forked from brain-research/deep-molecular-massspec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimilarity.py
166 lines (130 loc) · 6.14 KB
/
similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for similarity computation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import numpy as np
import tensorflow as tf
# When computing cosine similarity, the denominator is constrained to be no
# smaller than this.
EPSILON = 1e-6
class SimilarityProvider(object):
"""Abstract class of helpers for similarity-based library matching."""
__metaclass__ = abc.ABCMeta
def __init__(self, hparams=None):
self.hparams = hparams
@abc.abstractmethod
def preprocess_library(self, library):
"""Perform normalization of [num_library_elements, feature_dim] library."""
@abc.abstractmethod
def undo_library_preprocessing(self, library):
"""Undo the effect of preprocess_library(), up to a scaling constant."""
@abc.abstractmethod
def preprocess_queries(self, queries):
"""Perform normalization of [num_query_elements, feature_dim] queries."""
@abc.abstractmethod
def compute_similarity(self, library, queries):
"""Compute [num_library_elements, num_query_elements] similarities."""
@abc.abstractmethod
def make_training_loss(self, true_tensor, predicted_tensor):
"""Create training loss that is consistent with the similarity."""
class CosineSimilarityProvider(SimilarityProvider):
"""Cosine similarity."""
def _normalize_rows(self, tensor):
return tf.nn.l2_normalize(tensor, axis=1)
def preprocess_library(self, library):
return self._normalize_rows(library)
def undo_library_preprocessing(self, library):
return library
def preprocess_queries(self, queries):
return self._normalize_rows(queries)
def compute_similarity(self, library, queries):
similarities = tf.matmul(library, queries, transpose_b=True)
return tf.transpose(similarities)
def make_training_loss(self, true_tensor, predicted_tensor):
return tf.reduce_mean(
tf.losses.mean_squared_error(true_tensor, predicted_tensor))
class GeneralizedCosineSimilarityProvider(CosineSimilarityProvider):
"""Custom cosine similarity that is popular for massspec matching."""
def _make_weights(self, tensor):
num_bins = tensor.shape[1].value
weights = np.power(np.arange(1, num_bins + 1),
self.hparams.mass_power)[np.newaxis, :]
return weights / np.sum(weights)
def _normalize_rows(self, tensor):
if self.hparams.mass_power != 0:
tensor *= self._make_weights(tensor)
return super(GeneralizedCosineSimilarityProvider,
self)._normalize_rows(tensor)
def undo_library_preprocessing(self, library):
return library / self._make_weights(library)
def compute_similarity(self, library, queries):
similarities = tf.matmul(library, queries, transpose_b=True)
return tf.transpose(similarities)
def make_training_loss(self, true_tensor, predicted_tensor):
if self.hparams.mass_power != 0:
weights = self._make_weights(true_tensor)
weighted_squared_error = weights * tf.square(true_tensor -
predicted_tensor)
return tf.reduce_mean(weighted_squared_error)
else:
return tf.reduce_mean(
tf.losses.mean_squared_error(true_tensor, predicted_tensor))
def max_margin_ranking_loss(predictions, target_indices, library,
similarity_provider, margin):
"""Max-margin ranking loss.
loss = (1/batch_size) * sum_i w_i sum_j max(0,
similarities[i, j]
- similarities[i, ti] + margin),
where similarities = similarity_provider.compute_similarity(library,
predictions)
and ti = target_indices[i]. Here, w_i is a weight placed on each element of
the batch. Without w_i, our loss would be the standard Crammer-Singer
multiclass svm. Instead, we set w_i so that the total constribution to the
parameter gradient from each batch element is equal. Therefore, we set w_i
equal to 1 / (the number of margin violations for element i).
Args:
predictions: [batch_size, prediction_dim] float Tensor
target_indices: [batch_size] int Tensor
library: [num_library_elements, prediction_dim] constant Tensor
similarity_provider: a SimilarityProvider instance
margin: float
Returns:
loss
"""
library = similarity_provider.preprocess_library(library)
predictions = similarity_provider.preprocess_queries(predictions)
similarities = similarity_provider.compute_similarity(library, predictions)
batch_size = tf.shape(predictions)[0]
target_indices = tf.squeeze(target_indices, axis=1)
row_indices = tf.range(0, batch_size)
indices = tf.stack([row_indices, tf.cast(target_indices, tf.int32)], axis=1)
ground_truth_similarities = tf.gather_nd(similarities, indices)
margin_violations = tf.nn.relu(-ground_truth_similarities[..., tf.newaxis] +
similarities + margin)
margin_violators = tf.cast(margin_violations > 0, tf.int32)
margin_violators_per_batch_element = tf.to_float(
tf.reduce_sum(margin_violators, axis=1, keep_dims=True))
margin_violators_per_batch_element = tf.maximum(
margin_violators_per_batch_element, 1.)
margin_violators_per_batch_element = tf.stop_gradient(
margin_violators_per_batch_element)
tf.summary.scalar('num_margin_violations',
tf.reduce_mean(margin_violators_per_batch_element))
weighted_margin_violations = (
margin_violations / margin_violators_per_batch_element)
return tf.reduce_sum(weighted_margin_violations) / tf.maximum(
tf.to_float(batch_size), 1.)