-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_ee.py
336 lines (295 loc) · 13.6 KB
/
train_ee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import sys
sys.path.append('..')
if 'p' in os.environ:
os.environ['CUDA_VISIBLE_DEVICES'] = os.environ['p']
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
import warnings
warnings.filterwarnings('ignore')
import argparse
import numpy as np
import fastNLP
from fastNLP import cache_results, prepare_torch_dataloader, print
from fastNLP import Trainer
from fastNLP import SortedSampler, BucketedBatchSampler
from fastNLP import TorchGradClipCallback
from fastNLP.core.dataloaders.utils import OverfitDataLoader
import fitlog
import torch
from data.ee_pipe import EEPipe, EEPipe_
from data.padder import Torch3DMatrixPadder
from model.args import ARGS
from model.batch_sampler import ConstantTokenBatchSampler
from model.callbacks import FitlogCallback, TorchWarmupCallback
from model.ee_metric import EEMetric, EEMetric_, NestEEMetric
from model.unify_model import UnifyModel
parser = argparse.ArgumentParser()
parser.add_argument('--lr', default=3e-5, type=float)
parser.add_argument('-b', '--batch_size', default=12, type=int)
parser.add_argument('-n', '--n_epochs', default=50, type=int)
parser.add_argument('-a', '--accumulation_steps', default=1, type=int)
parser.add_argument('--warmup', default=0.1, type=float)
parser.add_argument('-d', '--dataset_name', default='ace05E', type=str)
parser.add_argument('--model_name', default=None, type=str)
parser.add_argument('--attn_dropout', default=0.15, type=float)
parser.add_argument('--cross_depth', default=3, type=int)
parser.add_argument('--cross_dim', default=200, type=int)
parser.add_argument('--use_ln', default=1, type=int)
parser.add_argument('--use_s2', default=1, type=int)
parser.add_argument('--drop_s1_p', default=0.1, type=float)
parser.add_argument('--empty_rel_weight', default=0.1, type=float)
parser.add_argument('--biaffine_size', default=200, type=int)
args = parser.parse_args()
dataset_name = args.dataset_name
max_token = 2048
if args.model_name is None:
if dataset_name in ('ace05E', 'ace05E+'):
args.model_name = 'microsoft/deberta-v3-large'
elif dataset_name == 'ere':
args.model_name = 'microsoft/deberta-v3-large'
else:
args.model_name = 'microsoft/deberta-v3-large'
model_name = args.model_name
if torch.cuda.mem_get_info()[-1] > 30_043_904_512 and 'xlarge' in model_name:
batch_size_when_max_len = 12
max_token = 2048
elif torch.cuda.mem_get_info()[-1] > 30_043_904_512:
batch_size_when_max_len = 12
max_token = 2048
elif 'roberta-large' in model_name and 'ere' in dataset_name:
batch_size_when_max_len = min(args.batch_size, 10)
max_token = 1024
elif 'large' in model_name and 'ere' in dataset_name:
batch_size_when_max_len = min(args.batch_size, 12)
max_token = 1840
elif 'large' in model_name and 'ace05E+' in dataset_name:
batch_size_when_max_len = min(args.batch_size, 15)
elif 'large' in model_name and 'ace05E' in dataset_name:
batch_size_when_max_len = min(args.batch_size, 12)
max_token = 2048
elif 'base' in model_name and 'ere' in dataset_name:
batch_size_when_max_len = min(args.batch_size, 24)
max_token = 2048
elif 'base' in model_name and 'ace05E+' in dataset_name:
batch_size_when_max_len = min(args.batch_size, 30)
elif 'base' in model_name and 'ace05E' in dataset_name:
batch_size_when_max_len = min(args.batch_size, 24)
max_token = 2048
######hyper
non_ptm_lr_ratio = 10
use_at_loss = True
use_tri_bias = True
schedule = 'linear'
symmetric = True # 没有这个值为 False,在得到trigger和role的时候是否使用对称的
ignore_top_4 = 'auto'
use_set = True # 没有的为False
######hyper
ARGS['use_pos'] = False
ARGS['use_gelu'] = True
ARGS['s1_scale_plus'] = False
ARGS['drop_p'] = 0.4 # 没有这个参数的实验是0.4
ARGS['use_residual'] = True
if use_at_loss is True:
arg_thres = 0.5
tri_thres = 0.5
role_thres = 1
else:
arg_thres = 0.5
