forked from brain-research/deep-molecular-massspec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_sdf_utils.py
706 lines (561 loc) · 25.7 KB
/
parse_sdf_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library of functions to parse SDF files into tf.Examples.
This module contains functions to for parsing SDF files into rdkit.Mol objects,
rdkit.Mol objects to dictionaries, and dictionaries to tf.Examples, which is
written to a tf.record.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from absl import logging
import feature_map_constants as fmap_constants
import feature_utils
import mass_spec_constants as ms_constants
import numpy as np
from rdkit import Chem
import six
import tensorflow as tf
SHUFFLE_BUFFER_SIZE = 200000
def find_inchikey_duplicates(mol_list):
"""Analyze a list of rdkit.Mol and identify InChIKey with more than molecule.
These duplicates usually denote stereoisomers.
Args:
mol_list : List rdkit.Mol objects to analyze
Returns:
dup_dict : dictionary of duplicates, dup_dict[inchi_key] = freq of key
"""
inchi_key_list = [
mol.GetProp(ms_constants.SDF_TAG_INCHIKEY) for mol in mol_list
]
if len(inchi_key_list) == len(set(inchi_key_list)):
return {}
count = collections.Counter(inchi_key_list)
dup_dict = dict((kwarg, count[kwarg]) for kwarg in count if count[kwarg] > 1)
logging.info('Found %s duplicates', str(len(dup_dict)))
return dup_dict
def get_sdf_to_mol(
sdf_fname,
fail_sdf_fname=None,
max_atoms=ms_constants.MAX_ATOMS,
max_mass_peak_loc=ms_constants.MAX_PEAK_LOC,
filter_max_mass_charge_peak_weight_cutoff=ms_constants.MAX_MZ_WEIGHT_RATIO):
"""Parse sdf file into rdkit.Mol objects. Record failing molblocks.
Note: rdkit's Chem.SDMolSupplier only accepts filenames as inputs. As such
this code only supports local filesystem name environments.
Args:
sdf_fname : Path to input sdf file
fail_sdf_fname : Path to write failed molblocks, if set.
max_atoms : Maximum number of atoms to allow in a molecule to be recorded.
Set to None to return all molecules parsed by SDMolSupplier.
max_mass_peak_loc : Largest peak position to allow in returned list.
filter_max_mass_charge_peak_weight_cutoff :
a float. Filters out molecules whose largest mass-to-charge peak
is greater than the molecular weight by this cutoff value.
To turn off this behavior, set this value to None.
Returns:
mols : list of rdkit.Mol objects parsed from sdf
Raises:
ValueError : if first mol block does not contain 'M END' in the mol block
"""
suppl = Chem.SDMolSupplier(sdf_fname)
# Adding a quick test to see if necessary 'M END' line is present in first
# molecule block.
if 'M END' not in suppl.GetItemText(0):
raise ValueError('First molecule in sdf does not contain M END text.')
mols = []
num_failed = 0
fail_sdf_blocks = ''
for idx, mol in enumerate(suppl):
if mol is not None and (mol.GetNumAtoms() <= max_atoms or
max_atoms is None):
mols.append(mol)
else:
num_failed += 1
if fail_sdf_fname is not None:
fail_sdf_blocks += suppl.GetItemText(idx)
# Save failed sdf blocks to disk if pathname specified.
if fail_sdf_fname is not None and fail_sdf_blocks is not None:
with tf.gfile.Open(fail_sdf_fname, 'w') as f:
f.write(fail_sdf_blocks)
if num_failed:
logging.warn('Number of failed molblocks : %s', num_failed)
def _mol_passes_filters(mol):
"""A helper function for testing mols on all filtering conditions."""
if not feature_utils.check_mol_has_non_empty_mass_spec_peak_tag(mol):
return False
filter_list = []
filter_list.append(feature_utils.check_mol_has_non_empty_smiles(mol))
if filter_max_mass_charge_peak_weight_cutoff is not None:
# Parse largest spectral peak location and mass from molecule properties.
charge_weight_ratio = (
feature_utils.get_largest_mass_spec_peak_loc(mol) / float(
mol.GetProp(ms_constants.SDF_TAG_MOLECULE_MASS)))
filter_list.append(
charge_weight_ratio < filter_max_mass_charge_peak_weight_cutoff)
filter_list.append(
feature_utils.get_largest_mass_spec_peak_loc(mol) < max_mass_peak_loc)
return all(filter_list)
mols = [mol for mol in mols if _mol_passes_filters(mol)]
return mols
def filter_mol_list_by_prop(mol_list, prop_key, prop_value, wanted=True):
"""Allows for filtering rdkit.Mol list based on property values.
