-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgamecoqepit.v
940 lines (763 loc) · 20.3 KB
/
gamecoqepit.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
Require Import List.
Require Import Ensembles.
Require Import Bool.
Require Import Even.
Require Import FunctionalExtensionality.
Definition tail (A:Type)(l : list A) : list A :=
match l with
| nil => nil
| cons a l => l
end.
Definition head (A : Type)(x : A)(l : list A) : A :=
match l with
| nil => x
| a :: m => a
end.
Theorem cons_injective :
forall (A : Type)(a b : A)(l m : list A),
a :: l = b :: m <-> l = m /\ a=b.
intros A a b l m.
split.
intro H.
injection H.
intros H0 H1.
split.
apply H0.
apply H1.
intro H.
destruct H as (H0, H1).
f_equal.
apply H1. apply H0.
Qed.
(* GOTO STDLIB *)
Lemma app_inj :forall A:Type, forall (a b c d:list A),
a++b=c++d -> length a = length c -> a=c /\ b=d.
Proof.
induction a as [|x a IH]; intros b [|y c] d EQ LEN;
auto; try discriminate.
injection EQ; clear EQ; intros EQ1 EQ2.
destruct (IH b c d); auto with arith. split; congruence.
Qed.
Inductive players :Type :=
|O:players
|P:players
.
Definition reverse_player p:players :=
match p with
|O => P
|P => O
end.
Definition reverse_player_function {A:Type} (lambda:A->players):=
fun x:A =>reverse_player(lambda x).
Lemma reverse_invo : forall p:players, reverse_player(reverse_player p)=p.
Proof.
intro.
destruct p;simpl;reflexivity.
Qed.
Lemma reverse_function_invo : forall A:Type, forall lambda:A->players, reverse_player_function (reverse_player_function lambda)=lambda.
Proof.
intros.
unfold reverse_player_function.
apply functional_extensionality_dep.
intros.
rewrite reverse_invo.
reflexivity.
Qed.
Fixpoint is_alternate_play {A:Type} (lambda:A->players) (l:list(A)) :=
match l with
|nil => True
|a::suite => (lambda a)=O /\ is_alternate_play (reverse_player_function lambda) suite
end.
Definition prefixe {A:Type} (v:list A) (u:list A) := exists w, u = v++w.
Lemma even_SS : forall n:nat, even (S (S n)) -> even n.
Proof.
intros.
replace (S (S n)) with (2 + n) in H.
apply even_plus_split in H.
destruct H.
apply H.
destruct H.
apply not_even_and_odd in H.
contradict H.
apply even_S.
apply odd_S.
apply even_O.
simpl.
reflexivity.
Qed.
Lemma odd_SS : forall n:nat, odd (S (S n)) -> odd n.
Proof.
intros.
replace (S (S n)) with (2 + n) in H.
apply odd_plus_split in H.
destruct H.
destruct H.
apply not_even_and_odd in H.
contradict H.
apply even_S.
apply odd_S.
apply even_O.
apply H.
simpl.
reflexivity.
Qed.
Lemma is_alternate_play_app : forall B:Type, forall (p:(list B)), forall (q:(list B)), forall (lambda:B->players), (is_alternate_play lambda (p++q) -> (is_alternate_play lambda p /\ ( even (length p) -> is_alternate_play lambda q) /\ (odd (length p) -> is_alternate_play (reverse_player_function lambda) q))) .
Proof.
intro.
intro.
induction p.
intros.
simpl.
split.
tauto.
split.
intro.
simpl in H.
apply H.
intro.
contradict H0.
intro.
apply (not_even_and_odd 0).
apply even_O.
apply H0.
intros.
split.
simpl in *.
split.
apply H.
destruct H.
assert (G:= (IHp q (reverse_player_function lambda))).
assert (I:= G H0).
destruct I.
apply H1.
split.
simpl in *.
intro.
apply odd_S in H0.
apply odd_SS in H0.
assert (G:= (IHp q (reverse_player_function lambda))).
destruct H.
assert (I:= G H1).
destruct I.
destruct H3.
assert (J:= H4 H0).
simpl in J.
rewrite reverse_function_invo in J.
apply J.
intro.
simpl in *.
apply even_S in H0.
apply even_SS in H0.
assert (G:= (IHp q (reverse_player_function lambda))).
destruct H.
assert (I:= G H1).
destruct I.
destruct H3.
assert (J:= H3 H0).
simpl in J.
apply J.