tri_thres = 0.5
role_thres = 0.5
# 如果是debug模式,就不同步到fitlog
fitlog.debug()
# 这个似乎必须是True,否则收敛起来太慢了。
if 'large' in model_name and torch.cuda.mem_get_info()[-1] < 30_043_904_512:
eval_batch_size = 20
else:
eval_batch_size = min(args.batch_size * 2, 32)
if 'SEARCH_ID' in os.environ:
fitlog.set_log_dir('debug_ee_logs2/')
else:
fitlog.set_log_dir('debug_ee_logs2/')
seed = fitlog.set_rng_seed()
os.environ['FASTNLP_GLOBAL_SEED'] = str(seed)
if 'SEARCH_ID' not in os.environ and fastNLP.get_global_rank() == 0:
fitlog.commit(__file__)
fitlog.add_hyper(args)
fitlog.add_hyper_in_file(__file__)
if 'SEARCH_ID' in os.environ:
fitlog.add_other(os.environ['SEARCH_ID'], name='SEARCH_ID')
fit_id = fitlog.get_fit_id(__file__)[:8]
if fit_id is not None:
fitlog.add_other(name='fit_id', value=fit_id)
fitlog.add_hyper(ARGS)
@cache_results('caches/ee_caches.pkl', _refresh=False)
def get_data(dataset_name, model_name):
if dataset_name == 'ace05E':
pipe = EEPipe(model_name)
paths = '../dataset/ace05E'
elif dataset_name == 'ace05E+':
pipe = EEPipe(model_name)
paths = '../dataset/ace05E+'
elif dataset_name == 'ere':
pipe = EEPipe(model_name)
paths = '../dataset/ERE_text2event'
if dataset_name == 'ace05E_': # 不考虑对称
pipe = EEPipe_(model_name)
paths = '../dataset/ace05E'
elif dataset_name == 'ace05E+_':
pipe = EEPipe_(model_name)
paths = '../dataset/ace05E+'
elif dataset_name == 'ere_':
pipe = EEPipe_(model_name)
if dataset_name == 'oace05E': # 以o开头的是模仿oneie的做法,一个role只出现在一个trigger那里;同时nested的entity取前面那个
pipe = EEPipe(model_name)
paths = '../dataset/ace05E'
dl = pipe.process_from_file(paths, True)
return dl, pipe.matrix_segs
elif dataset_name == 'oace05E+':
pipe = EEPipe(model_name)
paths = '../dataset/ace05E+'
dl = pipe.process_from_file(paths, True)
return dl, pipe.matrix_segs
elif dataset_name == 'oere':
pipe = EEPipe(model_name)
paths = '../dataset/ERE_text2event'
dl = pipe.process_from_file(paths, True)
return dl, pipe.matrix_segs
dl = pipe.process_from_file(paths)
return dl, pipe.matrix_segs
dl, matrix_segs = get_data(dataset_name, model_name)
tri_vocab = getattr(dl, 'tri_vocab')
role_vocab = getattr(dl, 'role_vocab')
"""
保证没有nested的
"""
for name, ds in dl.iter_datasets():
for ins in ds:
tri_target = ins['tri_target']
flags = np.zeros(512)
for s, e, _ in tri_target:
assert all(flags[s:e + 1] == 0)
flags[s:e + 1] += 1
arg_target = set(ins['arg_target'])
flags = np.zeros(512)
for s, e in set([(s, e) for s, e, _, _ in arg_target]):
assert all(flags[s:e + 1] == 0)
flags[s:e + 1] += 1
if ignore_top_4 == 'auto' and dataset_name in ('ace05E', 'ace05E_', 'oace05E'):
print(dl)
for name, ds in dl.iter_datasets():
if name != 'train':
ds.drop(lambda x: int(x['sent_id'].split('-')[-1]) < 4, inplace=True)
def densify(x):
x = x.todense()
x = x.astype(np.float32)
if use_at_loss is True: # 根据是否使用 at loss 补充一个维度
na = (x[..., -matrix_segs['role']:].sum(axis=-1, keepdims=True) == 0).astype(np.float32)
x = np.concatenate([x[..., :matrix_segs['tri'] + 1], na, x[..., -matrix_segs['role']:]], axis=-1)
return x
dl.apply_field(densify, field_name='matrix', new_field_name='matrix', progress_bar='Densify')
dl.apply_field(lambda x: x.todense().astype(bool), field_name='rel_mask', new_field_name='rel_mask',
progress_bar='Densify')
print(dl)
print(f"{len(tri_vocab)} tri: {tri_vocab}, {len(role_vocab)} role: {role_vocab}, matrix_segs:{matrix_segs}")
dls = {}
for name, ds in dl.iter_datasets():
ds.set_pad('matrix', pad_fn=Torch3DMatrixPadder(pad_val=ds.collator.input_fields['matrix']['pad_val'],
num_class=sum(matrix_segs.values()) + 1 if use_at_loss else sum(
matrix_segs.values()),
batch_size=max(eval_batch_size, args.batch_size)))
if name == 'train':
if torch.cuda.mem_get_info()[
-1] < 30_043_904_512 or 'deberta-v3-large' in model_name or 'xlarge' in model_name: # 区分 A100 和 3090 的
