forked from brain-research/deep-molecular-massspec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util_test.py
182 lines (146 loc) · 6.48 KB
/
util_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tempfile
from absl.testing import absltest
from absl.testing import parameterized
import util
import numpy as np
import tensorflow as tf
class UtilTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
def tearDown(self):
tf.gfile.DeleteRecursively(self.temp_dir)
def _make_model(self, batch_size, num_batches, variable_initializer_value):
np_inputs = np.arange(batch_size * num_batches)
np_inputs = np.float32(np_inputs)
inputs = tf.data.Dataset.from_tensor_slices(np_inputs)
inputs = inputs.batch(batch_size).make_one_shot_iterator().get_next()
scale = tf.get_variable(
name='scale', dtype=tf.float32, initializer=variable_initializer_value,
trainable=True)
output = inputs * scale
return output
def test_run_graph_and_process_results(self):
batch_size = 3
num_batches = 5
# Make a graph that contains a Variable and save it to checkpoint.
with tf.Graph().as_default():
_ = self._make_model(
batch_size=batch_size, num_batches=num_batches,
variable_initializer_value=2.0)
saver = tf.train.Saver(tf.trainable_variables())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.save(sess, self.temp_dir + '/model-')
# Make another copy of the graph, and process data using this one.
with tf.Graph().as_default():
# We intentionally make this graph have a different value for its Variable
# than the graph above. When we restore from checkpoint, we will grab the
# value from the first graph. This helps test that the Variables are
# being properly restored from checkpoint.
ops_to_fetch = self._make_model(
batch_size=batch_size, num_batches=num_batches,
variable_initializer_value=3.0
)
results = []
def process_fetched_values_fn(np_array):
results.append(np_array)
model_checkpoint_path = self.temp_dir
util.run_graph_and_process_results(ops_to_fetch, model_checkpoint_path,
process_fetched_values_fn)
results = np.concatenate(results, axis=0)
expected_results = np.arange(num_batches * batch_size) * 2.0
self.assertAllEqual(results, expected_results)
@parameterized.parameters((7), (10), (65))
def test_map_predictor(self, sub_batch_size):
input_op = {
'a': tf.random_normal(shape=(50, 5)),
'b': tf.random_normal(shape=(50, 5))
}
def predictor_fn(data):
return data['a'] + data['b']
mapped_prediction = util.map_predictor(
input_op, predictor_fn, sub_batch_size=sub_batch_size)
unmapped_prediction = predictor_fn(input_op)
difference = tf.reduce_mean(
tf.squared_difference(mapped_prediction, unmapped_prediction))
with tf.Session() as sess:
self.assertLess(
sess.run(difference), 1e-6,
'The output of _map_predictor does not match a direct '
'application of predictor_fn.')
def test_value_op_with_initializer(self):
"""Test correctness of library_matching.value_op_with_initializer."""
base_value_op = tf.get_variable('value', initializer=0.)
def make_value_op():
return base_value_op
def make_init_op(value):
# This is a simple assignment that could have been achieved by changing
# the initializer above. However, in other use cases of
# value_op_with_initializer, the contructed value requires
# data-dependent computation that can't be done via an initializer.
return value.assign(tf.ones_like(value))
value_op = util.value_op_with_initializer(make_value_op, make_init_op)
# Check that the value of the Variable generated by make_value_op()
# is the value constructed by make_init_op, not the value given
# the initializer given to the Variable's constructor.
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
self.assertAllEqual(sess.run(base_value_op), 0.0)
self.assertAllEqual(sess.run(value_op), 1.0)
self.assertAllEqual(sess.run(base_value_op), 1.0)
def test_scatter_by_anchor_indices(self):
def _validate(anchor_indices, data, index_shift, expected_output):
with tf.Graph().as_default():
output = util.scatter_by_anchor_indices(anchor_indices, data,
index_shift)
with tf.Session() as sess:
actual_output = sess.run(output)
self.assertAllClose(
np.array(expected_output, dtype=np.float32), actual_output)
data = [[1, 2, 3], [4, 5, 6]]
anchor_indices = [1, 1]
index_shift = 0
expected_output = [[2, 1, 0], [5, 4, 0]]
_validate(anchor_indices, data, index_shift, expected_output)
anchor_indices = [2, 2]
index_shift = 0
expected_output = [[3, 2, 1], [6, 5, 4]]
_validate(anchor_indices, data, index_shift, expected_output)
anchor_indices = [1, 1]
index_shift = 1
expected_output = [[3, 2, 1], [6, 5, 4]]
_validate(anchor_indices, data, index_shift, expected_output)
anchor_indices = [0, 1]
index_shift = 1
expected_output = [[2, 1, 0], [6, 5, 4]]
_validate(anchor_indices, data, index_shift, expected_output)
data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
anchor_indices = [1, 2, 3]
index_shift = 0
expected_output = [[2, 1, 0, 0], [7, 6, 5, 0], [12, 11, 10, 9]]
_validate(anchor_indices, data, index_shift, expected_output)
data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
anchor_indices = [0, 1, 2]
index_shift = 1
expected_output = [[2, 1, 0, 0], [7, 6, 5, 0], [12, 11, 10, 9]]
_validate(anchor_indices, data, index_shift, expected_output)
if __name__ == '__main__':
tf.test.main()