-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathqat.py
244 lines (193 loc) · 8.88 KB
/
qat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import os
import argparse
import quantize
from utils.general import init_seeds
from torch.cuda import amp
import torch.optim as optim
from pytorch_quantization import nn as quant_nn
import rules
from typing import Callable
from copy import deepcopy
def run_finetune(args, model, train_loader, val_loader, supervision_policy: Callable=None, fp16=True):
summary = quantize.SummaryTool("finetune.json")
# 训练的准备工作
origin_model = deepcopy(model).eval()
quantize.disable_quantization(origin_model).apply() # 量化前的原始模型
# 模型训练模式
model.train()
# 启动梯度计算
model.requires_grad_(True)
# 启动混合精度训练, 自动调整梯度的缩放比例,防止使用半精度浮点数fp16计算时垂涎精度下溢/精度溢出
scaler = amp.GradScaler(enabled=fp16) # fp16
optimizer = optim.Adam(model.parameters(), lr=args.lr,) # 优化器
quant_lossfn = torch.nn.MSELoss() # 损失函数
# 获取模型所在设备
device = next(model.parameters()).device
# 定义学习率策略,在不同的学习阶段使用不同的学习率的值
lrschedule = {
0: 1e-6,
3: 1e-5,
8: 1e-6
}
# hook 函数
def make_layer_forward_hook(l):
def forward_hook(m, input, output):
l.append(output)
return forward_hook
# model & origin_model ==> supervision pairs
supervision_module_pairs = []
for (mname, ml), (oriname, ori) in zip(model.named_modules(), origin_model.named_modules()):
if isinstance(ml, quant_nn.TensorQuantizer):
continue
if supervision_policy:
if not supervision_policy(mname, ml):
continue
supervision_module_pairs.append([ml, ori])
# 循环epoch
best_ap = 0.
for epoch in range(args.num_epoch):
# 动态学习率
if epoch in lrschedule:
learning_rate = lrschedule[epoch]
for g in optimizer.param_groups:
g['lr'] = learning_rate
model_outputs = []
origin_outputs = []
remove_handle = []
for ml, ori in supervision_module_pairs:
remove_handle.append(ml.register_forward_hook(make_layer_forward_hook(model_outputs)))
remove_handle.append(ori.register_forward_hook(make_layer_forward_hook(origin_outputs)))
# 训练
model.train()
# 遍历训练模型加载器,不是训练所有数据
for idx_batch, datas in enumerate(train_loader):
if idx_batch >= args.iters:
break
# 输入图像数据预处理
imgs = datas[0].to(device).float() / 255.0
# 禁用混合精度训练
with amp.autocast(enabled=fp16):
model(imgs)
# origin model inference
with torch.no_grad():
origin_model(imgs)
# 计算量化损失
quant_loss = 0
for index, (mo, fo) in enumerate(zip(model_outputs, origin_outputs)):
quant_loss += quant_lossfn(mo, fo)
model_outputs.clear()
origin_outputs.clear()
# 启动半精度fp16训练
if fp16:
scaler.scale(quant_loss).backward()
scaler.step(optimizer)
scaler.update()
else:
quant_loss.backward()
optimizer.step()
optimizer.zero_grad()
# 打印每一个epoch的损失Loss值
print(f"QAT Finetuning {epoch + 1} / {args.num_epoch}, Loss: {quant_loss.detach().item():.5f}, LR: {learning_rate:g}")
# 移除handle
for rm in remove_handle:
rm.remove()
# 模型验证,每一个epoch结束后进行一次模型验证
ap = quantize.evaluate_coco(model, val_loader, True)
summary.append([f"QAT{epoch}", ap])
# 保存ap值最高的模型
if ap > best_ap:
print(f"Save qat model to {args.qat} @ {ap:.5f}")
best_ap = ap
torch.save({"model": model}, args.qat)
quantize.export_onnx(model, "qat_yolov7.onnx", device, False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov7.pt', help='initial weights path')
parser.add_argument('--cocodir', type=str, default="dataset/coco2017", help="coco directory")
parser.add_argument('--batch_size', type=int, default=10, help="batch size for data loader")
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--num_epoch', type=int, default=10, help=' max epoch for finetune')
