Skip to content

Latest commit

 

History

History
 
 

bop_object_physics_positioning

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

BOP with object pose sampling and physics positioning

This example serves as the basis for generating the synthetic data provided at the BOP Challenge 2020. BOP objects from specified datasets are randomly chosen and dropped into an open cube with randomized PBR textures. Object material properties and light sources are also randomized. Samples cameras looking at objects. Outputs RGB, depth, segmentation masks, Coco annotations and object poses in BOP format.

Usage

Make sure that you downloaded the BOP datasets.

Execute in the BlenderProc main directory:

blenderproc download cc_textures 
blenderproc run examples/datasets/bop_object_physics_positioning/main.py
              <path_to_bop_data>
              <bop_dataset_name>
              resources/cctextures 
              examples/datasets/bop_object_physics_positioning/output
  • examples/datasets/bop_object_physics_positioning/main.py: path to the python file with pipeline configuration.
  • <path_to_bop_data>: path to a folder containing BOP datasets
  • <bop_dataset_name>: name of BOP dataset for which ground truth should be saved, e.g. ycbv
  • resources/cctextures: path to CCTextures folder
  • examples/datasets/bop_object_physics_positioning/output: path to an output folder

Generate a dataset

To aggregate data and labels over multiple scenes, simply run the script multiple times using the same command. As data is saved in chunks of 1000 images, you can easily distribute the data generation by running the scripts on different machines/servers and then collecting all chunks.

Steps

  • Load T-LESS BOP models: bproc.loader.load_bop_objs().
  • Load LM BOP models: bproc.loader.load_bop_objs.
  • Load <args:1> (YCB-V) BOP models: bproc.loader.load_bop_objs.
  • Sample colors for T-LESS models: mat.set_principled_shader_value().
  • Sample roughness and specular values for all objects: mat.set_principled_shader_value().
  • Construct planes: bproc.object.create_primiative().
  • Switch to a light emission shader for the top plane.
  • Load CCTexture materials: bproc.loader.load_ccmaterials().
  • Sample a material for the other planes: plane.replace_materials().
  • Sample objects poses: bproc.object.sample_poses().
  • Perform physics simulation: bproc.object.simulate_physics_and_fix_final_poses().
  • Sample upright objects poses on surface.
  • Sample point light source.
  • Sample camera poses bproc.add_camera_pose().
  • Render RGB and depth: bproc.renderer.
  • Write BOP data: bproc.writer.write_bop.

Python file (main.py)

BOP Loader

# load distractor bop objects
distractor_bop_objs = bproc.loader.load_bop(bop_dataset_path = os.path.join(args.bop_parent_path, 'tless'),
                                     model_type = 'cad',
                                     mm2m = True,
                                     sample_objects = True,
                                     num_of_objs_to_sample = 3)
distractor_bop_objs += bproc.loader.load_bop(bop_dataset_path = os.path.join(args.bop_parent_path, 'lm'),
                                      mm2m = True,
                                      sample_objects = True,
                                      num_of_objs_to_sample = 3)
# load a random sample of bop objects into the scene
sampled_bop_objs = bproc.loader.load_bop(bop_dataset_path = os.path.join(args.bop_parent_path, args.bop_dataset_name),
                                         mm2m = True,
                                         sample_objects = True,
                                         num_of_objs_to_sample = 10)
                                         
bproc.loader.load_bop_intrinsics(bop_dataset_path = os.path.join(args.bop_parent_path, args.bop_dataset_name))                                     
  • Here we are sampling BOP objects from 3 different datasets.
  • We load 3 random objects from LM and T-LESS datasets, and 10 objects from the dataset given by "<args:1>" (e.g. ycbv in this case).
  • "obj.set_shading_mode('auto')" sets the shading for these corresponding objects to auto smoothing. This looks more realistic for meshes that have both sharp edges and curved surfaces like in YCB-V.
  • In this example, args.bop_dataset_name(ycbv) dataset intrinsics are used when rendering by bproc.loader.load_bop_intrinsics()

Material Manipulator

# set shading and physics properties and randomize PBR materials
for j, obj in enumerate(sampled_bop_objs + distractor_bop_objs):
    obj.set_shading_mode('auto')
        
    mat = obj.get_materials()[0]
    if obj.get_cp("bop_dataset_name") in ['itodd', 'tless']:
        grey_col = np.random.uniform(0.3, 0.9)   
        mat.set_principled_shader_value("Base Color", [grey_col, grey_col, grey_col, 1])        
    mat.set_principled_shader_value("Roughness", np.random.uniform(0, 1.0))
    mat.set_principled_shader_value("Specular", np.random.uniform(0, 1.0))
  • Sample grey colors for T-LESS object's materials using mat.set_principled_shader_value() function.
  • Sample specular and roughness values for object's materials from all datasets using mat.set_principled_shader_value() function.

Basic Mesh Initializer

room_planes = [bproc.object.create_primitive('PLANE', scale=[2, 2, 1]),
               bproc.object.create_primitive('PLANE', scale=[2, 2, 1], location=[0, -2, 2], rotation=[-1.570796, 0, 0]),
               bproc.object.create_primitive('PLANE', scale=[2, 2, 1], location=[0, 2, 2], rotation=[1.570796, 0, 0]),
               bproc.object.create_primitive('PLANE', scale=[2, 2, 1], location=[2, 0, 2], rotation=[0, -1.570796, 0]),
               bproc.object.create_primitive('PLANE', scale=[2, 2, 1], location=[-2, 0, 2], rotation=[0, 1.570796, 0])]
for plane in room_planes:
    plane.enable_rigidbody(False, collision_shape='BOX', friction = 100.0, linear_damping = 0.99, angular_damping = 0.99)
  • Construct minimal 4m x 4m x 4m room from 6 planes
  • Set "cp_physics": False to fix the planes during any simulations
  • Give ground planes a BOX collision shape since they behave better.