Qed.
Lemma is_alternate_play_prefixe : forall B:Type, forall (lambda:B->players), forall (p:(list B)), forall (q:(list B)), ((prefixe q p) /\ is_alternate_play lambda p ) -> is_alternate_play lambda q.
Proof.
intros.
destruct H.
unfold prefixe in H.
destruct H.
rewrite H in H0.
apply (is_alternate_play_app B q x lambda) in H0.
apply H0.
Qed.
Record Game : Type := MkGame
{moves:Set;
lambda: moves -> players;
plays: Ensemble(list(moves));
alt_plays: forall p:(list(moves)), (plays p) -> (is_alternate_play lambda p);
prefixe_plays : forall p:(list(moves)), forall q:(list(moves)), (((plays p) /\ (prefixe q p) ) -> (plays q));
plays_not_null : plays nil}.
Definition LinearLambda {A:Game} {B:Game} (x:(sum A.(moves) B.(moves))) :=
match x with
| inl y => (reverse_player_function (lambda A)) y
| inr y => (lambda B) y
end.
Definition left_sub_element {A:Game} {B:Game} (a :(moves A + moves B)) : list(moves A) :=
match a with
|(inl y) => y::nil
|(inr y) => nil
end.
Definition right_sub_element {A:Game} {B:Game} (a :(moves A + moves B)) : list(moves B) :=
match a with
|(inl y) => nil
|(inr y) => y::nil
end.
Fixpoint left_sub_play {A:Game} {B:Game} (p:list((sum A.(moves) B.(moves)))) : list(A.(moves)) :=
match p with
| nil => nil
| y :: suite => (left_sub_element y)++(left_sub_play suite)
end.
(**fonctions donnant les séquences obtenues par projection sur B a partir de A cons B **)
Fixpoint right_sub_play {A:Game} {B:Game} (p:list((sum A.(moves) B.(moves)))) : list(B.(moves)) :=
match p with
| nil => nil
| y :: tl => (right_sub_element y)++(right_sub_play tl)
end.
Definition is_linear_play {A:Game} {B:Game} (p:list((sum A.(moves) B.(moves)))) : Prop :=
(is_alternate_play (LinearLambda) p)/\
is_alternate_play (A.(lambda)) (left_sub_play p) /\
is_alternate_play (B.(lambda)) (right_sub_play p) .
Lemma left_sub_play_app : forall A:Game, forall B:Game, forall (p:list((sum A.(moves) B.(moves)))), forall (q:list((sum A.(moves) B.(moves)))), (left_sub_play(p++q)) = (left_sub_play p) ++ (left_sub_play q).
Proof.
intros.
induction p.
simpl.
reflexivity.
simpl.
rewrite app_ass.
f_equal.
apply IHp.
Qed.
Lemma left_sub_play_prefixe : forall A:Game, forall B:Game, forall (p:list((sum A.(moves) B.(moves)))), forall (q:list((sum A.(moves) B.(moves)))), prefixe q p -> prefixe (left_sub_play q) (left_sub_play p).
Proof.
intros.
unfold prefixe in H.
destruct H.
unfold prefixe.
exists (left_sub_play x).
replace p with (q++x).
simpl.
apply left_sub_play_app.
Qed.
Lemma right_sub_play_app : forall A:Game, forall B:Game, forall (p:list((sum A.(moves) B.(moves)))),
forall (q:list((sum A.(moves) B.(moves)))),
(right_sub_play(p++q)) = (right_sub_play p) ++ (right_sub_play q).
Proof.
intros.
induction p.
simpl.
reflexivity.
simpl.
rewrite app_ass.
f_equal.
apply IHp.
Qed.
Lemma right_sub_play_prefixe : forall A:Game, forall B:Game, forall (p:list((sum A.(moves) B.(moves)))),
forall (q:list((sum A.(moves) B.(moves)))),
prefixe q p -> prefixe (right_sub_play q) (right_sub_play p).
Proof.
intros.
unfold prefixe in H.
destruct H.
unfold prefixe.
exists (right_sub_play x).
replace p with (q++x).
simpl.
apply right_sub_play_app.