Args:
mol_list : list of rdkit.Mol objects to filter
prop_key : Name of tag in SDF file to filter on.
prop_value : Value of tag in SDF file to filter on.
wanted : if true, include values specified by prop_value
if false, exclude values specified by prop_value
Returns:
a filtered mol list.
"""
if wanted:
return [
mol for mol in mol_list
if mol.HasProp(prop_key) and prop_value in mol.GetProp(prop_key)
]
else:
return [
mol for mol in mol_list
if not mol.HasProp(prop_key) or prop_value not in mol.GetProp(prop_key)
]
def find_largest_number_of_atoms_atomic_number_and_ms_peak(
mol_list, add_hs_to_molecule=False):
"""Finds the greatest number of molecules and the largest peak in the spectra.
Used to determine the largest number of atoms in a molecule, and the
largest mass/charge ratio found in the spectra.
Args:
mol_list : list of rdkit.Mol objects
add_hs_to_molecule : whether or not to add hydrogens to the molecule.
Returns:
max_atoms : Largest number of atoms found in a molecule in mol_list
max_atom_type: Largest atomic number in all the molecules from the mol_list
max_peak_loc : Greatest mass/charge peak found in samples in sdf_file
Raises:
ValueError: If first rdkit.Mol in mol_list does not have
MASS SPECTRAL PEAKS as one of the properties.
This should already be present as one of the tags in the original
sdf file the rdkit.Mols were parsed from.
"""
if not mol_list[0].HasProp(ms_constants.SDF_TAG_MASS_SPEC_PEAKS):
raise ValueError('first molecule in list does not contain SDF tag'
'\'{}\''.format(ms_constants.SDF_TAG_MASS_SPEC_PEAKS))
# Add hydrogens to atoms:
if add_hs_to_molecule:
mol_list = [Chem.rdmolops.AddHs(mol) for mol in mol_list]
max_atoms = max(mol.GetNumAtoms() for mol in mol_list)
max_atom_type = max(
[at.GetAtomicNum() for mol in mol_list for at in mol.GetAtoms()])
max_peak_loc = max(
feature_utils.get_largest_mass_spec_peak_loc(mol) for mol in mol_list)
return max_atoms, max_atom_type, max_peak_loc
def make_mol_dict(mol,
max_atoms=ms_constants.MAX_ATOMS,
max_mass_spec_peak_loc=ms_constants.MAX_PEAK_LOC,
add_hs_to_molecule=ms_constants.ADD_HS_TO_MOLECULES):
"""Place molecule information from rdkit.Mol.Prop in a dictionary.
Reads information from an rdkit mol with the desired tags for reading into
a dictionary.
Args:
mol : An rdkit.Mol object read from an sdf that contains sdf tags:
fmap_constants.NAME, 'INCHIKEY', 'MASS SPECTRAL PEAKS'
to be converted into dictionary keys. These tags should be stored as
properties by the rdkit.Mol
max_atoms : maximum number of allowed atoms.
max_mass_spec_peak_loc : largest mass/charge ratio to allow in a spectra
add_hs_to_molecule : Whether or not to include hydrogen atoms in the
molecule
Returns:
mol_dict : A dictionary with following molecule info
keys : name, inchi_key, circular_fp_1024, molecule_weight, smiles,
atom_weights, mass_spec_dense
Notes:
- smiles recorded in mol_dict here have been canonicalized, and may not
correspond with the order in the original SDF
- atom_weights vector are length max_atoms
- circular_fp_1024 has 1024 bits, with default radius of 2.
