndPotap/afr/blob/main/data/datasets.py
# https://github.com/AndPotap/afr/blob/main/utils/common_utils.py#L178
import json
import os
import random
from functools import wraps
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from PIL import Image
from torch.utils.data import Dataset
def _bincount_array_as_tensor(arr):
return torch.from_numpy(np.bincount(arr)).long()
def _randomly_split_in_two(samples, prop=0.8, seed=21, max_prop=1.0):
random.seed(seed)
random.shuffle(samples)
samples = samples[: int(len(samples) * max_prop)]
first_total = int(len(samples) * np.abs(prop))
if prop >= 0:
return samples[:first_total]
else:
return samples[-first_total:]
def get_group_array(y_array, spurious_array, all_groups):
group_array = np.zeros(y_array.shape[0], dtype=np.int64)
for idx, (y, ss) in enumerate(all_groups):
mask1 = np.array(spurious_array == ss)
mask2 = np.array(y_array == y)
mask = np.logical_and(mask1, mask2)
group_array[mask] = idx
return group_array
def _get_split(split):
try:
return ["train", "val", "test"].index(split)
except ValueError:
raise (f"Unknown split {split}")
def _cast_int(arr):
if isinstance(arr, np.ndarray):
return arr.astype(int)
elif isinstance(arr, torch.Tensor):
return arr.int()
else:
raise NotImplementedError
class SpuriousDataset(Dataset):
def __init__(self, basedir, split="train", transform=None, prop=1.0, seed=21, max_prop=1.0):
self.basedir = basedir
self.transform = transform
self.split = split
self.metadata_df = self._get_metadata(split)
indices = np.arange(len(self.metadata_df))
ind = _randomly_split_in_two(indices, prop=prop, seed=seed, max_prop=max_prop)
self.metadata_df = self.metadata_df.iloc[np.sort(ind)]
self.y_array = self.metadata_df["y"].values
self.spurious_array = self.metadata_df["place"].values
self._count_attributes()
self._get_class_spurious_groups()
self._count_groups()
self.filename_array = self.metadata_df["img_filename"].values
def _get_metadata(self, split):
split_i = _get_split(split)
metadata_df = pd.read_csv(os.path.join(self.basedir, "metadata.csv"))
metadata_df = metadata_df[metadata_df["split"] == split_i]
return metadata_df
def _count_attributes(self):
self.n_classes = np.unique(self.y_array).size
self.n_spurious = np.unique(self.spurious_array).size
self.y_counts = _bincount_array_as_tensor(self.y_array)
self.spurious_counts = _bincount_array_as_tensor(self.spurious_array)
def _count_groups(self):
self.group_counts = _bincount_array_as_tensor(self.group_array)
self.n_groups = len(self.group_counts)
self.active_groups = np.unique(self.group_array).tolist()
def _get_class_spurious_groups(self):
self.group_array = _cast_int(self.y_array * self.n_spurious + self.spurious_array)
def __len__(self):
return len(self.metadata_df)
def __getitem__(self, idx):
y = self.y_array[idx]
domain = self.spurious_array[idx]
group = self.group_array[idx]
x = self._image_getitem(idx)
file_path = self.filename_array[idx]
return x, y, domain, group, file_path
def _image_getitem(self, idx):
img_path = os.path.join(self.basedir, self.filename_array[idx])
img = Image.open(img_path).convert("RGB")
if self.transform:
img = self.transform(img)
return img
def __str__(self):
out_str = "\n".join(
[
f"Dataset {self.__class__.__name__} in {self.basedir}",
f"Split: {self.split}",
f"Number of samples: {len(self)}",
f"Number of classes: {self.n_classes} ({self.y_counts.tolist()})",
f"Number of spurious: {self.n_spurious} ({self.spurious_counts.tolist()})",