Qed.
Program Definition LinearGame (A:Game) (B:Game) : Game := MkGame (sum A.(moves) B.(moves)) (LinearLambda) (is_linear_play ) _ _ _.
Next Obligation.
Proof.
unfold is_linear_play in H.
apply H.
Qed.
Next Obligation.
Proof.
unfold is_linear_play in *.
destruct H.
destruct H1.
split.
apply (is_alternate_play_prefixe ( (moves A + moves B)) LinearLambda p q ).
split.
apply H0.
apply H.
split.
apply (is_alternate_play_prefixe (moves A ) (lambda A) (left_sub_play p) (left_sub_play q) ).
split.
apply left_sub_play_prefixe.
apply H0.
apply H1.
apply (is_alternate_play_prefixe (moves B ) (lambda B) (right_sub_play p) (right_sub_play q) ).
split.
apply right_sub_play_prefixe.
apply H0.
apply H2.
Qed.
Next Obligation.
unfold is_linear_play.
simpl.
tauto.
Qed.
(* définition d'une stratégie, avec les propriétés à vérifier *)
Record Strategie (G:Game) : Type := MkStrat
{strats:(Ensemble(list(moves G)));
even_strats:forall p:(list((moves G))), ((strats p) -> ((plays G) p) /\ (even (length p)));
strats_not_null: strats nil;
prefixe_strats: forall p q:(list((moves G))), ((strats p)/\ (prefixe q p) /\ (even (length q))) -> (strats q);
deterministic_strats: forall p:(list((moves G))),forall m:(moves G), forall n1:(moves G), forall n2:(moves G),
((strats ( app p (m::n1::nil))) /\ (strats ( app p (m::n2::nil)))) -> (n1=n2)
}.
(* définition de l'ensemble des parties de la stratégie identité*)
Definition is_identity_strat {G:Game} (s:(list (moves (LinearGame G G)))) : Prop := (is_linear_play s) /\ (even (length s)) /\ forall t:(list (moves (LinearGame G G))),
((prefixe t s) /\ (even (length t)) )-> ((left_sub_play t) = (right_sub_play t)).
Program Definition IdentityStrat (G:Game) : (Strategie (LinearGame G G)) := MkStrat (LinearGame G G) (is_identity_strat) _ _ _ _ .
Next Obligation.
Proof.
unfold is_identity_strat in *.
destruct H.
split.
apply H.
apply H0.
Qed.
Next Obligation.
unfold is_identity_strat.
simpl.
split.
unfold is_linear_play.
simpl.
tauto.
split.
apply even_O.
intros.
destruct H.
destruct t.
simpl.
reflexivity.
unfold prefixe in H.
destruct H.
contradict H.
apply nil_cons.
Qed.
Next Obligation.
unfold is_identity_strat in *.
destruct H.
destruct H2.
destruct H0.
split.
apply (prefixe_plays (LinearGame G G) p q).
split.
apply H.
exists x.
apply H0.
split.
apply H1.
intros.
destruct H4.
apply H3.
split.
2:apply H5.
destruct H4.
exists (x0++x).
rewrite H0.
rewrite H4.
apply app_ass.
Qed.
SearchAbout app.
Lemma identity_deterministic_strats_sub_plays : forall G:Game, (forall (p : list (moves (LinearGame G G)))
(m n1 n2 : moves (LinearGame G G)),
((left_sub_play (p ++ m :: n2 :: nil)) = (right_sub_play (p ++ m :: n2 :: nil)) /\
(left_sub_play (p ++ m :: n1 :: nil)) = (right_sub_play (p ++ m :: n1 :: nil))) -> n1=n2).
Proof.
intros.
destruct H.
simpl.
rewrite left_sub_play_app in *.
rewrite right_sub_play_app in *.
unfold left_sub_play at 2 in H.
unfold left_sub_play at 2 in H0.
unfold right_sub_play at 2 in H.
unfold right_sub_play at 2 in H0.
rewrite <- app_ass in H0.
rewrite <- app_ass in H0.
rewrite <- app_ass in H0.
rewrite <- app_ass in H0.
apply app_inv_tail in H0.
repeat (rewrite <- app_ass in H).
apply app_inv_tail in H.
destruct n1,n2; simpl in *.
rewrite <- H in H0.
apply app_inv_head in H0.
