-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE_.py
167 lines (138 loc) · 6.02 KB
/
VAE_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
# -------------------------
# データセットの定義
# -------------------------
class ImageDataset(Dataset):
def __init__(self, complete_dir, missing_dir, mask_dir, transform=None, max_samples=None):
valid_extensions = (".png", ".jpg", ".jpeg", ".bmp")
self.complete_images = [os.path.join(complete_dir, f) for f in os.listdir(complete_dir) if f.lower().endswith(valid_extensions)]
self.missing_images = [os.path.join(missing_dir, f) for f in os.listdir(missing_dir) if f.lower().endswith(valid_extensions)]
self.mask_images = [os.path.join(mask_dir, f) for f in os.listdir(mask_dir) if f.lower().endswith(valid_extensions)]
if max_samples is not None:
self.complete_images = self.complete_images[:max_samples]
self.missing_images = self.missing_images[:max_samples]
self.mask_images = self.mask_images[:max_samples]
self.transform = transform
def __len__(self):
return len(self.complete_images)
def __getitem__(self, idx):
complete_img = Image.open(self.complete_images[idx]).convert("RGBA")
missing_img = Image.open(self.missing_images[idx]).convert("RGBA")
mask_img = Image.open(self.mask_images[idx]).convert("L")
if self.transform:
complete_img = self.transform(complete_img)
missing_img = self.transform(missing_img)
mask_img = self.transform(mask_img)
missing_img = torch.cat((missing_img, mask_img), dim=0)
return missing_img, complete_img
# -------------------------
# VAEモデルの定義
# -------------------------
class VAE(nn.Module):
def __init__(self, latent_dim=128):
super(VAE, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(5, 32, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.ReLU(),
)
self.fc_mu = nn.Linear(128 * 8 * 8, latent_dim)
self.fc_logvar = nn.Linear(128 * 8 * 8, latent_dim)
self.fc_decode = nn.Linear(latent_dim, 128 * 8 * 8)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 4, 4, stride=2, padding=1),
nn.Sigmoid(),
)
def encode(self, x):
x = self.encoder(x)
x = x.view(x.size(0), -1)
mu = self.fc_mu(x)
logvar = self.fc_logvar(x)
return mu, logvar
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
z = self.fc_decode(z)
z = z.view(z.size(0), 128, 8, 8)
return self.decoder(z)
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# -------------------------
# 学習ループの定義
# -------------------------
def vae_loss(recon_x, x, mu, logvar):
bce_loss = nn.functional.mse_loss(recon_x, x, reduction='sum')
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return bce_loss + kld_loss
def train(model, dataloader, optimizer, num_epochs=10, save_interval=2):
model.train()
os.makedirs("model_checkpoints", exist_ok=True)
for epoch in range(num_epochs):
total_loss = 0
progress_bar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{num_epochs}", ncols=100, leave=False)
for missing_img, complete_img in progress_bar:
missing_img = missing_img.to(device)
complete_img = complete_img.to(device)
optimizer.zero_grad()
recon_img, mu, logvar = model(missing_img)
loss = vae_loss(recon_img, complete_img, mu, logvar)
loss.backward()
optimizer.step()
total_loss += loss.item()
progress_bar.set_postfix(loss=total_loss / len(dataloader.dataset))
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss / len(dataloader.dataset)}")
if (epoch + 1) % save_interval == 0:
model_save_path = f"model_checkpoints/vae_model_epoch_{epoch+1}.pth"
torch.save(model.state_dict(), model_save_path)
print(f"モデルが保存されました: {model_save_path}")
model_save_path = "vae_model_final.pth"
torch.save(model.state_dict(), model_save_path)
print("最終モデルが保存されました:", model_save_path)
# -------------------------
# 保存済みモデルの読み込みと再開
# -------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
latent_dim = 256
batch_size = 64
learning_rate = 1e-3
transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor()
])
max_samples = 940000
dataset = ImageDataset(
complete_dir="C:/Users/Owner/Desktop/archive/Skins/",
missing_dir="C:/Users/Owner/Desktop/archive/Dest/",
mask_dir="C:/Users/Owner/Desktop/archive/Masks/",
transform=transform,
max_samples=max_samples
)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
model = VAE(latent_dim=latent_dim).to(device)
# 1. 保存済みモデルをロード
model_load_path = "model_checkpoints/vae_model_epoch_8.pth" # 再開したいエポック番号
model.load_state_dict(torch.load(model_load_path, map_location=device))
print(f"モデル {model_load_path} を読み込みました。")
# 2. オプティマイザの初期化
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 3. 学習の再開
remaining_epochs = 50 # 再開後のエポック数
train(model, dataloader, optimizer, num_epochs=remaining_epochs)