-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgeneralsenv.py
192 lines (150 loc) · 6.32 KB
/
generalsenv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from generalsim import GeneralBase
import torch
from torch.autograd import Variable
import CNNLSTMPolicy
import numpy as np
##### Environment settings
MAP_MIN = 17
MAP_MAX = 23
MOUNTAIN_RATIO = 0.20
CITY_NUM = 9
CITY_MIN = 40
CITY_MAX = 50
MOUNTAIN = -2
CITY = -1
class GeneralEnvironment(GeneralBase):
"""Class for simulating generals.io game against a policy bot
Currently only 1 v 1 is supported"""
def __init__(self, model_path):
super(GeneralEnvironment, self).__init__()
model = CNNLSTMPolicy.CNNLSTMPolicy()
model.load_state_dict(torch.load(model_path))
model = model.eval()
self.model = model
self.init_board()
def gen_move_max(self, pred_start, pred_end, index):
label_map = self.label_map
army_map = self.army_map
max_prob = -1 * float('inf')
row = pred_start.shape[1]
col = pred_start.shape[2]
x1, y1, x2, y2, move_half = 0, 0, 0, 0, False
for y in range(row):
for x in range(col):
if label_map[y, x] != index + 1 or army_map[y, x] < 2:
continue
start_prob = pred_start[0, y, x]
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
x_new = x + dx
y_new = y + dy
if x_new < 0 or x_new >= col or y_new < 0 or y_new >= row:
continue
if label_map[y_new, x_new] == MOUNTAIN:
continue
if pred_end[0][y_new][x_new] + start_prob > max_prob:
move_half = False
x1, y1 = x, y
x2, y2 = x_new, y_new
max_prob = pred_end[0][y_new][x_new] + start_prob
if pred_end[1][y_new][x_new]+ start_prob > max_prob:
move_half = True
x1, y1 = x, y
x2, y2 = x_new, y_new
max_prob = pred_end[1][y_new][x_new] + start_prob
return x1, y1, x2, y2, move_half
def init_board(self):
"""Initializes a random baord"""
self.map_height = np.random.randint(MAP_MIN, MAP_MAX)
self.map_width = np.random.randint(MAP_MIN, MAP_MAX)
self.label_map = np.zeros((self.map_height,
self.map_width)).astype(int)
self.army_map = np.zeros((self.map_height,
self.map_width)).astype(int)
tile_num = self.map_height * self.map_width
perm = np.random.permutation(tile_num)
mountain_num = int(MOUNTAIN_RATIO * tile_num)
city_bound = mountain_num + CITY_NUM
city_val = np.random.randint(CITY_MIN, CITY_MAX, size=CITY_NUM)
self.mountains = perm[:mountain_num]
self.cities = perm[mountain_num: city_bound]
self.generals = perm[city_bound: city_bound + 2]
# label_map represents state of the board.
# -2 represents mountains
# -1 represents neutral cities
# 0 will be used to indicate unoccupied tiles
# 1 - num_players will indicate possession by respective player
self.label_map.flat[self.mountains] = MOUNTAIN
self.label_map.flat[self.cities] = CITY
self.army_map.flat[self.cities] = city_val
self.label_map.flat[self.generals[0]] = 1
self.label_map.flat[self.generals[1]] = 2
self.army_map.flat[self.generals] += 1
self.model.init_hidden(self.map_height, self.map_width)
self.turn_num = 1
self.player_land_num = 1
self.player_army_num = 1
# Keep a map of the index generals to there original start locations
self.gen_index_to_coord = {i: coord for i,
coord in enumerate(self.generals)}
self.taken_cities = np.array([])
def model_move(self):
state = self.export_state(1)
state = state[np.newaxis, ...]
pred_start, pred_end = self.model.forward(Variable(torch.from_numpy(state)).float())
self.model.reset_hidden()
pred_start, pred_end = pred_start.data.numpy(), pred_end.data.numpy()
pred_start = pred_start.reshape((1, self.map_height, self.map_width))
pred_end = pred_end.reshape((2, self.map_height, self.map_width))
x1, y1, x2, y2, move_half = self.gen_move_max(pred_start, pred_end, 1)
start, end = x1 + y1 * self.map_width, x2 + y2 * self.map_width
move = {"start": start, "end": end, "is50": move_half}
return move
def step(self, action):
"""
Roughly follows the API of OpenAI gym
Keyword Arguments:
a flat index of 8 x w x h array indicating
movement direction
Returns:
observation, reward, done, info
"""
move = self._parse_action(action)
self.turn_num += 1
reward = self.move(move, player_index=0)
self.move(self.model_move(), player_index=1)
self.increment_count()
army_num, _ = self.compute_stats(0)
enem_army_num, _ = self.compute_stats(1)
# print("This is the land difference: {}".format(land_num - self.player_land_num))
done = ((army_num == 0) or (enem_army_num == 0))
state = self.export_state(0)
return state, reward, done, {}
def reset(self):
self.init_board()
return self.export_state(0)
def _parse_action(self, action):
move_type, y, x = np.unravel_index(action, (8, self.map_height, self.map_width))
start = y * self.map_width + x
index = move_type % 4
if index == 0:
end = start + self.map_width
elif index == 1:
end = start + 1
elif index == 2:
end = start - self.map_width
elif index == 3:
end = start - 1
else:
raise("invalid index")
is_50 = True if move_type >= 4 else False
return {'start': start, 'end': end, 'is50': is_50}
if __name__ == "__main__":
general_env = GeneralEnvironment("2_epoch.mdl")
for i in range(20):
_, reward, _, _ = general_env.step({'start': 0, 'end': 1, 'is50': False})
print(reward)
general_env.reset()
for i in range(20):
_, reward, _, _ = general_env.step({'start': 0, 'end': 1, 'is50': False})
print(reward)
print(general_env)