-
Notifications
You must be signed in to change notification settings - Fork 1
/
mi_attacks.py
305 lines (205 loc) · 13.5 KB
/
mi_attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import numpy as np
import pickle
import os
import models as m
import aux_funcs as af
import warnings
warnings.filterwarnings("ignore")
def split_indices(indices, first_split_size):
first_split_indices = np.random.choice(indices, size=first_split_size, replace=False)
second_split_indices = np.array([x for x in indices if x not in first_split_indices])
return first_split_indices, second_split_indices
def apply_avg_and_best_attacks(train_losses, test_losses, idx):
train_in_atk_train_idx, train_in_atk_test_idx, test_in_atk_train_idx, test_in_atk_test_idx = idx
avg_loss_train = np.mean(train_losses[train_in_atk_train_idx])
avg_train_memberships = yeom_mi_attack(train_losses[train_in_atk_test_idx], avg_loss_train)
avg_test_memberships = yeom_mi_attack(test_losses[test_in_atk_test_idx], avg_loss_train)
avg_yeom_mi_advantage = mi_success(avg_train_memberships, avg_test_memberships, print_details=False)
avg_results = (avg_loss_train, avg_train_memberships, avg_test_memberships, avg_yeom_mi_advantage)
best_threshold = yeom_w_get_best_threshold(train_losses[train_in_atk_train_idx], test_losses[test_in_atk_train_idx])
best_train_memberships = yeom_mi_attack(train_losses[train_in_atk_test_idx], best_threshold)
best_test_memberships = yeom_mi_attack(test_losses[test_in_atk_test_idx], best_threshold)
best_yeom_mi_advantage = mi_success(best_train_memberships, best_test_memberships, print_details=False)
best_results = (best_threshold, best_train_memberships, best_test_memberships, best_yeom_mi_advantage)
return avg_results, best_results
def take_subset_from_datasets(datasets, seed, n_attacker_train, n_attacker_test, batch_size=1000, device='cpu'):
np.random.seed(seed)
train_indices = np.random.choice(len(datasets[0].data), size=n_attacker_train + n_attacker_test, replace=False)
test_indices = np.random.choice(len(datasets[1].data), size=n_attacker_train + n_attacker_test, replace=False)
train_in_atk_test_idx, train_in_atk_train_idx = split_indices(train_indices, n_attacker_test)
test_in_atk_test_idx, test_in_atk_train_idx = split_indices(test_indices, n_attacker_test)
train_data = datasets[0].data[np.concatenate((train_in_atk_train_idx, train_in_atk_test_idx))].cpu().detach().numpy()
train_labels = datasets[0].labels[np.concatenate((train_in_atk_train_idx, train_in_atk_test_idx))].cpu().detach().numpy()
test_data = datasets[1].data[np.concatenate((test_in_atk_train_idx, test_in_atk_test_idx))].cpu().detach().numpy()
test_labels = datasets[1].labels[np.concatenate((test_in_atk_train_idx, test_in_atk_test_idx))].cpu().detach().numpy()
train_ds = af.ManualData(train_data, train_labels)
train_ds.train = False
test_ds = af.ManualData(test_data, test_labels)
test_ds.train = False
train_loader = af.get_loader(train_ds, shuffle=False, batch_size=batch_size, device=device)
test_loader = af.get_loader(test_ds, shuffle=False, batch_size=batch_size, device=device)
train_in_atk_train_idx, train_in_atk_test_idx = np.arange(len(train_in_atk_train_idx)), np.arange(len(train_in_atk_train_idx), len(train_data))
test_in_atk_train_idx, test_in_atk_test_idx = np.arange(len(test_in_atk_train_idx)), np.arange(len(test_in_atk_train_idx), len(test_data))
idx = (train_in_atk_train_idx, train_in_atk_test_idx, test_in_atk_train_idx, test_in_atk_test_idx)
return (train_loader, test_loader), idx
def apply_mi_attack(model, loaders, idx, save_path, n_attacker_train=100, seed=0, device='cpu'):
results = {}
results_path = os.path.join(save_path, f'mi_results_ntrain_{n_attacker_train}_randseed_{seed}.pickle')
if af.file_exists(results_path):
with open(results_path, 'rb') as handle:
results = pickle.load(handle)
else:
train_top1, train_top5 = m.test_clf(model, loaders[0], device)
test_top1, test_top5 = m.test_clf(model, loaders[1], device)
train_losses = m.get_clf_losses(model, loaders[0], device=device)
test_losses = m.get_clf_losses(model, loaders[1], device=device)
