-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE.py
188 lines (157 loc) · 6.89 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
from tqdm import tqdm # tqdmをインポート
# -------------------------
# データセットの定義(サンプル数を絞る)
# -------------------------
class ImageDataset(Dataset):
def __init__(self, complete_dir, missing_dir, mask_dir, transform=None, max_samples=None):
valid_extensions = (".png", ".jpg", ".jpeg", ".bmp")
# ディレクトリから画像ファイルのみを収集
self.complete_images = [os.path.join(complete_dir, f) for f in os.listdir(complete_dir) if f.lower().endswith(valid_extensions)]
self.missing_images = [os.path.join(missing_dir, f) for f in os.listdir(missing_dir) if f.lower().endswith(valid_extensions)]
self.mask_images = [os.path.join(mask_dir, f) for f in os.listdir(mask_dir) if f.lower().endswith(valid_extensions)]
if max_samples is not None:
self.complete_images = self.complete_images[:max_samples]
self.missing_images = self.missing_images[:max_samples]
self.mask_images = self.mask_images[:max_samples]
self.transform = transform
def __len__(self):
return len(self.complete_images)
def __getitem__(self, idx):
complete_img = Image.open(self.complete_images[idx]).convert("RGBA")
missing_img = Image.open(self.missing_images[idx]).convert("RGBA")
mask_img = Image.open(self.mask_images[idx]).convert("L") # マスクは1チャネル
if self.transform:
complete_img = self.transform(complete_img)
missing_img = self.transform(missing_img)
mask_img = self.transform(mask_img)
missing_img = torch.cat((missing_img, mask_img), dim=0)
return missing_img, complete_img
# -------------------------
# VAEモデルの定義
# -------------------------
class HighResVAE(nn.Module):
def __init__(self, latent_dim=512):
super(HighResVAE, self).__init__()
# エンコーダ
self.encoder = nn.Sequential(
nn.Conv2d(5, 64, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(256, 512, 4, stride=2, padding=1),
nn.ReLU(),
)
self.fc_mu = nn.Linear(512 * 4 * 4, latent_dim)
self.fc_logvar = nn.Linear(512 * 4 * 4, latent_dim)
self.fc_decode = nn.Linear(latent_dim, 512 * 4 * 4)
# デコーダ
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 4, 4, stride=2, padding=1),
nn.Sigmoid(),
)
# スーパーレゾリューション
self.super_res = nn.Sequential(
nn.Conv2d(4, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 4, kernel_size=3, padding=1),
nn.Sigmoid()
)
def encode(self, x):
x = self.encoder(x)
x = x.view(x.size(0), -1)
mu = self.fc_mu(x)
logvar = self.fc_logvar(x)
return mu, logvar
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
z = self.fc_decode(z)
z = z.view(z.size(0), 512, 4, 4)
x = self.decoder(z)
return x
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
recon_img = self.decode(z)
high_res_img = self.super_res(recon_img) # 高解像度化
return high_res_img, mu, logvar
# -------------------------
# 学習ループの定義
# -------------------------
def vae_loss(recon_x, x, mu, logvar):
bce_loss = nn.functional.mse_loss(recon_x, x, reduction='sum')
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return bce_loss + kld_loss
def train(model, dataloader, optimizer, num_epochs=10, save_interval=2):
model.train()
# 保存ディレクトリの作成
os.makedirs("model_checkpoints", exist_ok=True)
for epoch in range(num_epochs):
total_loss = 0
progress_bar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{num_epochs}", ncols=100, leave=False)
for missing_img, complete_img in progress_bar:
missing_img = missing_img.to(device)
complete_img = complete_img.to(device)
optimizer.zero_grad()
recon_img, mu, logvar = model(missing_img)
loss = vae_loss(recon_img, complete_img, mu, logvar)
loss.backward()
optimizer.step()
total_loss += loss.item()
progress_bar.set_postfix(loss=total_loss / len(dataloader.dataset))
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss / len(dataloader.dataset)}")
if (epoch + 1) % save_interval == 0:
model_save_path = f"model_checkpoints/vae_model_epoch_{epoch+1}.pth"
torch.save(model.state_dict(), model_save_path)
print(f"モデルが保存されました: {model_save_path}")
model_save_path = "vae_model_final.pth"
torch.save(model.state_dict(), model_save_path)
print("最終モデルが保存されました:", model_save_path)
# -------------------------
# パラメータの設定と実行
# -------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
latent_dim = 512
batch_size = 64
num_epochs = 100
learning_rate = 1e-3
transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor()
])
# max_samples = 940000
max_samples = 1000
dataset = ImageDataset(
# complete_dir="/Users/chinq500/Desktop/archive/Skins",
# missing_dir="/Users/chinq500/Desktop/archive/Dest",
# mask_dir="/Users/chinq500/Desktop/archive/Masks",
complete_dir="C:/Users/Owner/Desktop/archive/Skins/",
missing_dir="C:/Users/Owner/Desktop/archive/Dest/",
mask_dir="C:/Users/Owner/Desktop/archive/Masks/",
transform=transform,
max_samples=max_samples
)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
model = HighResVAE(latent_dim=latent_dim).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
train(model, dataloader, optimizer, num_epochs=num_epochs)