"""
# For canonicalizing molecules
smiles_canon = feature_utils.get_smiles_string(mol)
mol_formula = feature_utils.get_molecular_formula(mol)
mol_canon = Chem.MolFromSmiles(smiles_canon)
if add_hs_to_molecule:
mol_canon = Chem.AddHs(mol_canon)
mass_spec_locs, mass_spec_intensities = feature_utils.parse_peaks(
mol.GetProp(ms_constants.SDF_TAG_MASS_SPEC_PEAKS))
mass_spec_dense_vec = feature_utils.make_dense_mass_spectra(
mass_spec_locs, mass_spec_intensities, max_mass_spec_peak_loc)
atom_wts = feature_utils.get_padded_atom_weights(mol_canon, max_atoms)
atom_ids = feature_utils.get_padded_atom_ids(mol_canon, max_atoms)
adjacency_matrix = feature_utils.get_padded_adjacency_matrix(
mol_canon, max_atoms)
mol_dict = {
fmap_constants.NAME:
mol.GetProp(ms_constants.SDF_TAG_NAME),
fmap_constants.INCHIKEY:
mol.GetProp(ms_constants.SDF_TAG_INCHIKEY),
fmap_constants.MOLECULAR_FORMULA: mol_formula,
fmap_constants.MOLECULE_WEIGHT:
float(mol.GetProp(ms_constants.SDF_TAG_MOLECULE_MASS)),
fmap_constants.SMILES:
smiles_canon,
fmap_constants.ATOM_WEIGHTS:
atom_wts,
fmap_constants.ATOM_IDS:
atom_ids,
fmap_constants.DENSE_MASS_SPEC:
mass_spec_dense_vec,
fmap_constants.ADJACENCY_MATRIX:
adjacency_matrix,
}
# Making fingerprint features:
mol_dict.update(feature_utils.all_circular_fingerprints_to_dict(mol))
return mol_dict
def dict_to_tfexample(mol_dict):
"""Convert dictionary of molecular info to tfExample.
Args:
mol_dict : dictionary containing molecule info.
Returns:
example : tf.example containing mol_dict info.
"""
example = tf.train.Example()
feature_map = example.features.feature
feature_map[fmap_constants.ATOM_WEIGHTS].float_list.value.extend(
mol_dict[fmap_constants.ATOM_WEIGHTS])
feature_map[fmap_constants.ATOM_IDS].int64_list.value.extend(
mol_dict[fmap_constants.ATOM_IDS])
feature_map[fmap_constants.ADJACENCY_MATRIX].int64_list.value.extend(
mol_dict[fmap_constants.ADJACENCY_MATRIX])
feature_map[fmap_constants.MOLECULE_WEIGHT].float_list.value.append(
mol_dict[fmap_constants.MOLECULE_WEIGHT])
feature_map[fmap_constants.DENSE_MASS_SPEC].float_list.value.extend(
mol_dict[fmap_constants.DENSE_MASS_SPEC])
feature_map[fmap_constants.INCHIKEY].bytes_list.value.append(
mol_dict[fmap_constants.INCHIKEY].encode('utf-8'))
feature_map[fmap_constants.MOLECULAR_FORMULA].bytes_list.value.append(
mol_dict[fmap_constants.MOLECULAR_FORMULA].encode('utf-8'))
feature_map[fmap_constants.NAME].bytes_list.value.append(
mol_dict[fmap_constants.NAME].encode('utf-8'))
feature_map[fmap_constants.SMILES].bytes_list.value.append(
mol_dict[fmap_constants.SMILES].encode('utf-8'))
if fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY in mol_dict:
feature_map[
fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY].int64_list.value.append(
mol_dict[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY])
for fp_len in ms_constants.NUM_CIRCULAR_FP_BITS_LIST:
for rad in ms_constants.CIRCULAR_FP_RADII_LIST:
for fp_type in fmap_constants.FP_TYPE_LIST:
fp_key = ms_constants.CircularFingerprintKey(fp_type, fp_len, rad)
feature_map[str(fp_key)].float_list.value.extend(mol_dict[fp_key])
return example
def write_dicts_to_example(mol_list,
record_path_name,
max_atoms,
max_mass_spec_peak_loc,
true_library_array_path_name=None):
"""Helper function for writing tf.record from all examples.
Uses dict_to_tfexample to write the actual tf.example
Args:
mol_list : list of rdkit.Mol objects
record_path_name : file name for storing tf record
max_atoms : max. number of atoms to consider in a molecule.
max_mass_spec_peak_loc : largest mass/charge ratio to allow in a spectra
true_library_array_path_name: path for storing np.array of true spectra
Returns:
- Writes tf.Record of an example for each eligible molecule
(i.e. # atoms < max_atoms)
- Writes np.array (len(mol_list), max_mass_spec_peak_loc) to
true_library_array_path_name if it is defined.