f"Number of groups: {self.n_groups} ({self.group_counts.tolist()})",
f"Transform: {self.transform}",
]
)
return out_str + "\n"
class JTTSpuriousDataset(SpuriousDataset):
def __init__(
self, basedir, subset, upweight, split="train", transform=None, prop=1.0, max_prop=1.0
):
del prop
del max_prop
selected_cols = ["img_filename", "y", "split", "place"]
self.basedir = basedir
self.metadata_df = self._get_metadata(split)
mistakes = pd.DataFrame({"img": subset * int(upweight - 1)})
aux = pd.merge(
left=self.metadata_df, right=mistakes, left_on="img_filename", right_on="img"
)
self.metadata_df = pd.concat((self.metadata_df[selected_cols], aux[selected_cols]))
self.transform = transform
self.y_array = self.metadata_df["y"].values
self.spurious_array = self.metadata_df["place"].values
self._count_attributes()
self._get_class_spurious_groups()
self._count_groups()
self.filename_array = self.metadata_df["img_filename"].values
class ShrinkedSpuriousDataset(SpuriousDataset):
def __init__(self, basedir, subset, split="train", transform=None):
self.basedir = basedir
self.metadata_df = self._get_metadata(split)
subset = subset.reset_index()
subset = subset.rename(columns={"index": "img", 0: "group", 1: "focal"})
aux = pd.merge(left=self.metadata_df, right=subset, left_on="img_filename", right_on="img")
self.metadata_df = aux[["img_filename", "y", "split", "place"]]
self.transform = transform
self.y_array = self.metadata_df["y"].values
self.spurious_array = self.metadata_df["place"].values
self._count_attributes()
self._get_class_spurious_groups()
self._count_groups()
self.filename_array = self.metadata_df["img_filename"].values
class PhasesDataset(SpuriousDataset):
def __init__(self, basedir, split="train", transform=None):
super().__init__(basedir, split, transform)
def __getitem__(self, idx):
file_path = self.filename_array[idx]
label = self.y_array[idx]
group = self.group_array[idx]
is_spurious = self.spurious_array[idx]
image = self._image_getitem(idx)
return file_path, image, label, group, is_spurious
class EmbeddingsDataset:
def __init__(self, embeddings, targets, weights):
self.embeddings = embeddings
self.targets = targets
self.weights = weights
def __len__(self):
return len(self.targets)
def __getitem__(self, idx):
emb = self.embeddings[idx]
y = self.targets[idx]
w = self.weights[idx]
return emb, y, w
def remove_minority_groups(trainset, num_remove):
if num_remove == 0:
return
print("Removing minority groups")
print("Initial groups", np.bincount(trainset.group_array))
group_counts = trainset.group_counts
minority_groups = np.argsort(group_counts.numpy())[:num_remove]
minority_groups
idx = np.where(
np.logical_and.reduce([trainset.group_array != g for g in minority_groups], initial=True)
)[0]
trainset.y_array = trainset.y_array[idx]
trainset.group_array = trainset.group_array[idx]
trainset.confounder_array = trainset.confounder_array[idx]
trainset.filename_array = trainset.filename_array[idx]
trainset.metadata_df = trainset.metadata_df.iloc[idx]
print("Final groups", np.bincount(trainset.group_array))
def balance_groups(ds):
print("Original groups", ds.group_counts)
group_counts = ds.group_counts.long().numpy()
min_group = np.min(group_counts)
group_idx = [np.where(ds.group_array == g)[0] for g in range(ds.n_groups)]
for idx in group_idx:
np.random.shuffle(idx)
group_idx = [idx[:min_group] for idx in group_idx]