SearchAbout cons.
f_equal.
apply cons_injective in H0.
apply H0.
repeat (rewrite app_nil_r in *).
rewrite <- H0 in H.
repeat (rewrite -> app_ass in H).
apply app_inj in H.
destruct H.
rewrite <- (app_nil_r (left_sub_element m)) in H1.
apply app_inj in H1.
simpl in H1.
destruct H1.
contradict H2.
apply nil_cons.
rewrite app_nil_r.
reflexivity.
reflexivity.
repeat (rewrite app_nil_r in *).
rewrite <- H in H0.
repeat (rewrite -> app_ass in H0).
apply app_inj in H0.
destruct H0.
simpl in H1.
rewrite <- (app_nil_r (left_sub_element m)) in H1.
apply app_inj in H1.
simpl in H1.
destruct H1.
contradict H2.
apply nil_cons.
rewrite app_nil_r.
reflexivity.
reflexivity.
repeat (rewrite app_nil_r in *).
rewrite H in H0.
apply app_inv_head in H0.
f_equal.
apply cons_injective in H0.
symmetry.
apply H0.
Qed.
Next Obligation.
unfold is_identity_strat in *.
destruct H,H0.
destruct H1,H2.
unfold is_linear_play in *.
destruct H,H0.
destruct H5,H6.
rewrite left_sub_play_app in H5,H6.
rewrite right_sub_play_app in H7,H8.
apply is_alternate_play_app in H.
apply is_alternate_play_app in H5.
apply is_alternate_play_app in H7.
apply is_alternate_play_app in H0.
apply is_alternate_play_app in H6.
apply is_alternate_play_app in H8.
destruct H,H5,H7,H0,H6,H8.
destruct H9,H10,H11,H12,H13,H14.
simpl in *.
assert (H21:=H3 (p ++ m :: n1 :: nil)).
assert (H22:=H4 (p ++ m :: n2 :: nil)).
assert ( left_sub_play (p ++ m :: n1 :: nil) =
right_sub_play (p ++ m :: n1 :: nil)).
apply H21.
split.
exists nil.
intuition.
apply H1.
assert ( left_sub_play (p ++ m :: n2 :: nil) =
right_sub_play (p ++ m :: n2 :: nil)).
apply H22.
split.
exists nil.
intuition.
apply H2.
apply (identity_deterministic_strats_sub_plays G p m).
split .
apply H24.
apply H23.
Qed.
Definition check_adjacency {A B C:Game} (p:list(sum (sum (moves A) (moves B)) (moves C))) (m:(sum (sum (moves A) (moves B)) (moves C))) :=match p with
nil => True
|a::suite => match m,a with
|(inl (inl x)),(inl y) => True
|(inl (inl x)),(inr y) => False
|(inl (inr x)),y => True
|(inr x), (inl (inl y)) => False
|(inr x), (inl (inr y)) => True
|(inr x), (inr y) => True
end
end.
Fixpoint is_cover_play {A B C:Game} (p:list(sum (sum (moves A) (moves B)) (moves C))):=
match p with
nil => True
|a::suite => check_adjacency suite a /\ is_cover_play suite
end.
Fixpoint right_center_sub_play {A B C:Game} (p:(list(sum (sum A.(moves) B.(moves)) C.(moves)))) := match p with
nil => nil
|(inr y)::tl => (inr (B.(moves)) y) :: right_center_sub_play tl
| (inl x)::tl => match x with inl z => right_center_sub_play tl | inr z => (inl (C.(moves)) z) :: (right_center_sub_play tl)end
end
.
Definition left_center_sub_element {A B C:Game} (a :(sum (sum A.(moves) B.(moves)) C.(moves))):= match a with
|(inr y) => nil
| (inl x) => x::nil
end.
Fixpoint left_center_sub_play {A B C:Game} (p:(list(sum (sum A.(moves) B.(moves)) C.(moves)))) := match p with
nil => nil
|x::suite => left_center_sub_element x ++ left_center_sub_play suite
end
.
Lemma left_center_sub_play_p_q :forall A B C:Game, forall p q :list(sum (sum A.(moves) B.(moves)) C.(moves)),
left_center_sub_play (p++q) = left_center_sub_play p ++left_center_sub_play q.