"""
options = tf.python_io.TFRecordOptions(
tf.python_io.TFRecordCompressionType.ZLIB)
# Wrapper function to add index value to dictionary
if true_library_array_path_name:
spectra_matrix = np.zeros((len(mol_list), max_mass_spec_peak_loc))
def make_mol_dict_with_saved_array(idx, mol):
mol_dict = make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)
mol_dict[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY] = idx
spectra_matrix[idx, :] = mol_dict[fmap_constants.DENSE_MASS_SPEC]
return mol_dict
make_mol_dict_fn = make_mol_dict_with_saved_array
else:
def make_mol_dict_without_saved_array(idx, mol):
del idx
return make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)
make_mol_dict_fn = make_mol_dict_without_saved_array
with tf.python_io.TFRecordWriter(record_path_name, options) as writer:
for idx, mol in enumerate(mol_list):
mol_dict = make_mol_dict_fn(idx, mol)
example = dict_to_tfexample(mol_dict)
writer.write(example.SerializeToString())
if true_library_array_path_name:
with tf.gfile.Open(true_library_array_path_name, 'w') as f:
np.save(f, spectra_matrix)
def write_info_file(mol_list, fname):
"""Write metadata for mol_list to fname.info."""
num_elements = len(mol_list)
with tf.gfile.Open(fname + '.info', 'w') as f:
f.write('%d\n' % num_elements)
def parse_info_file(fname):
"""Parse dataset info from fname.info.
The file format is very simple (but may be extended in the future).
It is simply a text file containing a single line with an int describing
the number of examples in the TFRecord file <fname>.
Args:
fname: input data file name
Returns:
a dictionary containing metadata about the data in fname
"""
info_file = fname + '.info'
info_dict = {}
with tf.gfile.Open(info_file, 'r') as f:
first_line = f.readline()
info_dict['num_examples'] = int(first_line)
return info_dict
def preprocess_spectrum(spectrum, hparams):
if hparams.intensity_power != 1.0:
return tf.pow(spectrum, hparams.intensity_power)
else:
return spectrum
def postprocess_spectrum(spectrum, hparams):
if hparams.intensity_power != 1.0:
return tf.pow(spectrum, 1. / hparams.intensity_power)
else:
return spectrum
def make_padded_shapes_for_dataset(dataset):
"""Makes a deep copy of dataset.output_shapes."""
dataset_padded_shapes = {
k: tf.TensorShape(v) for k, v in six.iteritems(dataset.output_shapes)
}
return dataset_padded_shapes
def _parse_example(example_protos, hparams, features_to_load):
"""Parsing map to create features for tf.Dataset.
Args:
example_protos: tf.Example proto read from TF.Records
hparams: tf.HParams object, must contain
max_atoms - Number of atoms in atom_weights array
max_mass_spec_peak_loc - Number of bins in mass spectra
Set to 2000 if unused.
features_to_load: list of string keys of fields to load from the
TFRecords. If None (default), all available fields are loaded.
Returns:
Dict containing functions for parsing features from a TFRecord.
