-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathResDrop152.py
132 lines (111 loc) · 4.29 KB
/
ResDrop152.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import math
import chainer
import chainer.functions as F
import chainer.links as L
import numpy as np
count = None
class BottleNeckA(chainer.Chain):
def __init__(self, in_size, ch, out_size, stride=2):
w = math.sqrt(2)
super(BottleNeckA, self).__init__(
conv1=L.Convolution2D(in_size, ch, 1, stride, 0, w, nobias=True),
bn1=L.BatchNormalization(ch),
conv2=L.Convolution2D(ch, ch, 3, 1, 1, w, nobias=True),
bn2=L.BatchNormalization(ch),
conv3=L.Convolution2D(ch, out_size, 1, 1, 0, w, nobias=True),
bn3=L.BatchNormalization(out_size),
conv4=L.Convolution2D(in_size, out_size, 1, stride, 0, w, nobias=True),
bn4=L.BatchNormalization(out_size),
)
def __call__(self, x, train, decay):
global count
count += 1
if decay[count][0] is 1:
h1 = F.relu(self.bn1(self.conv1(x), test=not train))
h1 = F.relu(self.bn2(self.conv2(h1), test=not train))
h1 = self.bn3(self.conv3(h1), test=not train)
h2 = self.bn4(self.conv4(x), test=not train)
return F.relu(h1 + h2) if train else F.relu(h1 * decay[count][1] + h2)
else:
return F.relu(self.bn4(self.conv4(x), test=not train))
class BottleNeckB(chainer.Chain):
def __init__(self, in_size, ch):
w = math.sqrt(2)
super(BottleNeckB, self).__init__(
conv1=L.Convolution2D(in_size, ch, 1, 1, 0, w, nobias=True),
bn1=L.BatchNormalization(ch),
conv2=L.Convolution2D(ch, ch, 3, 1, 1, w, nobias=True),
bn2=L.BatchNormalization(ch),
conv3=L.Convolution2D(ch, in_size, 1, 1, 0, w, nobias=True),
bn3=L.BatchNormalization(in_size),
)
def __call__(self, x, train, decay):
global count
count += 1
if decay[count][0] is 1:
h = F.relu(self.bn1(self.conv1(x), test=not train))
h = F.relu(self.bn2(self.conv2(h), test=not train))
h = self.bn3(self.conv3(h), test=not train)
return F.relu(h + x) if train else F.relu(h * decay[count][1] + x)
else:
return x
class Block(chainer.Chain):
def __init__(self, layer, in_size, ch, out_size, stride=2):
super(Block, self).__init__()
links = [('a', BottleNeckA(in_size, ch, out_size, stride))]
for i in range(layer-1):
links += [('b{}'.format(i+1), BottleNeckB(out_size, ch))]
for link in links:
self.add_link(*link)
self.forward = links
def __call__(self, x, train, decay):
for name,_ in self.forward:
f = getattr(self, name)
h = f(x if name == 'a' else h, train, decay)
return h
class ResNet(chainer.Chain):
insize = 224
def __init__(self):
w = math.sqrt(2)
self.R = (3, 8, 36, 3)
super(ResNet, self).__init__(
conv1=L.Convolution2D(3, 64, 7, 2, 3, w, nobias=True),
bn1=L.BatchNormalization(64),
res2=Block(self.R[0], 64, 64, 256, 1),
res3=Block(self.R[1], 256, 128, 512),
res4=Block(self.R[2], 512, 256, 1024),
res5=Block(self.R[3], 1024, 512, 2048),
fc=L.Linear(2048, 1000),
)
self.train = True
def clear(self):
global count
count = -1
self.loss = None
self.accuracy = None
def resdrop(self, pL=0.5):
L = sum(self.R)
arr = []
for l in range(1, L+1):
pl = 1 - l * (1 - pL) / L
arr.append([np.random.binomial(1, pl) if self.train else 1, pl])
self.decay = arr
def __call__(self, x, t):
self.clear()
self.resdrop()
h = self.bn1(self.conv1(x), test=not self.train)
h = F.max_pooling_2d(F.relu(h), 3, stride=2)
h = self.res2(h, self.train, self.decay)
h = self.res3(h, self.train, self.decay)
h = self.res4(h, self.train, self.decay)
h = self.res5(h, self.train, self.decay)
h = F.average_pooling_2d(h, 7, stride=1)
h = self.fc(h)
if self.train:
self.loss = F.softmax_cross_entropy(h, t)
self.accuracy = F.accuracy(h, t)
return self.loss
else:
return h