-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathinference_line_frames.py
173 lines (145 loc) · 7.03 KB
/
inference_line_frames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import os
import torch
import torch.utils.data as data
from glob import glob
from os import path as osp
from skimage import io, measure
from torchvision.utils import save_image
from torchvision.utils import save_image
from basicsr.archs.basicpbc_arch import BasicPBC
from basicsr.archs.basicpbc_light_arch import BasicPBC_light
from basicsr.data.pbc_inference_dataset import PaintBucketInferenceDataset
from basicsr.models.pbc_model import ModelInference
from paint.colorlabel import ColorLabel
from paint.lineart import LineArt, trappedball_fill
from paint.utils import dump_json, np_2_labelpng, process_gt, read_line_2_np, read_seg_2_np, recolorize_seg
from paint.colorlabel import ColorLabel
from paint.lineart import LineArt, trappedball_fill
from paint.utils import dump_json, np_2_labelpng, process_gt, read_line_2_np, read_seg_2_np, recolorize_seg, colorize_label_image
import shutil
def extract_seg_from_color(color_img_path, line_path, seg_save_path):
color_label = ColorLabel()
color_label.extract_label_map(color_img_path, seg_save_path, line_path, extract_seg=True)
def extract_seg_from_line(line_path, seg_save_path, save_color_seg=False, color_save_path=None):
lineart = LineArt(read_line_2_np(line_path))
lineart.label_color_line()
seg_np = lineart.label_img
seg = np_2_labelpng(seg_np)
io.imsave(seg_save_path, seg, check_contrast=False)
if save_color_seg:
color_seg = recolorize_seg(torch.from_numpy(seg_np)[None])
save_image(color_seg, color_save_path)
def extract_color_dict(gt_path, seg_path):
gt = io.imread(gt_path)
seg = read_seg_2_np(seg_path)
gt = process_gt(gt, seg)
color_dict = {}
props = measure.regionprops(seg)
for i in range(1, seg.max() + 1):
pos = props[i - 1].coords[0]
index_color = gt[pos[0], pos[1], :]
color_dict[str(i)] = index_color.tolist()
save_path = seg_path.replace(".png", ".json")
dump_json(color_dict, save_path)
def generate_seg(path, seg_type="default", radius=4, save_color_seg=False, multi_clip=False):
if seg_type == "trappedball":
save_color_seg = True
if not multi_clip:
clip_list = [path]
else:
clip_list = [osp.join(path, clip) for clip in os.listdir(path)]
for clip_path in clip_list:
gt_folder = osp.join(clip_path, "gt")
gt_backup_folder = osp.join(clip_path, "gt_backup")
line_folder = osp.join(clip_path, "line")
seg_folder = osp.join(clip_path, "seg")
seg_color_folder = osp.join(clip_path, "seg_color")
gt_names = [osp.splitext(gt)[0] for gt in os.listdir(gt_folder)]
os.makedirs(seg_folder, exist_ok=True)
if save_color_seg:
os.makedirs(seg_color_folder, exist_ok=True)
if os.path.exists(gt_backup_folder):
# Restore the backup gt.
shutil.rmtree(gt_folder)
shutil.copytree(gt_backup_folder, gt_folder)
else:
# Back up the gt.
shutil.copytree(gt_folder, gt_backup_folder)
for line_path in sorted(glob(osp.join(line_folder, "*.png"))):
name = osp.split(line_path)[-1][:-4]
seg_path = osp.join(seg_folder, name + ".png")
seg_color_path = osp.join(seg_color_folder, name + ".png")
if seg_type == "default":
extract_seg_from_line(line_path, seg_path, save_color_seg, seg_color_path)
elif seg_type == "trappedball":
trappedball_fill(line_path, seg_color_path, radius, contour=True)
extract_seg_from_color(seg_color_path, line_path, seg_path)
if name in gt_names:
gt_path = osp.join(gt_folder, name + ".png")
extract_color_dict(gt_path, seg_path)
colorize_label_image(seg_path, seg_path.replace(".png", ".json"), gt_path)
print(f"{seg_path} created.")
def load_params(model_path):
full_model = torch.load(model_path)
if "params_ema" in full_model:
return full_model["params_ema"]
elif "params" in full_model:
return full_model["params"]
else:
return full_model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--path", type=str, default="dataset/test/laughing_girl", help="path to your anime clip folder or folder containing multiple clips.")
parser.add_argument("--mode", choices=["forward", "nearest"], default="forward", help="")
parser.add_argument("--seg_type", choices=["default", "trappedball"], default="default", help="choose `trappedball` if line art not closed.")
parser.add_argument("--skip_seg", action="store_true", help="used when `seg` already exists.")
parser.add_argument("--radius", type=int, default=4, help="used together with `--seg_type trappedball`. Increase the value if unclosed pixels' high.")
parser.add_argument("--save_color_seg", action="store_true", help="add this arg to show colorized segment results. It's a must when `trappedball` chosen.")
parser.add_argument("--use_light_model", action="store_true", help="add this to use light-weighted model on low memory GPU.")
parser.add_argument("--multi_clip", action="store_true", help="used for multi-clip inference. Set `path` to a folder where each sub-folder is a single clip.")
parser.add_argument("--keep_line", action="store_true", help="used for keeping the original line in the final output.")
parser.add_argument("--raft_res", type=int, default=320, help="change the resolution for the optical flow estimation. If the performance is bad on your case, you can change this to 640 to have a try.")
args = parser.parse_args()
path = args.path
mode = args.mode
seg_type = args.seg_type
skip_seg = args.skip_seg
radius = args.radius
save_color_seg = args.save_color_seg
use_light_model = args.use_light_model
multi_clip = args.multi_clip
raft_resolution= args.raft_res
keep_line= args.keep_line
if not skip_seg:
generate_seg(path, seg_type, radius, save_color_seg, multi_clip)
if use_light_model:
ckpt_path = "ckpt/basicpbc_light.pth"
model = BasicPBC_light(
descriptor_dim=128,
keypoint_encoder=[32, 64, 128],
GNN_layer_num=6,
token_scale_list=[1, 3],
token_crop_size=64,
use_clip=True,
)
else:
ckpt_path = "ckpt/basicpbc.pth"
model = BasicPBC(
ch_in=6,
descriptor_dim=128,
keypoint_encoder=[32, 64, 128],
GNN_layer_num=9,
use_clip=True,
encoder_resolution=(640, 640),
raft_resolution=(raft_resolution, raft_resolution),
clip_resolution=(320, 320),
)
model = model.cuda()
model.load_state_dict(load_params(ckpt_path))
model.eval()
opt = {"root": path, "multi_clip": multi_clip, "mode": mode}
dataset = PaintBucketInferenceDataset(opt)
dataloader = data.DataLoader(dataset, batch_size=1)
model_inference = ModelInference(model, dataloader)
model_inference.inference_multi_gt(path,keep_line)