Material Manipulator

light_plane = bproc.object.create_primitive('PLANE', scale=[3, 3, 1], location=[0, 0, 10])
light_plane.set_name('light_plane')
light_plane_material = bproc.material.create('light_material')
light_plane_material.make_emissive(emission_strength=np.random.uniform(3,6), 
                                   emission_color=np.random.uniform([0.5, 0.5, 0.5, 1.0], [1.0, 1.0, 1.0, 1.0]))    
light_plane.replace_materials(light_plane_material)
  • For the top light plane, switch to an Emission shader and sample emision_color and emission_strength values of the emitted light.

CCMaterial Loader

cc_textures = bproc.loader.load_ccmaterials(args.cc_textures_path)
random_cc_texture = np.random.choice(cc_textures)

Entity Manipulator

for plane in room_planes:
    plane.replace_materials(random_cc_texture)
  • Sample a CCTextures material once for all loaded ground_planes.

Object Pose Sampler

# Define a function that samples 6-DoF poses
def sample_pose_func(obj: bproc.types.MeshObject):
    min = np.random.uniform([-0.3, -0.3, 0.0], [-0.2, -0.2, 0.0])
    max = np.random.uniform([0.2, 0.2, 0.4], [0.3, 0.3, 0.6])
    obj.set_location(np.random.uniform(min, max))
    obj.set_rotation_euler(bproc.sampler.uniformSO3())

bproc.object.sample_poses(objects_to_sample = sampled_bop_objs + distractor_bop_objs,
                        sample_pose_func = sample_pose_func, 
                        max_tries = 1000)
  • Samples initial object poses before applying physics
  • For all "objects_to_sample", i.e. with "cp_physics": True, uniformly sample a position in the specified range and a uniform SO3 rotation. Resamples if collisions occur.

Physics Positioning

bproc.object.simulate_physics_and_fix_final_poses(min_simulation_time=3,
                                                max_simulation_time=10,
                                                check_object_interval=1,
                                                substeps_per_frame = 20,
                                                solver_iters=25)
  • Performs physics simuluation, i.e. dropping objects on the floor.
  • "min_simulation_time", "max_simulation_time" in seconds
  • "check_object_interval" after which objects are checked to stand still
  • "solver_iters": 25 increase if physics glitches occur.
  • "substeps_per_frame": 20 increase if physics glitches occur.

Light Sampler

light_point = bproc.types.Light()
light_point.set_energy(200)
light_point.set_color(np.random.uniform([0.5,0.5,0.5],[1,1,1]))
location = bproc.sampler.shell(center = [0, 0, 0], radius_min = 1, radius_max = 1.5,
                        elevation_min = 5, elevation_max = 89, uniform_volume = False)
light_point.set_location(location)
  • Samples an additional point light source (next to ceiling) in a "bproc.sampler.shell" around the origin.

Camera Sampler

poses = 0
while poses < 10:
    # Sample location
    location = bproc.sampler.shell(center = [0, 0, 0],
                            radius_min = 0.61,
                            radius_max = 1.24,
                            elevation_min = 5,
                            elevation_max = 89,
                            uniform_volume = False)
    # Determine point of interest in scene as the object closest to the mean of a subset of objects
    poi = bproc.object.compute_poi(np.random.choice(sampled_bop_objs, size=10))
    # Compute rotation based on vector going from location towards poi
    rotation_matrix = bproc.camera.rotation_from_forward_vec(poi - location, inplane_rot=np.random.uniform(-0.7854, 0.7854))
    # Add homog cam pose based on location an rotation
    cam2world_matrix = bproc.math.build_transformation_mat(location, rotation_matrix)
    
    # Check that obstacles are at least 0.3 meter away from the camera and make sure the view interesting enough
    if bproc.camera.perform_obstacle_in_view_check(cam2world_matrix, {"min": 0.3}, bop_bvh_tree):
        # Persist camera pose
        bproc.camera.add_camera_pose(cam2world_matrix)
        poses += 1
  • Samples "poses": 10 camera poses, where the camera location is sampled using a bproc.sampler.shell Provider with "uniform_elevation" sampling.
  • The camera rotation is defined by a point of interest ("poi") plus a sampled "inplane_rot" in the specified range.
  • The "poi" is defined by the object closest to the mean position of all objects that are returned by the "brpoc.object.compute_poi" function, i.e. "size": 10 objects from the target BOP dataset.
  • Camera poses undergo "obstacle_in_view_checks" with respect to all objects besides ground_plane ("excluded_objs_in_proximity_check") to ensure that no objects are closer than "min": 0.3 meters.

Rgb Renderer

bproc.renderer.enable_depth_output(activate_antialiasing=False)
  • Renders an RGB image and also outputs a depth images.

Bop Writer

bproc.writer.write_bop(os.path.join(args.output_dir, 'bop_data'),
                       dataset = args.bop_dataset_name,
                       depths = data["depth"], 
                       colors = data["colors"], 
                       color_file_format = "JPEG",
                       ignore_dist_thres = 10)
  • Saves all pose and camera information that is provided in BOP datasets.
  • Only considers objects from the given "dataset": "<args:1>"
  • Saves the images as jpg

More examples