-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathAGDA.py
122 lines (106 loc) · 4.73 KB
/
AGDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import random
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import kornia
class AGDA(nn.Module):
def __init__(self,kernel_size=7,dilation=2,sigma=5,threshold=(0.4,0.6),zoom=(3,5),scale_factor=0.5,noise_rate=0.1,mode='soft'):
super().__init__()
self.kernel_size=kernel_size
self.dilation=dilation
self.sigma=sigma
self.noise_rate=noise_rate
self.scale_factor=scale_factor
self.threshold=threshold
self.zoom=zoom
self.mode=mode
self.filter=kornia.filters.GaussianBlur2d((self.kernel_size,self.kernel_size),(self.sigma,self.sigma))
if mode=='pointwise':
distmap=(np.arange(kernel_size)-(kernel_size-1)/2)**2
distmap=distmap.reshape(1,-1)+distmap.reshape(-1,1)
distmap*=dilation**2
rec={}
for i in range(kernel_size):
for j in range(kernel_size):
d=distmap[i,j]
if d not in rec:
rec[d]=[(i,j)]
else:
rec[d].append((i,j))
dist=np.array(list(rec.keys()))
mod=np.zeros([dist.shape[0],kernel_size,kernel_size])
ct=[]
for i in range(dist.shape[0]):
ct.append(len(rec[dist[i]]))
for j in rec[dist[i]]:
mod[i,j[0],j[1]]=1
mod=torch.from_numpy(mod).reshape(-1,1,kernel_size,kernel_size).repeat([3,1,1,1]).float()
self.register_buffer('kernel',mod)
self.register_buffer('dist',torch.from_numpy(dist).reshape(1,-1,1,1).float())
self.register_buffer('ct',torch.Tensor(ct).reshape(1,-1,1,1).float())
def soft_drop(self,X,attention_map):
with torch.no_grad():
B,C,H,W=X.size()
X=F.pad(X,tuple([int((self.kernel_size-1)/2*self.dilation)]*4),mode='reflect')
X=F.conv2d(X,self.kernel,dilation=self.dilation,groups=3).view(B,3,-1,H,W)
sigma=attention_map*self.sigma
ex=torch.exp(-1.0/(2*sigma)).view(B,1,H,W)
ex=ex**self.dist
c=torch.sum(self.ct*ex,dim=1,keepdim=True)
X=torch.einsum('bijmn,bjmn->bimn',X,ex)
X/=c
return X
def mod_func(self,x):
if type(self.threshold)==tuple:
thres=random.uniform(*self.threshold)
else:
thres=self.threshold
if type(self.zoom)==tuple:
zoom=random.uniform(*self.zoom)
else:
zoom=self.zoom
bottom=torch.sigmoid((torch.tensor(0.)-thres)*zoom)
return (torch.sigmoid((x-thres)*zoom)-bottom)/(1-bottom)
def soft_drop2(self,x,attention_map):
with torch.no_grad():
attention_map=self.mod_func(attention_map)
B,C,H,W=x.size()
xs=F.interpolate(x,scale_factor=self.scale_factor,mode='bilinear',align_corners=True)
xs=self.filter(xs)
xs+=torch.randn_like(xs)*self.noise_rate
xs=F.interpolate(xs,(H,W),mode='bilinear',align_corners=True)
x=x*(1-attention_map)+xs*attention_map
return x
def hard_drop(self,X,attention_map):
with torch.no_grad():
if type(self.threshold)==tuple:
thres=random.uniform(*self.threshold)
else:
thres=self.threshold
attention_mask=attention_map<thres
X=attention_mask.float()*X
return X
def mix_drop(self,X,attention_map):
if random.randint(0,1)==0:
return self.hard_drop(X,attention_map)
else:
return self.soft_drop2(X,attention_map)
def agda(self,X,attention_map):
with torch.no_grad():
attention_weight=torch.sum(attention_map,dim=(2,3))
attention_map=F.interpolate(attention_map,(X.size(2),X.size(3)),mode="bilinear",align_corners=True)
attention_weight=torch.sqrt(attention_weight+1)
index=torch.distributions.categorical.Categorical(attention_weight).sample()
index1=index.view(-1,1,1,1).repeat(1,1,X.size(2),X.size(3))
attention_map=torch.gather(attention_map,1,index1)
atten_max=torch.max(attention_map.view(attention_map.shape[0],1,-1),2)[0]+1e-8
attention_map=attention_map/atten_max.view(attention_map.shape[0],1,1,1)
if self.mode=='soft':
return self.soft_drop2(X,attention_map),index
elif self.mode=='pointwise':
return self.soft_drop(X,attention_map),index
elif self.mode=='hard':
return self.hard_drop(X,attention_map),index
elif self.mode=='mix':
return self.mix_drop(X,attention_map),index