# if 'deberta-v3-large' in model_name or 'xlarge' in model_name: # 区分 A100 和 3090 的
_dl = prepare_torch_dataloader(ds, batch_size=args.batch_size, num_workers=4,
batch_sampler=ConstantTokenBatchSampler(ds.get_field('bpe_len').content,
max_token=max_token,
max_sentence=args.batch_size,
batch_size_when_max_len=batch_size_when_max_len),
pin_memory=True, shuffle=True)
else:
_dl = prepare_torch_dataloader(ds, batch_size=args.batch_size, num_workers=4,
batch_sampler=BucketedBatchSampler(ds, 'input_ids',
batch_size=args.batch_size,
num_batch_per_bucket=30),
pin_memory=True, shuffle=True)
else:
_dl = prepare_torch_dataloader(ds, batch_size=eval_batch_size, num_workers=3,
sampler=SortedSampler(ds, 'input_ids'), pin_memory=True, shuffle=False)
_dl = OverfitDataLoader(_dl, overfit_batches=-1)
dls[name] = _dl
model = UnifyModel(model_name, matrix_segs, use_at_loss=use_at_loss, cross_dim=args.cross_dim,
cross_depth=args.cross_depth, biaffine_size=args.biaffine_size, use_ln=args.use_ln,
drop_s1_p=args.drop_s1_p, use_s2=args.use_s2, empty_rel_weight=args.empty_rel_weight,
attn_dropout=args.attn_dropout, use_tri_bias=use_tri_bias)
# optimizer
parameters = []
ln_params = []
non_ln_params = []
non_pretrain_params = []
non_pretrain_ln_params = []
for name, param in model.named_parameters():
name = name.lower()
if param.requires_grad is False:
continue
if 'pretrain_model' in name:
if 'norm' in name or 'bias' in name:
ln_params.append(param)
else:
non_ln_params.append(param)
else:
if 'norm' in name or 'bias' in name:
non_pretrain_ln_params.append(param)
else:
non_pretrain_params.append(param)
non_ptm_lr = non_ptm_lr_ratio if non_ptm_lr_ratio < 1 else args.lr * non_ptm_lr_ratio
optimizer = torch.optim.AdamW([{'params': non_ln_params, 'lr': args.lr, 'weight_decay': 1e-2},
{'params': ln_params, 'lr': args.lr, 'weight_decay': 0},
{'params': non_pretrain_ln_params, 'lr': non_ptm_lr, 'weight_decay': 0},
{'params': non_pretrain_params, 'lr': non_ptm_lr, 'weight_decay': 1e-2}],
eps=1e-6)
# callbacks
callbacks = []
callbacks.append(FitlogCallback())
callbacks.append(TorchGradClipCallback(clip_value=1))
callbacks.append(TorchWarmupCallback(warmup=args.warmup, schedule=schedule))
evaluate_dls = {
'dev': dls.get('dev'),
'test': dls.get('test')
}
allow_nested = True
constrain = getattr(dl, 'constrain')
metrics = {'f': EEMetric(matrix_segs=matrix_segs, arg_thres=arg_thres, tri_thres=tri_thres, role_thres=role_thres,
allow_nested=False, constrain=constrain, symmetric=symmetric, use_set=use_set)
if not dataset_name.endswith('_') else
EEMetric_(matrix_segs=matrix_segs, arg_thres=arg_thres, tri_thres=tri_thres, role_thres=role_thres,
allow_nested=False, constrain=constrain, symmetric=symmetric, use_set=use_set),
'nest_f': NestEEMetric(matrix_segs=matrix_segs, arg_thres=arg_thres, tri_thres=tri_thres,
role_thres=role_thres,
allow_nested=True, constrain=constrain, symmetric=symmetric, use_set=use_set)}
def evaluate_every(trainer):
if trainer.cur_epoch_idx >= 10 and trainer.global_forward_batches % trainer.num_batches_per_epoch == 0:
return True
def monitor(results):
return results['f#f#dev'] + results['r_f#f#dev']
trainer = Trainer(model=model,
driver='torch',
train_dataloader=dls.get('train'),
evaluate_dataloaders=evaluate_dls,
optimizers=optimizer,
callbacks=callbacks,
overfit_batches=0,
device=0,
n_epochs=args.n_epochs,
metrics=metrics,
monitor=monitor,
evaluate_every=evaluate_every,
evaluate_use_dist_sampler=True,
accumulation_steps=args.accumulation_steps,
fp16=True,
progress_bar='rich',
train_fn='forward_ee', evaluate_fn='forward_ee')
trainer.run(num_train_batch_per_epoch=-1, num_eval_batch_per_dl=-1, num_eval_sanity_batch=0)
fitlog.finish() # finish the logging
# CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node 2 train_v1.py
# CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 train_re.py --n_epochs 200 --lr 3e-5 --dataset_name tplinker_nyt --accumulation_steps 4