-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdataloader_sr.py
65 lines (59 loc) · 3.01 KB
/
dataloader_sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# data loader for training image super-resolution model
import os
import pickle
import numpy as np
import torch
import torch.utils.data as data
import torchvision.transforms as T
torch.multiprocessing.set_sharing_strategy('file_system')
class SVGDataset(data.Dataset):
def __init__(self, root_path, char_num=52, transform=None, read='dirs', img_lr=128, img_hr=256, mode='train'):
super().__init__()
self.img_lr = img_lr
self.img_hr = img_hr
self.mode = mode
self.char_num = char_num
self.trans = transform
self.read = read
if self.read == 'dirs':
self.font_paths = []
self.dir_path = os.path.join(root_path, self.mode)
for root, dirs, files in os.walk(self.dir_path):
for dir_name in dirs:
self.font_paths.append(os.path.join(self.dir_path, dir_name))
self.font_paths.sort()
else:
self.pkl_path = os.path.join(root_path, self.mode, f'{mode}_all.pkl')
pkl_f = open(self.pkl_path, 'rb')
print(f"Loading {self.pkl_path} pickle file ...")
self.all_glyphs = pickle.load(pkl_f)
pkl_f.close()
print(f"Finished loading")
def __getitem__(self, index):
if self.read == 'dirs':
font_path = self.font_paths[index]
item = {}
item['rendered_lr'] = torch.FloatTensor(np.load(os.path.join(font_path, 'rendered_' + str(self.img_lr) + '.npy'))).view(self.char_num, self.img_lr, self.img_lr) / 255.
item['rendered_lr'] = self.trans(item['rendered_lr'])
item['rendered_hr'] = torch.FloatTensor(np.load(os.path.join(font_path, 'rendered_' + str(self.img_hr) + '.npy'))).view(self.char_num, self.img_hr, self.img_hr) / 255.
item['rendered_hr'] = self.trans(item['rendered_hr'])
else:
cur_glyph = self.all_glyphs[index]
item = {}
item['rendered_lr'] = torch.FloatTensor(cur_glyph['rendered']).view(self.char_num, self.img_lr, self.img_lr) / 255.
item['rendered_lr'] = self.trans(item['rendered'])
item['rendered_hr'] = torch.FloatTensor(cur_glyph['rendered_256']).view(self.char_num, self.img_hr, self.img_hr) / 255.
item['rendered_hr'] = self.trans(item['rendered_hr'])
return item
def __len__(self):
if self.read == 'dirs':
return len(self.font_paths)
else:
return len(self.all_fonts)
def get_loader(root_path, char_num, batch_size, read_mode, img_sl, im_sh, mode='train'):
SetRange = T.Lambda(lambda X: 2 * X - 1.) # convert [0, 1] -> [-1, 1]
#SetRange = T.Lambda(lambda X: 1. - X ) # convert [0, 1] -> [0, 1]
transform = T.Compose([SetRange])
dataset = SVGDataset(root_path, char_num, transform, read_mode, img_sl, im_sh, mode)
dataloader = data.DataLoader(dataset, batch_size, shuffle=(mode == 'train'), num_workers=batch_size)
return dataloader