-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathcvt_exp_dim_tool.py
206 lines (171 loc) · 7.13 KB
/
cvt_exp_dim_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from dataclasses import dataclass
import tyro
import trimesh
import mmcv
from easydict import EasyDict
from loguru import logger
from tqdm import tqdm
import torch.nn as nn
import numpy as np
from pathlib import Path
import torch
import smplx
DEFAULT_SMPLX_CONFIG = dict(
create_global_orient=True,
create_body_pose=True,
create_betas=True,
create_left_hand_pose=True,
create_right_hand_pose=True,
create_expression=True,
create_jaw_pose=True,
create_leye_pose=True,
create_reye_pose=True,
create_transl=True,
)
def load_smplx_model(device='cuda', **kwargs):
body_model = smplx.create(
**DEFAULT_SMPLX_CONFIG,
**kwargs).to(device=device)
return body_model
@dataclass
class Config:
lr = 0.1
device = 'cuda'
target_exp_dim = 75
pkl_path = 'C:/Users/lithiumice/Downloads/mica_all.pkl'
model_path='../models/smplx/SMPLX_MALE_shape2019_exp2020.npz'
args = tyro.cli(Config)
device = torch.device(args.device)
dtype = torch.float32
comm_cfg = EasyDict(
dtype=dtype,
model_path=args.model_path,
use_face_contour=True,
flat_hand_mean=False,
use_hands=True,
use_face=True,
)
# all_var = mmcv.load(args.pkl_path)
with open(args.pkl_path, 'rb') as f:
import pickle
all_var = pickle.load(f, encoding='latin1')
if isinstance(all_var, list):
all_var = all_var[0]
all_var = EasyDict(all_var)
comm_cfg.use_pca=True
batch_size = comm_cfg.batch_size=all_var.batch_size
num_pca_comps=all_var.left_hand_pose.shape[1]
comm_cfg.num_pca_comps=num_pca_comps
st_et_list = [(0, all_var.batch_size)]
save_data = np.zeros((batch_size, 165+args.target_exp_dim), dtype=np.float32)
for opt_idx, (start_frame, end_frame) in enumerate(st_et_list):
print(f'opt_idx:{opt_idx}, start_frame:{start_frame}, end_frame:{end_frame})')
comm_cfg.batch_size = batch_size = end_frame-start_frame
all_var = {k:v[start_frame:end_frame] for k,v in all_var.items() if isinstance(v, np.ndarray) and len(v.shape)>=1 and v.shape[0]==all_var.batch_size}
all_var['betas'] = np.zeros((batch_size, 100), dtype=np.float32)
all_var['transl'] = np.zeros((batch_size, 3), dtype=np.float32)
all_var = EasyDict(all_var)
smlx2flame_idx = torch.from_numpy(
np.load(
'../data/SMPL-X__FLAME_vertex_ids.npy'
)
).to(dtype=torch.long, device=device)
with open('../data/generic_model.pkl', 'rb') as f:
import pickle
class Struct(object):
def __init__(self, **kwargs):
for key, val in kwargs.items():
setattr(self, key, val)
ss = pickle.load(f, encoding='latin1')
ff = Struct(**ss)
faces = ff.f
body_model = load_smplx_model(**comm_cfg,
num_betas=all_var.betas.shape[1],
num_expression_coeffs=all_var.expression.shape[1],
).to(device)
target_body_model = load_smplx_model(**comm_cfg,
num_betas=all_var.betas.shape[1],
num_expression_coeffs=args.target_exp_dim,
).to(device)
smplx_params = dict(
body_pose=all_var.body_pose_axis,
betas=all_var.betas,
global_orient=all_var.global_orient,
transl=all_var.transl,
left_hand_pose=all_var.left_hand_pose,
right_hand_pose=all_var.right_hand_pose,
jaw_pose=all_var.jaw_pose,
leye_pose=all_var.leye_pose,
reye_pose=all_var.reye_pose,
expression=all_var.expression,
)
for key, val in smplx_params.items():
smplx_params[key] = torch.from_numpy(smplx_params[key]).to(device)
model_output = body_model(return_verts=True, **smplx_params)
target_vertices_ = model_output.vertices.detach()#important!
target_vertices_ = target_vertices_[:, smlx2flame_idx]
smplx_params['expression']=nn.Parameter(torch.zeros(batch_size,args.target_exp_dim).detach().to(device).type(dtype))
opt_params=[smplx_params['expression']]
optimizer = torch.optim.LBFGS(opt_params,
lr=args.lr, max_iter=20,
history_size=10, tolerance_grad=1e-05)
loss_fn = torch.nn.MSELoss()
max_iter = 50
loss_history = []
pbar = tqdm(range(max_iter), desc='Optimizing expression parameters')
def closure():
optimizer.zero_grad()
model_output = target_body_model(return_verts=True, **smplx_params)
vertices_ = model_output.vertices
vertices_ = vertices_[:, smlx2flame_idx]
loss = 1000 * 1000 * loss_fn(vertices_, target_vertices_)
ss = (f'Iteration {i}, loss {loss.item()}')
pbar.set_description(ss)
loss_history.append(loss.item())
loss.backward()
return loss
def rel_change(prev_val, curr_val):
return (prev_val - curr_val) / max([np.abs(prev_val), np.abs(curr_val), 1])
prev_loss = None
from SHOW.utils.metric import MeterBuffer
meter = MeterBuffer(window_size=6)
for i in pbar:
loss = optimizer.step(closure)
if i > 1 and prev_loss is not None:
loss_rel_change = rel_change(
prev_loss, loss.item())
meter.update({'rel': loss_rel_change})
if meter['rel'].avg <= 1e-09:
logger.warning('rel exit')
break
if all([torch.abs(var.grad.view(-1).max()).item() < 1e-06
for var in opt_params if var.grad is not None]):
logger.warning('small grad')
break
prev_loss = loss.item()
# smplx_params****
# jaw_pose=i[:,0:3],
# leye_pose=i[:,3:6],
# reye_pose=i[:,6:9],
# global_orient=i[:,9:12],
# body_pose_axis=i[:,12:75],
# left_hand_pose=i[:,75:120],
# right_hand_pose=i[:,120:165],
# expression=i[:,165:]
save_data[start_frame:end_frame] = np.concatenate([smplx_params['jaw_pose'].detach().cpu().numpy(),
smplx_params['leye_pose'].detach().cpu().numpy(),
smplx_params['reye_pose'].detach().cpu().numpy(),
smplx_params['global_orient'].detach().cpu().numpy(),
smplx_params['body_pose'].detach().cpu().numpy(),
smplx_params['left_hand_pose'].detach().cpu().numpy(),
smplx_params['right_hand_pose'].detach().cpu().numpy(),
smplx_params['expression'].detach().cpu().numpy()],axis=1)
print(f'save_data.shape:{save_data.shape}')
model_output = target_body_model(return_verts=True, **smplx_params)
vertices_ = model_output.vertices
vertices_ = vertices_[:, smlx2flame_idx]
target_mesh = trimesh.Trimesh(vertices_[0].detach().cpu().numpy(), faces)
_ = target_mesh.export(f'target_mesh_{args.target_exp_dim}.obj')
ref_mesh = trimesh.Trimesh(target_vertices_[0].detach().cpu().numpy(), faces)
_ = ref_mesh.export(f'ref_mesh_{args.target_exp_dim}.obj')
np.save(f'rich_expdim{args.target_exp_dim}.npy',save_data)