-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathengine.py
304 lines (245 loc) · 10.9 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import math
import os
import sys
from typing import Iterable
import torch
import util.misc as utils
from util import box_ops
import logging
import torch.distributed as dist
import time
import datetime
from tqdm import tqdm
class data_prefetcher():
def __init__(self, loader, device):
self.length = len(loader)
self.loader = iter(loader)
self.stream = torch.cuda.Stream()
self.device = device
self.preload()
def preload(self):
try:
samples, targets = next(self.loader)
self.next_img, self.next_mask = samples.decompose()
self.next_target = targets
except StopIteration:
self.next_img = self.next_mask = self.next_target = None
return
with torch.cuda.stream(self.stream):
self.next_img = self.next_img.to(self.device, non_blocking=True)
self.next_mask = self.next_mask.to(self.device, non_blocking=True)
tensor_dict = self.next_target.tensor_dict
self.next_target.tensor_dict = {k: tensor_dict[k].to(self.device, non_blocking=True) for k in tensor_dict}
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
img, mask, target = self.next_img, self.next_mask, self.next_target
self.preload()
return img, mask, target
def __next__(self):
img, mask, target = self.next()
if img == None:
raise StopIteration
return img, mask, target
def __iter__(self):
return self
def __len__(self):
return self.length
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, epochs: int, max_norm: float = 0):
model.train()
criterion.train()
logger = logging.getLogger("train")
metric_logger = utils.MetricLogger(delimiter=" ")
iter_time = utils.SmoothedValue(fmt='{avg:.3f}')
data_time = utils.SmoothedValue(fmt='{avg:.3f}')
header = 'Epoch [{epoch}][{iter}/{max_iter}]'
max_iter = len(data_loader)
end = time.time()
prefetcher = data_prefetcher(data_loader, device)
img, mask, target = prefetcher.next()
iteration = 0
while img is not None:
target_dict = target.tensor_dict
word_id, word_mask = target_dict['word_id'], target_dict['word_mask']
iteration = iteration + 1
data_time.update(time.time() - end)
outputs = model(img, mask, word_id, word_mask)
loss_dict = criterion(outputs, target_dict)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
iter_time.update(time.time() - end)
end = time.time()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
if iteration % 100 == 0 or iteration == max_iter:
eta_seconds = iter_time.global_avg * (max_iter - iteration + max_iter * (epochs-epoch-1))
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info(
metric_logger.delimiter.join(
[header,
"lr: {lr}",
"eta: {eta}",
"time: {time}",
"data: {data}",
"memory: {memory:.0f}",
"{meters}"
]
).format(
epoch=epoch+1, iter=iteration, max_iter=max_iter,
lr=optimizer.param_groups[0]["lr"],
eta=eta_string,
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / (1024. * 1024),
meters=str(metric_logger)
))
img, mask, target = prefetcher.next()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def train_one_epoch_w_accum(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, epochs: int, max_norm: float = 0):
model.train()
criterion.train()
logger = logging.getLogger("train")
metric_logger = utils.MetricLogger(delimiter=" ")
iter_time = utils.SmoothedValue(fmt='{avg:.3f}')
data_time = utils.SmoothedValue(fmt='{avg:.3f}')
header = 'Epoch [{epoch}][{iter}/{max_iter}]'
max_iter = len(data_loader)
end = time.time()
prefetcher = data_prefetcher(data_loader, device)
img, mask, target = prefetcher.next()
iteration = 0
while img is not None:
target_dict = target.tensor_dict
iteration = iteration + 1
data_time.update(time.time() - end)
B = img.shape[0]
b = B // 2
loss_dicts = list()
weight_dict = criterion.weight_dict
for i in range(2):
b_img = img[i*b:(i+1)*b]
b_mask = mask[i*b:(i+1)*b]
b_target = {k: target_dict[k][i*b:(i+1)*b] for k in target_dict}
b_word_id, b_word_mask = b_target['word_id'], b_target['word_mask']
outputs = model(b_img, b_mask, b_word_id, b_word_mask)
loss_dict = criterion(outputs, b_target)
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) / 2
losses.backward()
loss_dicts.append(loss_dict)
loss_dict_accum_scaled = {k: (loss_dicts[0][k] + loss_dicts[1][k]) * weight_dict[k] / 2
for k in loss_dicts[0].keys() if k in weight_dict}
# reduce losses over all GPUs for logging purposes
loss_dict_reduced_scaled = utils.reduce_dict(loss_dict_accum_scaled)
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced_scaled)
sys.exit(1)
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
iter_time.update(time.time() - end)
end = time.time()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
if iteration % 100 == 0 or iteration == max_iter:
eta_seconds = iter_time.global_avg * (max_iter - iteration + max_iter * (epochs-epoch-1))
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info(
metric_logger.delimiter.join(
[header,
"lr: {lr}",
"eta: {eta}",
"time: {time}",
"data: {data}",
"memory: {memory:.0f}",
"{meters}"
]
).format(
epoch=epoch+1, iter=iteration, max_iter=max_iter,
lr=optimizer.param_groups[0]["lr"],
eta=eta_string,
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / (1024. * 1024),
meters=str(metric_logger)
))
img, mask, target = prefetcher.next()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model, criterion, postprocessor, data_loader, device, save_path=''):
model.eval()
if criterion:
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
iter_time = utils.SmoothedValue(fmt='{avg:.3f}')
data_time = utils.SmoothedValue(fmt='{avg:.3f}')
accum_acc = 0
accum_iou = 0
accum_sample = 0
iou_thrs = torch.as_tensor([0.5 + 0.05 * i for i in range(0,9)], device=device)
end = time.time()
all_pred_ious = []
all_pred_boxes = []
prefetcher = data_prefetcher(data_loader, device)
for iteration, (img, mask, target) in enumerate(tqdm(prefetcher)):
target_dict = target.tensor_dict
word_id, word_mask = target_dict['word_id'], target_dict['word_mask']
gt_bbox = target_dict['orig_bbox']
data_time.update(time.time() - end)
outputs = model(img, mask, word_id, word_mask)
if criterion:
loss_dict = criterion(outputs, target_dict)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_value = sum(loss_dict_reduced_scaled.values()).item()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
pred_boxes = postprocessor(outputs, target_dict)
ious = box_ops.box_pair_iou(gt_bbox, pred_boxes)[0]
sum_iou = ious.sum()
num_acc = (ious[:, None] > iou_thrs[None]).sum(dim=0)
num_sample = torch.as_tensor(img.size(0), device=img.device)
accum_acc += num_acc
accum_iou += sum_iou
accum_sample += num_sample
iter_time.update(time.time() - end)
end = time.time()
all_pred_ious.append(ious.view(-1, 1))
all_pred_boxes.append(pred_boxes)
if save_path:
torch.save({'pred_boxes': torch.cat(all_pred_boxes, dim=0),
'pred_ious': torch.cat(all_pred_ious, dim=0)},
save_path + 'pred_boxes')
# accumulate predictions from all images
if utils.get_world_size() > 1:
dist.all_reduce(accum_acc)
dist.all_reduce(accum_iou)
dist.all_reduce(accum_sample)
acc = accum_acc / accum_sample.float().item()
miou = accum_iou.item() / accum_sample.float().item()
val_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
val_acc = {f'Acc@{t:.2f}': a.item() for t, a in zip(iou_thrs, acc)}
val_acc.update({'Mean_iou': miou})
val_time = {'data_time': data_time.global_avg, 'time': iter_time.global_avg}
return val_stats, val_acc, val_time