idx = np.concatenate(group_idx, axis=0)
ds.y_array = ds.y_array[idx]
ds.group_array = ds.group_array[idx]
ds.spurious_array = ds.spurious_array[idx]
ds.filename_array = ds.filename_array[idx]
ds.metadata_df = ds.metadata_df.iloc[idx]
ds.group_counts = torch.from_numpy(np.bincount(ds.group_array))
print("Final groups", ds.group_counts)
def unbalance_groups(ds, group_ratios):
# keep as much data as possible but with the given group ratios,
# assuming original groups roughly balanced scale ratios so that largest one is 1
group_ratios = np.array(group_ratios)
group_ratios = group_ratios / np.max(group_ratios)
print("Unbalancing groups with ratios", group_ratios)
print("Original groups", ds.group_counts)
group_counts = ds.group_counts.long().numpy()
min_group = np.min(group_counts)
group_idx = [np.where(ds.group_array == g)[0] for g in range(ds.n_groups)]
for idx in group_idx:
np.random.shuffle(idx)
group_idx = [idx[: int(min_group * r)] for idx, r in zip(group_idx, group_ratios)]
idx = np.concatenate(group_idx, axis=0)
ds.y_array = ds.y_array[idx]
ds.group_array = ds.group_array[idx]
ds.spurious_array = ds.spurious_array[idx]
ds.filename_array = ds.filename_array[idx]
ds.metadata_df = ds.metadata_df.iloc[idx]
ds.group_counts = torch.from_numpy(np.bincount(ds.group_array))
print("Final groups", ds.group_counts)
def subsample(ds, frac, generator=torch.Generator().manual_seed(42)):
subsample_size = int(len(ds) * frac)
idx = torch.randperm(len(ds), generator=generator).tolist()[:subsample_size]
ds.y_array = ds.y_array[idx]
ds.group_array = ds.group_array[idx]
ds.spurious_array = ds.spurious_array[idx]
ds.filename_array = ds.filename_array[idx]
ds.metadata_df = ds.metadata_df.iloc[idx]
ds.group_counts = torch.from_numpy(np.bincount(ds.group_array))
def subsample_to_size_and_ratio(ds, final_size, final_ratio):
# subsample ds so that the final dataset has final_size samples and
# final_ratio for each group where final_ratio sums to 1
final_ratio = np.array(final_ratio)
final_ratio = final_ratio / np.sum(final_ratio)
print(f"Subsampling to size {final_size} samples with ratios {final_ratio}")
print("Original groups", ds.group_counts)
group_counts = ds.group_counts.long().numpy()
check = (final_size * final_ratio <= group_counts).all()
assert check, "Cannot subsample to desired size and ratio"
group_idx = [np.where(ds.group_array == g)[0] for g in range(ds.n_groups)]
group_idx = [idx[: int(final_size * r)] for idx, r in zip(group_idx, final_ratio)]
idx = np.concatenate(group_idx, axis=0)
ds.y_array = ds.y_array[idx]
ds.group_array = ds.group_array[idx]
ds.spurious_array = ds.spurious_array[idx]
ds.filename_array = ds.filename_array[idx]
ds.metadata_df = ds.metadata_df.iloc[idx]
ds.group_counts = torch.from_numpy(np.bincount(ds.group_array))
print("Final groups", ds.group_counts)
def subset(ds, idx):
ds.y_array = ds.y_array[idx]
ds.group_array = ds.group_array[idx]
ds.spurious_array = ds.spurious_array[idx]
ds.filename_array = ds.filename_array[idx]
ds.metadata_df = ds.metadata_df.iloc[idx]
ds.group_counts = torch.from_numpy(np.bincount(ds.group_array))
def concate(ds1, ds2):
ds1.y_array = np.concatenate((ds1.y_array, ds2.y_array), axis=0)
ds1.group_array = np.concatenate((ds1.group_array, ds2.group_array), axis=0)
ds1.spurious_array = np.concatenate((ds1.spurious_array, ds2.spurious_array), axis=0)
ds1.filename_array = np.concatenate((ds1.filename_array, ds2.filename_array), axis=0)