Proof.
intros.
induction p.
simpl.
reflexivity.
simpl.
rewrite IHp.
intuition.
Qed.
Definition left_right_sub_element {A B C:Game} (a :(sum (sum A.(moves) B.(moves)) C.(moves))):= match a with
|(inr y) => (inr (A.(moves)) y)::nil
| (inl x) => match x with inr z => nil | inl z => (inl (C.(moves)) z) ::nil end
end.
Fixpoint left_right_sub_play {A B C:Game} (p:(list(sum (sum A.(moves) B.(moves)) C.(moves)))) := match p with
|nil => nil
|hd::tl => left_right_sub_element hd ++ left_right_sub_play tl
end
.
Fixpoint right_right_sub_play {A B C:Game} (p:(list(sum (sum A.(moves) B.(moves)) C.(moves)))) := match p with
nil => nil
|(inr y)::tl => y :: right_right_sub_play tl
| (inl x)::tl => match x with inr z => right_right_sub_play tl | inl z => (right_right_sub_play tl) end
end
.
Fixpoint left_left_sub_play {A B C:Game} (p:(list(sum (sum A.(moves) B.(moves)) C.(moves)))) := match p with
nil => nil
|(inr y)::tl =>left_left_sub_play tl
| (inl x)::tl => match x with inr z => left_left_sub_play tl | inl z => z :: (left_left_sub_play tl)end
end
.
Fixpoint center_center_sub_play {A B C:Game} (p:(list(sum (sum A.(moves) B.(moves)) C.(moves)))) := match p with
nil => nil
|(inr y)::tl => center_center_sub_play tl
| (inl x)::tl => match x with inl z => center_center_sub_play tl | inr z => z:: (center_center_sub_play tl)end
end
.
Definition is_composed_strat {A B C:Game} (sigma:Strategie (LinearGame A B)) (tau:Strategie (LinearGame B C)) (p:list(moves (LinearGame A C))):=
exists x,is_cover_play x /\ (strats (LinearGame A B) sigma) (left_center_sub_play x) /\ (strats (LinearGame B C)tau) (right_center_sub_play x) /\ left_right_sub_play x = p.
Lemma left_right_sub_play_p_q :forall A B C:Game, forall p q :list(sum (sum A.(moves) B.(moves)) C.(moves)),
left_right_sub_play (p++q) = left_right_sub_play p ++left_right_sub_play q.
Proof.
intros.
induction p.
simpl.
reflexivity.
simpl.
rewrite IHp.
intuition.
Qed.
Lemma check_adjacency_p_q_a : forall A B C:Game, forall p q :list(sum (sum A.(moves) B.(moves)) C.(moves)), forall a:(sum (sum A.(moves) B.(moves)) C.(moves)),
(p=nil -> check_adjacency (p++q) a= check_adjacency q a )/\ (nil<>p -> check_adjacency (p++q) a = check_adjacency p a).
Proof.
intros.
split.
intro.
induction p.
simpl in *.
reflexivity.
symmetry in H.
contradict H.
apply nil_cons.
intro.
destruct p.
contradict H.
reflexivity.
destruct s,a; simpl in *.
destruct s,s0; simpl in *.
reflexivity.
reflexivity.
reflexivity.
reflexivity.
destruct s.
reflexivity.
reflexivity.
destruct s.
reflexivity.
reflexivity.
reflexivity.
Qed.
Lemma is_cover_play_p_q : forall A B C:Game, forall p q :list(sum (sum A.(moves) B.(moves)) C.(moves)),
is_cover_play (p++q) -> is_cover_play p.
Proof.
intros.
induction p.
simpl.
tauto.
simpl in*.
destruct p.
simpl in *.
tauto.
destruct H.
assert (H':= check_adjacency_p_q_a A B C (s::p) q a).
destruct H'.
assert (H'': check_adjacency ((s :: p) ++ q) a = check_adjacency (s :: p) a).
apply H2.
simpl in *.
apply nil_cons.
rewrite <- H'' .
split.
apply H.
apply IHp.
apply H0.
Qed.
Lemma is_cover_play_prefixe : forall A B C:Game, forall q p :list(sum (sum A.(moves) B.(moves)) C.(moves)),
prefixe q p /\ is_cover_play p -> is_cover_play q.
