forked from xingyizhou/ExtremeNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgradcam_softmax.py
274 lines (235 loc) · 11 KB
/
gradcam_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""
Created on Thu Oct 26 11:06:51 2017
@author: Utku Ozbulak - github.com/utkuozbulak
"""
from PIL import Image
import numpy as np
import torch, os, argparse, json, pprint
from config import system_configs
from misc_functions import get_example_params, save_class_activation_images
from nnet.py_factory import NetworkFactory
from db.datasets import datasets
from misc_functions import preprocess_image
from models.py_utils.kp_utils import _exct_decode, _h_aggregate, _v_aggregate, _nms
import tqdm
class CamExtractor():
"""
Extracts cam features from the model
"""
def __init__(self, model, nnet):
self.model = model
self.nnet = nnet
self.gradients = None
def save_gradient(self, grad):
self.gradients = grad
# yezheng: there is no return
return grad#add by yezheng
def forward_pass_on_convolutions(self, x):
"""
Does a forward pass on convolutions, hooks the function at given layer
"""
conv_output = None
image = x
inter = self.model.pre(image)
outs = []
layers = zip(
self.model.kps, self.model.cnvs,
self.model.t_heats, self.model.l_heats, self.model.b_heats,
self.model.r_heats, self.model.ct_heats,self.model.t_regrs,
self.model.l_regrs, self.model.b_regrs, self.model.r_regrs,
)
yezheng_l_heats = []
yezheng_r_heats = []
yezheng_t_heats = []
yezheng_b_heats = []
yezheng_ct_heats = []
for ind, layer in enumerate(layers):
kp_, cnv_ = layer[0:2]
t_heat_, l_heat_, b_heat_, r_heat_ = layer[2:6]
ct_heat_ = layer[6]
t_regr_, l_regr_, b_regr_, r_regr_ = layer[7:11]
kp = kp_(inter)
cnv = cnv_(kp)
if ind == self.model.nstack - 1:
t_heat, l_heat = t_heat_(cnv), l_heat_(cnv)
b_heat, r_heat = b_heat_(cnv), r_heat_(cnv)
ct_heat = ct_heat_(cnv)
# #======
# from exkp.py _debug()
t_heat = torch.sigmoid(t_heat)
l_heat = torch.sigmoid(l_heat)
b_heat = torch.sigmoid(b_heat)
r_heat = torch.sigmoid(r_heat)
aggr_weight = 0.1
t_heat = _h_aggregate(t_heat, aggr_weight=aggr_weight)
l_heat = _v_aggregate(l_heat, aggr_weight=aggr_weight)
b_heat = _h_aggregate(b_heat, aggr_weight=aggr_weight)
r_heat = _v_aggregate(r_heat, aggr_weight=aggr_weight)
t_heat = _nms(t_heat, kernel=3)
l_heat = _nms(l_heat, kernel=3)
b_heat = _nms(b_heat, kernel=3)
r_heat = _nms(r_heat, kernel=3)
# #======
t_regr, l_regr = t_regr_(cnv), l_regr_(cnv)
b_regr, r_regr = b_regr_(cnv), r_regr_(cnv)
outs += [t_heat, l_heat, b_heat, r_heat, ct_heat,
t_regr, l_regr, b_regr, r_regr]
yezheng_l_heats.append(l_heat[0,...])
yezheng_r_heats.append(r_heat[0,...])
yezheng_t_heats.append(t_heat[0,...])
yezheng_b_heats.append(b_heat[0,...])
yezheng_ct_heats.append(ct_heat[0,...])
if ind < self.model.nstack - 1:
inter = self.model.inters_[ind](inter) + self.model.cnvs_[ind](cnv)
inter = self.model.relu(inter)
inter = self.model.inters[ind](inter)
# print("[gradcam.py CamExtractor forward_pass_on_convolutions] outs", len(outs))
# for out in outs:
# print("[gradcam.py CamExtractor forward_pass_on_convolutions] out", out.shape)
# print("yezheng_l_heats", len(yezheng_l_heats))
yezheng_l_heats_torch = torch.stack(yezheng_l_heats,dim = 0)
yezheng_r_heats_torch = torch.stack(yezheng_r_heats,dim = 0)
yezheng_t_heats_torch = torch.stack(yezheng_t_heats,dim = 0)
yezheng_b_heats_torch = torch.stack(yezheng_b_heats,dim = 0)
yezheng_ct_heats_torch = torch.stack(yezheng_ct_heats,dim = 0)
return yezheng_t_heats_torch, yezheng_l_heats_torch, yezheng_b_heats_torch, yezheng_t_heats_torch, yezheng_ct_heats_torch, outs
def forward_pass(self, x):
"""
Does a full forward pass on the model
"""
# Forward pass on the convolutions
t_heat, l_heat, b_heat, r_heat, ct_heat, outs = self.forward_pass_on_convolutions(x)
# x = x.view(x.size(0), -1) # Flatten
# # Forward pass on the classifier
# x = self.model.classifier(x)
#=======
#yezheng
# testing_loss = self.nnet.loss(x, ) #yezheng
testing_loss = None
return t_heat, l_heat, b_heat, r_heat, ct_heat, testing_loss
class GradCam():
"""
Produces class activation map
"""
def __init__(self, nnet, flag):
self.model = nnet.model.module
self.nnet = nnet
# self.model.eval()
# Define extractor
self.extractor = CamExtractor(self.model, self.nnet)
self.flag = flag
def generate_cam(self, input_image, target_class=None):
# Full forward pass
# conv_output is the output of convolutions at specified layer
# model_output is the final output of the model (1, 1000)
# conv_output, model_output = self.extractor.forward_pass(input_image)
#yezheng
# self.model.zero_grad()
t_heat, l_heat, b_heat, r_heat, ct_heat, testing_loss =self.extractor.forward_pass(input_image)
if 't' == self.flag:
cam= t_heat
elif 'l' == self.flag:
cam = l_heat
elif 'r' == self.flag:
cam = r_heat
elif 'b' == self.flag:
cam = b_heat
# print("[GradCam generate_cam] cam",cam.shape)
cam = torch.sum(cam,dim =0)
cam = cam.detach().numpy()
cam = np.sum(cam, axis = 0)
cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam)) # Normalize between 0-1
cam = np.uint8(cam * 255) # Scale between 0-255 to visualize
# print("[generate_cam] input_image.shape", input_image.shape)
cam = np.uint8(Image.fromarray(cam).resize((input_image.shape[2],
input_image.shape[3]), Image.ANTIALIAS))
