forked from bakerjw/NGAW2_correlations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAS16_dur.m
215 lines (184 loc) · 4.79 KB
/
AS16_dur.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
function [ median, sigma, tau, phi ] = AS16_dur( Def, M, R, Vs30, Mech, Z1, CJ )
%
% Created by Jack Baker, August 9, 2016
% Based on code from Kioumars Afshari
% Updated 12/8/2017 to correct errors in AS16 equations 11 and 12
%
% Duration prediction from the following model
%
% Afshari, K., and Stewart, J. P. (2016). "Physically Parameterized
% Prediction Equations for Significant Duration in Active Crustal Regions."
% Earthquake Spectra, Vol. 32, No. 4, pp. 2057-2081.
% doi: http://dx.doi.org/10.1193/063015EQS106M
%
% INPUTS
%
% Def = 1 for Ds5-75,
% = 2 for DS5-95
% = 3 for DS20-80
% M = magnitude
% R = closest distance to rupture (km)
% Vs30 = site Vs30
% Mech = Rupture mechanism (0=unknown, 1=Normal, 2=Reverse, 3=Strike-slip)
% Z1 = Depth to shear wave velovity of 1 km/s isosurface (m)
% Enter -999 if unknown
% CJ = Region (0 = California, 1 = Japan, -999 = other)
%
% OUTPUTS
%
% median = median predicted duration
% sigma = log standard deviation of predicted duration
% tau = within-event log standard deviation
% phi = between-event log standard deviation
% check "Def" input
if (Def ~= 1) && (Def ~=2) && (Def ~=3)
fprintf('Error--invalide value for input paramter ''Def'' \n');
return
end
% estimate median basin depth from Vs30
if CJ==0 % California (eq 11)
%mu_z1=exp(-7.15/4*log((Vs30^4+570.94^4)/(1360^4+570.94^4))-log(1000));
mu_z1=exp(-7.15/4*log((Vs30^4+570.94^4)/(1360^4+570.94^4)));
else % other regions (eq 12)
%mu_z1=exp(-5.23/4*log((Vs30^2+412.39^2)/(1360^2+412.39^2))-log(1000));
mu_z1=exp(-5.23/4*log((Vs30^2+412.39^2)/(1360^2+412.39^2)));
end
% differential basin depth (eq 10)
dz1 = Z1 - mu_z1;
if Z1 == -999 || CJ == -999
dz1 = 0;
end
% get coefficients
[M1, M2, b0, b1, b2, b3, Mstar, c1, RR1, RR2, c2, c3, c4, Vref, V1, c5, dz1ref] = get_coeffs(Def, Mech);
% Source term (eq 3)
if M<M1
F_E = b0; % constant duration at small M
else
% Stress index parameter (eq 6)
if M<M2
deltaSigma=exp(b1+b2*(M-Mstar));
else
deltaSigma=exp(b1+b2*(M2-Mstar)+b3*(M-M2));
end
M_0 = 10^(1.5*M+16.05); % seismic moment (eq 5)
f_0 = 4.9E6 * 3.2 * (deltaSigma / M_0)^(1/3); % corner frequency (eq 4)
F_E = 1/f_0;
end
% Path term (eq 7)
if R<RR1
F_P=c1*R;
elseif R<RR2
F_P=c1*RR1+c2*(R-RR1);
else
F_P=c1*RR1+c2*(RR2-RR1)+c3*(R-RR2);
end
% F_deltaz term (eq 9)
if dz1<= dz1ref
F_deltaz = c5*dz1;
else
F_deltaz = c5*dz1ref;
end
% Site term (eq 8)
if Vs30<V1
F_S=c4*log(Vs30/Vref) + F_deltaz;
else
F_S=c4*log(V1/Vref) + F_deltaz;
end
% median duration (eq 2)
ln_dur = log(F_E + F_P) + F_S;
median = exp(ln_dur);
% standard deviation terms
[phi, tau] = get_standard_dev(Def, M);
sigma = sqrt(phi^2 + tau^2); % total standard deviation (eq 13)
end
function [M1, M2, b0, b1, b2, b3, Mstar, c1, RR1, RR2, c2, c3, c4, Vref, V1, c5, dz1ref] = get_coeffs(Def, Mech)
% local function to get definition-specific coefficients
% ordering of all coefficients below is [5-75, 5-95, 20-80]
% source coefficients
M1 = [5.35, 5.2, 5.2];
M2 = [7.15, 7.4, 7.4];
b00 = [1.28, 2.182, 0.8822];
b01 = [1.555, 2.541, 1.409];
b02 = [0.7806, 1.612, 0.7729];
b03 = [1.279, 2.302, 0.8804];
b10 = [5.576, 3.628, 6.182];
b11 = [4.992, 3.17, 4.778];
b12 = [7.061, 4.536, 6.579];
b13 = [5.578, 3.467, 6.188];
b2 = [0.9011, 0.9443, 0.7414];
b3 = [-1.684, -3.911, -3.164];
Mstar = [6, 6, 6];
% path coefficients
c1 = [0.1159, 0.3165, 0.0646];
RR1 = [10, 10, 10];
RR2 = [50, 50, 50];
c2 = [0.1065, 0.2539, 0.0865];
c3 = [0.0682, 0.0932, 0.0373];
% site coefficients
c4 = [-0.2246, -0.3183, -0.4237];
Vref = [368.2, 369.9, 369.6];
V1 = [600, 600, 600];
c5 = [0.0006, 0.0006, 0.0005];
dz1ref = [200, 200, 200];
% compute definition-specific coefficients
M1 = M1(Def);
M2 = M2(Def);
b00 = b00(Def);
b01 = b01(Def);
b02 = b02(Def);
b03 = b03(Def);
b10 = b10(Def);
b11 = b11(Def);
b12 = b12(Def);
b13 = b13(Def);
b2 = b2(Def);
b3 = b3(Def);
Mstar = Mstar(Def);
c1 = c1(Def);
RR1 = RR1(Def);
RR2 = RR2(Def);
c2 = c2(Def);
c3 = c3(Def);
c4 = c4(Def);
Vref = Vref(Def);
V1 = V1(Def);
c5 = c5(Def);
dz1ref = dz1ref(Def);
% mechanism-based coefficients
if Mech==0
b1=b10;
b0=b00;
elseif Mech==1
b1=b11;
b0=b01;
elseif Mech==2
b1=b12;
b0=b02;
elseif Mech==3
b1=b13;
b0=b03;
end
end
function [phi, tau] = get_standard_dev(Def, M)
% standard deviation coefficients
phi1 = [ 0.54 0.43 0.56];
phi2 = [ 0.41 0.35 0.45];
tau1 = [ 0.28 0.25 0.3];
tau2 = [ 0.25 0.19 0.19];
% compute phi (eq 15)
if M<5.5
phi = phi1(Def);
elseif M<5.75
phi = phi1(Def) + (phi2(Def) - phi1(Def)) * (M-5.5)/(5.75-5.5);
else
phi = phi2(Def);
end
% compute tau (eq 14)
if M<6.5
tau = tau1(Def);
elseif M<7
tau = tau1(Def) + (tau2(Def) - tau1(Def)) * (M-6.5)/(7-6.5);
else
tau = tau2(Def);
end
end