ds1.metadata_df = pd.concat((ds1.metadata_df, ds2.metadata_df), axis=0)
ds1.group_counts = torch.from_numpy(np.bincount(ds1.group_array))
class DatasetGroup:
def __init__(self, data):
self.x, self.y = data
def __getitem__(self, index):
return self.x[index], int(self.y[index]), 0, 0
def __len__(self):
return self.x.shape[0]
def fill_spurious(x, y, categories, alpha, spurious_dim, locs=(1.0, 0.0), scales=(0.1, 10.0)):
spur_mean, noise_mean = locs
spur_std, noise_std = scales
mask = np.isin(y, categories)
spurious_loc = np.random.choice(a=2, size=(x.shape[0], 1), p=[alpha, 1 - alpha])
x_new = np.random.normal(loc=noise_mean, scale=noise_std, size=(x.shape[0], spurious_dim))
spur_feat = np.random.normal(loc=spur_mean, scale=spur_std, size=(x.shape[0], spurious_dim))
x_new[mask] = np.where(spurious_loc[mask] == 0, spur_feat[mask], x_new[mask])
x_new = np.concatenate((x, x_new), axis=1)
return x_new
class WaterbirdsDataset(SpuriousDataset):
def __init__(self, split, transform, basedir="data/waterbird_complete95_forest2water2"):
super().__init__(
basedir=basedir, split=split, transform=transform, prop=1.0, seed=42, max_prop=1.0
)
class CelebADataset(SpuriousDataset):
def __init__(self, split, transform, basedir="data/CelebA"):
super().__init__(
basedir=basedir, split=split, transform=transform, prop=1.0, seed=42, max_prop=1.0
)
class DomainLabelDataset(Dataset):
def __init__(self, *datasets):
self.datasets = datasets
def __getitem__(self, i):
for d_idx, dataset in enumerate(self.datasets):
if i < len(dataset):
x, y = dataset[i]
return x, y, d_idx
i -= len(dataset)
def __str__(self):
data_info = "DomainLabelDataset(\n"
data_info += f" Number of domains: {len(self.datasets)}\n"
for d_idx, dataset in enumerate(self.datasets):
data_info += f" Domain {d_idx}: {dataset.__str__()}\n"
data_info += ")"
return data_info
def __len__(self):
return sum(len(d) for d in self.datasets)
def file_cache(filename):
"""Decorator to cache the output of a function to disk."""
def decorator(f):
@wraps(f)
def decorated(self, directory, *args, **kwargs):
filepath = Path(directory) / filename
if filepath.is_file():
out = json.loads(filepath.read_text())
else:
out = f(self, directory, *args, **kwargs)
filepath.write_text(json.dumps(out))
return out
return decorated
return decorator
dataset_info = {
"waterbirds": {
"data_obj": WaterbirdsDataset,
"data_root": "data/waterbird_complete95_forest2water2",
"num_classes": 2,
"idx_to_class": {0: "landbird", 1: "waterbird"},
"class_to_idx": {"landbird": 0, "waterbird": 1},
"group_split": np.array([3498, 184, 56, 1057]).astype(float),
"group_names": ["LB on L", "LB on W", "WB on L", "WB on W"],
},
"celeba": {
"data_obj": CelebADataset,
"data_root": "data/CelebA",
"num_classes": 2,
"idx_to_class": {0: "nonblond", 1: "blond"},
"class_to_idx": {"nonblond": 0, "blond": 1},
"group_split": np.array([71629, 66874, 22880, 1387]).astype(float),
"group_names": ["NB F", "NB M", "B F", "B M"],
},
}
if __name__ == "__main__":
from torchvision import transforms
totensor = transforms.ToTensor()
for name, ddict in dataset_info.items():
data_obj = ddict["data_obj"]
train_data = data_obj(split="train", transform=totensor)
val_data = data_obj(split="val", transform=totensor)
test_data = data_obj(split="test", transform=totensor)
print(name)
print(train_data)
print(val_data)
print(test_data)
print(test_data[0][0].shape)
print(val_data.filename_array[0], "\n\n")