# ^ I am extremely unhappy with this line. Originally resizing was done in cv2 which
# supports resizing numpy matrices, however, when I moved the repository to PIL, this
# option is out of the window. So, in order to use resizing with ANTIALIAS feature of PIL,
# I briefly convert matrix to PIL image and then back.
# If there is a more beautiful way, send a PR.
return cam
#--------
if target_class is None:
target_class = np.argmax(model_output.data.numpy())
# Target for backprop
one_hot_output = torch.FloatTensor(1, testing_loss.size()[-1]).zero_()
one_hot_output[0][target_class] = 1
# Zero grads
# self.model.features.zero_grad()
# self.model.classifier.zero_grad()
# Backward pass with specified target
self.nnet.loss.backward(gradient=one_hot_output, retain_graph=True)
# Get hooked gradients
guided_gradients = self.extractor.gradients.data.numpy()[0]
# Get convolution outputs
target = t_heat.data.numpy()[0]
# Get weights from gradients
weights = np.mean(guided_gradients, axis=(1, 2)) # Take averages for each gradient
# Create empty numpy array for cam
cam = np.ones(target.shape[1:], dtype=np.float32)
# Multiply each weight with its conv output and then, sum
for i, w in enumerate(weights):
cam += w * target[i, :, :]
cam = np.maximum(cam, 0)
cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam)) # Normalize between 0-1
cam = np.uint8(cam * 255) # Scale between 0-255 to visualize
cam = np.uint8(Image.fromarray(cam).resize((input_image.shape[2],
input_image.shape[3]), Image.ANTIALIAS))
# ^ I am extremely unhappy with this line. Originally resizing was done in cv2 which
# supports resizing numpy matrices, however, when I moved the repository to PIL, this
# option is out of the window. So, in order to use resizing with ANTIALIAS feature of PIL,
# I briefly convert matrix to PIL image and then back.
# If there is a more beautiful way, send a PR.
return cam
def parse_args():
parser = argparse.ArgumentParser(description="Demo CornerNet")
parser.add_argument("--cfg_file", help="config file",
default='medical_ExtremeNet', type=str)
parser.add_argument("--demo", help="demo image path or folders",
default="data/medical_img/test2017", type=str)
parser.add_argument("--model_path",
default='cache/nnet/medical_ExtremeNet/medical_ExtremeNet_27600.pkl')
parser.add_argument("--show_mask", action='store_true',
help="Run Deep extreme cut to obtain accurate mask")
args = parser.parse_args()
return args
if __name__ == '__main__':
# Get params
args = parse_args()
cfg_file = os.path.join(
system_configs.config_dir, args.cfg_file + ".json")
print("[demo] cfg_file: {}".format(cfg_file))
with open(cfg_file, "r") as f:
configs = json.load(f)
configs["system"]["snapshot_name"] = args.cfg_file
system_configs.update_config(configs["system"])
print("system config...")
pprint.pprint(system_configs.full)
print("loading parameters: {}".format(args.model_path))
print("building neural network...")
train_split = system_configs.train_split
dataset = system_configs.dataset
training_db = datasets[dataset](configs["db"], train_split)
nnet = NetworkFactory(training_db, configs["cuda_flag"])
print("loading parameters...")
nnet.load_pretrained_params(args.model_path)
if torch.cuda.is_available() and configs["cuda_flag"]:
nnet.cuda()
nnet.eval_mode()
# Grad cam
for ind_img in tqdm.tqdm(range(21,35)):
for flag in ['l','r','b','t']:
grad_cam = GradCam(nnet,flag)
img_path = "../../medical_img/data/test/img/{:06d}.jpg".format(ind_img)
original_image = Image.open(img_path).convert('RGB').resize((512,512))
target_class = 1
prep_img = preprocess_image(original_image)
# Generate cam mask
cam = grad_cam.generate_cam(prep_img, target_class)
# print("[gradcam.py] cam",cam.shape,cam)
# Save mask
file_name_to_export = "out_heatmap_{}_softmax/{:06d}_{}".format(flag, ind_img, flag)
# print("file_name_to_export", file_name_to_export) ##snake
save_class_activation_images(original_image, cam, file_name_to_export)
# print('Grad cam completed')