Proof.
intros A B C q.
induction q; intros.
unfold is_cover_play.
tauto.
simpl in *.
destruct H.
destruct H.
rewrite H in H0.
simpl in H0.
destruct H0.
split.
destruct q.
simpl.
tauto.
assert (H':= check_adjacency_p_q_a A B C (s::q) x a).
destruct H'.
assert (H'':check_adjacency ((s :: q) ++ x) a = check_adjacency (s :: q) a).
apply H3.
apply nil_cons.
rewrite <- H''.
apply H0.
apply (IHq (q++x)).
split.
exists x.
reflexivity.
apply H1.
Qed.
Program Definition ComposedStrat {A B C:Game} (sigma:Strategie (LinearGame A B)) (tau:Strategie (LinearGame B C)) : (Strategie (LinearGame A C)) := MkStrat (LinearGame A C) (is_composed_strat sigma tau) _ _ _ _ .
Next Obligation.
unfold is_composed_strat in H.
induction p.
simpl.
unfold is_linear_play.
simpl.
intuition.
destruct H.
destruct H.
destruct H0.
destruct H1.
split.
unfold is_linear_play.
simpl in *.
split.
split.
destruct a.
simpl in *.
destruct x.
simpl in H2.
contradict H2.
apply nil_cons.
destruct s.
destruct s.
simpl in *.
apply cons_injective in H2.
destruct H2.
injection H3.
intro.
assert (H5:=even_strats (LinearGame A B) sigma (inl m0 :: left_center_sub_play x)).
assert (H6:= H5 H0).
destruct H6.
simpl in *.
unfold is_linear_play in H6.
simpl in H6.
rewrite <- H4.
apply H6.
simpl in *.
assert (H3:=even_strats (LinearGame A B) sigma (inr m0 :: left_center_sub_play x)).
assert (H4:= H3 H0).
simpl in *.
unfold is_linear_play in H4.
simpl in H4.
destruct H4.
destruct H4.
destruct H4.
assert (H10:=even_strats (LinearGame B C) tau (inl m0 :: right_center_sub_play x)).
assert (H11:= H10 H1).
simpl in *.
unfold is_linear_play in H11.
simpl in H11.
destruct H11.
destruct H8.
destruct H8.
unfold reverse_player_function in H8.
simpl in H8.
rewrite H4 in H8.
simpl in H8.
discriminate H8.
simpl in *.
apply cons_injective in H2.
destruct H2.
discriminate H3.
destruct x.
simpl in *.
contradict H2.
apply nil_cons.
destruct s.
destruct s.
simpl in H2.
apply cons_injective in H2.
destruct H2.
discriminate H3.
simpl in *.
assert (H3:=even_strats (LinearGame A B) sigma (inr m0 :: left_center_sub_play x)).
assert (H4:= H3 H0).
simpl in *.
unfold is_linear_play in H4.
simpl in H4.
destruct H4.
destruct H4.
destruct H4.
assert (H10:=even_strats (LinearGame B C) tau (inl m0 :: right_center_sub_play x)).
assert (H11:= H10 H1).
simpl in *.
unfold is_linear_play in H11.
simpl in H11.
destruct H11.
destruct H8.
destruct H8.
unfold reverse_player_function in H8.
simpl in H8.
rewrite H4 in H8.
simpl in H8.
discriminate H8.
simpl in *.
apply cons_injective in H2.
destruct H2.
injection H3.
intro.
assert (H5:=even_strats (LinearGame B C) tau (inr m0 :: right_center_sub_play x)).
assert (H6:= H5 H1).
destruct H6.
simpl in *.
unfold is_linear_play in H6.
simpl in H6.
rewrite <- H4.
apply H6.
simpl.
simpl in *.
unfold is_linear_play in IHp.
induction p.
simpl in *.
tauto.
simpl in *.
split.
Admitted.
Next Obligation.
unfold is_composed_strat.
exists nil.
simpl in *.
split.
tauto.
split.
apply (strats_not_null (LinearGame A B) sigma).
split.
apply (strats_not_null (LinearGame B C) tau).
reflexivity.
Qed.
Next Obligation.
unfold is_composed_strat in *.
destruct H.
destruct H.
destruct H2.
destruct H3.
destruct H0.
rewrite H0 in *.
Admitted.
Next Obligation.
Admitted.