# apply vanilla yeom attacks
avg_results, best_results = apply_avg_and_best_attacks(train_losses, test_losses, idx)
avg_loss_train, avg_train_memberships, avg_test_memberships, avg_yeom_adv = avg_results
best_threshold, best_train_memberships, best_test_memberships, best_yeom_adv = best_results
results['train_top1'], results['train_top5'], results['test_top1'], results['test_top5'] = train_top1, train_top5, test_top1, test_top5
results['avg_yeom_adv'], results['best_yeom_adv'], results['avg_threshold'], results['best_threshold'] = avg_yeom_adv, best_yeom_adv, avg_loss_train, best_threshold
results['avg_train_memberships'], results['avg_test_memberships'] = avg_train_memberships, avg_test_memberships
results['best_train_memberships'], results['best_test_memberships'] = best_train_memberships, best_test_memberships
results['std_train_losses'], results['std_test_losses'] = train_losses, test_losses
results['attack_idx'] = idx
with open(results_path, 'wb') as handle:
pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)
print('Train Top1: {0:.3f}%, Train Top5: {1:.3f}%, Test Top1: {2:.3f}%, Test Top5: {3:.3f}%'.format(results['train_top1'], results['train_top5'], results['test_top1'], results['test_top5']))
print('Avg Yeom MI Advantage: {0:.2f}'.format(results['avg_yeom_adv']))
print('Best Yeom MI Advantage: {0:.2f}'.format(results['best_yeom_adv']))
return results
# apply the augmentation aware attacks, n_repeat is for random augmentation methods
def apply_aware_attack(model, params, loaders, idx, save_path, n_attacker_train=100, n_repeat=25, seed=0, teacher=None, device='cpu'):
results = {}
results_path = os.path.join(save_path, f'aware_mi_results_ntrain_{n_attacker_train}_numrepeat_{n_repeat}_randseed_{seed}.pickle')
if af.file_exists(results_path):
with open(results_path, 'rb') as handle:
results = pickle.load(handle)
else:
laug_type, laug_param = params['laug_type'], params['laug_param']
daug_type, daug_param = params['daug_type'], params['daug_param']
train_in_atk_train_idx, _, test_in_atk_train_idx, _ = idx
if daug_type == 'mixup':
mixing_data = loaders[0].dataset.data[train_in_atk_train_idx].to(device) # use attackers training data in the victim's training set for mixup
mixing_labels = loaders[0].dataset.labels[train_in_atk_train_idx].to(device)
aug_type, aug_param = daug_type, (daug_param, mixing_data, mixing_labels)
elif laug_type == 'distillation':
aug_type, aug_param = laug_type, (laug_param, teacher)
elif laug_type != 'no':
aug_type, aug_param = laug_type, laug_param
elif daug_type != 'no':
aug_type, aug_param = daug_type, daug_param
train_losses = m.get_clf_losses_w_aug(model, loaders[0], aug_type, aug_param, num_repeat=n_repeat, device=device)
test_losses = m.get_clf_losses_w_aug(model, loaders[1], aug_type, aug_param, num_repeat=n_repeat, device=device)
if n_repeat == 1:
_, aware_results = apply_avg_and_best_attacks(train_losses, test_losses, idx)
threshold, train_memberships, test_memberships, adv = aware_results
reduction = 'none'
train_losses_all = train_losses
test_losses_all = test_losses
else:
best_local_adv = -100
for name, func in zip(*af.get_reduction_params()):
cur_train_losses, cur_test_losses = func(train_losses, axis=1), func(test_losses, axis=1)
_, aware_results = apply_avg_and_best_attacks(cur_train_losses, cur_test_losses, idx)
cur_threshold, cur_train_memberships, cur_test_memberships, cur_adv = aware_results
adv_local = mi_success(yeom_mi_attack(cur_train_losses[train_in_atk_train_idx], cur_threshold), yeom_mi_attack(cur_test_losses[test_in_atk_train_idx], cur_threshold), False)
if best_local_adv < adv_local:
best_local_adv = adv_local
adv = cur_adv
train_memberships = cur_train_memberships
test_memberships = cur_test_memberships
train_losses_all = cur_train_losses
test_losses_all = cur_test_losses
threshold = cur_threshold
reduction = name
results['threshold'], results['adv'] = threshold, adv
results['train_memberships'], results['test_memberships'] = train_memberships, test_memberships
results['train_losses'], results['test_losses'] = train_losses_all, test_losses_all
results['num_repeat'] = n_repeat
results['reduction'] = reduction
with open(results_path, 'wb') as handle:
pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)
print('Aware MI Advantage: {0:.2f} - Reduction: {1}'.format(results['adv'], results['reduction']))
def mi_success(train_memberships, test_memberships, print_details=True):
tp = np.sum(train_memberships)
fp = np.sum(test_memberships)
fn = len(train_memberships) - tp
tn = len(test_memberships) - fp
# yeom's membership inference advantage
acc = 100*(tp + tn) / (tp + fp + tn + fn)
advantage = 2*(acc - 50)
if print_details:
precision = 100*(tp/(tp+fp)) if (tp+fp) > 0 else 0
recall = 100*(tp/(tp+fn)) if (tp+fn) > 0 else 0
print('Adversary Advantage: {0:.3f}%, Accuracy: {1:.3f}%, Precision : {2:.3f}%, Recall: {3:.3f}%'.format(advantage, acc, precision, recall))
print('In training: {}/{}, In testing: {}/{}'.format(tp, len(train_memberships), tn, len(test_memberships)))
return advantage
# YEOM et all's membership inference attack using pred loss
def yeom_mi_attack(losses, avg_loss):
memberships = (losses < avg_loss).astype(int)
return memberships
def yeom_w_get_best_threshold(train_losses, test_losses):
advantages = []
mean_loss = np.mean(train_losses)
std_dev = np.std(train_losses)
coeffs = np.linspace(-5,5,num=1001, endpoint=True)
for coeff in coeffs:
cur_threshold = mean_loss + std_dev*coeff
cur_yeom_mi_advantage = mi_success(yeom_mi_attack(train_losses, cur_threshold), yeom_mi_attack(test_losses, cur_threshold), print_details=False)
advantages.append(cur_yeom_mi_advantage)
best_threshold = mean_loss + std_dev*coeffs[np.argmax(advantages)]
return best_threshold
def attack_wrapper(mi_loaders, idx, n_attacker_train, seed, params):
# datasets for MIAs
save_dir = params['dir']
print(f'Attacking {os.path.basename(save_dir)} - |A|: {n_attacker_train} - S: {seed}...')
results_path = os.path.join(save_dir, f'mi_results_ntrain_{n_attacker_train}_randseed_{seed}.pickle')
if af.file_exists(results_path):
apply_mi_attack(None, None, None, save_dir, n_attacker_train, seed, None)
else:
clf = af.load_model(params['model_path'], device)
apply_mi_attack(clf, mi_loaders, idx, save_dir, n_attacker_train=n_attacker_train, seed=seed, device=device)
if params['laug_type'] != 'no' or params['daug_type'] != 'no':
num_repeat = 1 if params['laug_type'] in ['distillation', 'smooth'] else n_repeat
results_path = os.path.join(save_dir, f'aware_mi_results_ntrain_{n_attacker_train}_numrepeat_{n_repeat}_randseed_{seed}.pickle')
if af.file_exists(results_path):
apply_aware_attack(None, None, None, None, save_dir, n_attacker_train, n_repeat, seed, None, None)
else:
if params['laug_type'] == 'distillation':
teacher_dir = os.path.dirname(save_dir)
path_suffix = params['path_suffix']
teacher_path = f'{params["dset_name"]}_laug_no_0_daug_no_0_dp_nc_0_nm_0_epochs_{regular_train_epochs}_run_{path_suffix}'
teacher = af.load_model(os.path.join(teacher_dir, teacher_path, 'clf'), device)
else:
teacher = None
clf = af.load_model(os.path.join(save_dir, 'clf'), device)
apply_aware_attack(clf, params, mi_loaders, idx, save_dir, n_attacker_train=n_attacker_train, n_repeat=num_repeat, seed=seed, teacher=teacher, device=device)
print('--------------------------------------------')
if __name__ == "__main__":
af.set_random_seeds()
import json
import sys
config_path = sys.argv[1]
with open(config_path) as f:
cfg = json.load(f)
n_attacker_train = cfg['attack']['n_attacker_train']
n_attacker_test = cfg['attack']['n_attacker_test']
seeds = cfg['attack']['sampling_random_seeds']
n_repeat = cfg['attack']['n_aware_repeat']
ds_names = cfg['training_datasets']
models_path = cfg['models_path']
device = af.get_pytorch_device()
regular_train_epochs = cfg['training_num_epochs']
for ds_name in ds_names:
path = os.path.join(models_path, ds_name)
all_model_params = af.collect_all_models(path)
print(f'There are {len(all_model_params)} models in {path}.')
# load the datasets
datasets = af.get_ds(ds_name, device)
for seed in seeds:
# N instances from train set and N from test set
mi_loaders, idx = take_subset_from_datasets(datasets, seed, n_attacker_train, n_attacker_test, device=device)
for params in all_model_params:
attack_wrapper(mi_loaders, idx, n_attacker_train, seed, params)