parser.add_argument("--iters", type=int, default=200, help="iters per epoch")
parser.add_argument('--lr', type=float, default=1e-5, help=' learning rate for QAT finetune')
parser.add_argument("--ignore_layers", type=str, default="model\.105\.m\.(.*)", help="regx")
parser.add_argument("--save_ptq", type=bool, default=False, help="file")
parser.add_argument("--ptq", type=str, default="ptq_yolov7.pt", help="file")
parser.add_argument("--save_qat", type=bool, default=False, help="file")
parser.add_argument("--qat", type=str, default="qat_yolov7.pt", help="file")
parser.add_argument("--confidence", type=float, default=0.001, help="confidence threshold")
parser.add_argument("--nmsthres", type=float, default=0.65, help="nms threshold")
parser.add_argument("--eval_origin", action="store_true", help="do eval for origin model")
parser.add_argument("--eval_ptq", action="store_true", help="do eval for ptq model")
parser.add_argument("--eval_qat", action="store_true", help="do eval for qat model")
parser.add_argument("--eval_summary", type=str, default="eval_summary.json", help="all evaluate data are saved in the summary save file")
args = parser.parse_args()
init_seeds(57)
is_cuda = (args.device != "cpu") and torch.cuda.is_available()
device = torch.device("cuda:0" if is_cuda else "cpu")
# prepare model
print("Prepare Model ....")
quantize.initialize()
model = quantize.load_yolov7_model(args.weights, device)
# model = quantize.prepare_model(args.weights, device)
# prepare dataset
print("Prepare Dataset ....")
val_dataloader = quantize.create_coco_val_dataloader(args.cocodir, batch_size=args.batch_size)
train_dataloader = quantize.create_coco_train_dataloader(args.cocodir, batch_size=args.batch_size)
quantize.replace_to_quantization_model(model, args.ignore_layers)
# 在标定前将scale的工作给做掉
rules.apply_custom_rules_to_quantizer(model, device)
# calibration model
print("Begining Calibration ....")
quantize.calibrate_model(model, train_dataloader, device)
json_save_dir = "." if os.path.dirname(args.ptq) == "" else os.path.dirname(args.ptq)
summary_file = os.path.join(json_save_dir, "summary.json")
summary = quantize.SummaryTool(summary_file)
# summary = quantize.SummaryTool(args.eval_summary)
if args.eval_origin:
print("Evaluate Origin...")
with quantize.disable_quantization(model):
ap = quantize.evaluate_coco(
model,
val_dataloader,
True,
json_save_dir,
conf_thres=args.confidence,
iou_thres=args.nmsthres
)
summary.append(["Origin", ap])
if args.eval_ptq:
print("Evaluate PTQ...")
ap = quantize.evaluate_coco(
model,
val_dataloader,
True,
json_save_dir,
conf_thres=args.confidence,
iou_thres=args.nmsthres
)
summary.append(["PTQ", ap])
if args.save_ptq:
print("Export PTQ...")
quantize.export_onnx(model, args.ptq, device, False)
# 判断传入的模块是否需要在QAT训练期间计算损失
def supervision_policy():
supervision_list = []
for item in model.model:
supervision_list.append(id(item))
supervision_stride = 1
keep_idx = list(range(0, len(model.model) - 1, supervision_stride))
keep_idx.append(len(model.model) - 2)
def impl(name, module):
if id(module) not in supervision_list:
return False
idx = supervision_list.index(id(module))
if idx in keep_idx:
print(f"Supervision: {name} will compute loss with origin model during QAT training...")
else:
print(f"Supervision: {name} not compute loss during QAT training...")
return idx in keep_idx # True/False
return impl
print("Begining Finetune ....")
run_finetune(args, model, train_dataloader, val_dataloader, supervision_policy=supervision_policy())
print("QAT Finished ....")