-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine_pretrain.py
79 lines (67 loc) · 2.74 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import sys
import math
import torch
from utils.misc import MetricLogger, SmoothedValue
from utils.misc import print_rank_0, all_reduce_mean
def train_one_epoch(args,
device,
model,
data_loader,
optimizer,
epoch,
lr_scheduler_warmup,
loss_scaler,
local_rank,
tblogger=None):
model.train(True)
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
epoch_size = len(data_loader)
# train one epoch
for iter_i, (images, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
ni = iter_i + epoch * epoch_size
nw = args.wp_epoch * epoch_size
# Warmup
if nw > 0 and ni < nw:
lr_scheduler_warmup(ni, optimizer)
elif ni == nw:
print("Warmup stage is over.")
lr_scheduler_warmup.set_lr(optimizer, args.base_lr)
# To device
images = images.to(device, non_blocking=True)
# Inference
with torch.cuda.amp.autocast():
## forward
output = model(images)
loss = output["loss"]
# Check loss
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
# Backward & Optimize
loss /= args.grad_accumulate
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(iter_i + 1) % args.grad_accumulate == 0)
if (iter_i + 1) % args.grad_accumulate == 0:
optimizer.zero_grad()
if torch.cuda.is_available():
torch.cuda.synchronize()
# Logs
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(loss=loss_value)
metric_logger.update(lr=lr)
loss_value_reduce = all_reduce_mean(loss_value)
if tblogger is not None and (iter_i + 1) % args.grad_accumulate == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((iter_i / len(data_loader) + epoch) * 1000)
tblogger.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
tblogger.add_scalar('lr', lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print_rank_0("Averaged stats: {}".format(metric_logger), local_rank)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}