"""
features = {
fmap_constants.MOLECULE_WEIGHT:
tf.FixedLenFeature([1], tf.float32),
fmap_constants.ATOM_WEIGHTS:
tf.FixedLenFeature([hparams.max_atoms], tf.float32),
fmap_constants.ATOM_IDS:
tf.FixedLenFeature([hparams.max_atoms], tf.int64),
fmap_constants.ADJACENCY_MATRIX:
tf.FixedLenFeature([hparams.max_atoms * hparams.max_atoms], tf.int64),
fmap_constants.DENSE_MASS_SPEC:
tf.FixedLenFeature([hparams.max_mass_spec_peak_loc], tf.float32),
fmap_constants.INCHIKEY:
tf.FixedLenFeature([1], tf.string, default_value=''),
fmap_constants.MOLECULAR_FORMULA:
tf.FixedLenFeature([1], tf.string, default_value=''),
fmap_constants.NAME:
tf.FixedLenFeature([1], tf.string, default_value=''),
fmap_constants.SMILES:
tf.FixedLenFeature([1], tf.string, default_value=''),
fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY:
tf.FixedLenFeature([1], tf.int64, default_value=0),
fmap_constants.SMILES_TOKEN_LIST_LENGTH:
tf.FixedLenFeature([1], tf.int64, default_value=0)
}
for fp_len in ms_constants.NUM_CIRCULAR_FP_BITS_LIST:
for rad in ms_constants.CIRCULAR_FP_RADII_LIST:
for fp_type in fmap_constants.FP_TYPE_LIST:
fp_key = ms_constants.CircularFingerprintKey(fp_type, fp_len, rad)
features[str(fp_key)] = tf.FixedLenFeature([fp_key.fp_len], tf.float32)
if features_to_load is not None:
features = {key: features[key] for key in features_to_load}
parsed_features = tf.parse_single_example(example_protos, features=features)
if (features_to_load is None or
fmap_constants.ADJACENCY_MATRIX in features_to_load):
parsed_features[fmap_constants.ADJACENCY_MATRIX] = tf.reshape(
parsed_features[fmap_constants.ADJACENCY_MATRIX],
shape=(hparams.max_atoms, hparams.max_atoms))
if (features_to_load is None or
fmap_constants.DENSE_MASS_SPEC in features_to_load):
parsed_features[fmap_constants.DENSE_MASS_SPEC] = preprocess_spectrum(
parsed_features[fmap_constants.DENSE_MASS_SPEC], hparams)
if (features_to_load is None or fmap_constants.SMILES in features_to_load):
smiles_string = parsed_features[fmap_constants.SMILES]
index_array = tf.py_func(feature_utils.tokenize_smiles,
[smiles_string], [tf.int64])
index_array = tf.reshape(index_array, (-1,))
parsed_features[fmap_constants.SMILES] = index_array
parsed_features[fmap_constants.SMILES_TOKEN_LIST_LENGTH] = tf.shape(
index_array)[0]
return parsed_features
def get_dataset_in_one_batch(dataset, total_data_length):
"""Return all data in tf.Dataset in a single batch."""
# Note that this line may raise some runtime warnings, since in general
# composing .prefetch() and .cache() this way could be dropping data. However,
# in our use case it is assumed that all of the data in the dataset is
# contained in a single batch, so this order of caching and prefetching is
# acceptable.
dataset = dataset.prefetch(1).cache().repeat()
# For downstream usages where we want the entire dataset in one batch we
# also want the batch shape to be statically inferrable. Below, we
# set that. Note that the only reason the set_shape command will fail
# is if the size of the data is not what was provided in
# data_info['num_examples'].
def _set_static_batch_dimension(data):
def _set_static_batch_dimension_for_tensor(tensor):
shape = tensor.shape.as_list()
shape[0] = total_data_length
tensor.set_shape(shape)
return tensor
return tf.contrib.framework.nest.map_structure(
_set_static_batch_dimension_for_tensor, data)
return dataset.map(_set_static_batch_dimension)
def get_dataset_from_record(fnames,
hparams,
mode,
features_to_load=None,
all_data_in_one_batch=False):
"""Parse inputs from a tf.Record file containing molecular mass spec data.
Args:
fnames : list of names of TFRecord files. High level information about the
the files will be read from each <fname>.info file.
hparams: tf.HParams object, must contain
max_atoms - Number of atoms in atom_weights array
max_mass_spec_peak_loc - Number of bins in mass spectra
Set to 2000 if unused.
batch_size - Number of examples to return in a batch
eval_batch_size - Number of examples to return in a batch during eval
mode: Sets mode; if training mode, will shuffle dataset
features_to_load: list of string keys of fields to load from the
TFRecords. If None (default), all available fields are loaded.
all_data_in_one_batch: whether all of the file's data should be placed
in a single batch that repeats indefinitely.
Returns:
A tf.Dataset
Raises:
ValueError: if <fname>.info does not exist for any files in fnames.
"""
if mode == tf.estimator.ModeKeys.TRAIN and len(fnames) > 1:
# Throwing this warning because we do not interleave files.
tf.logging.warn('Please ensure that shuffle buffer is large enough to'
' effectively shuffle across all dataset input files.')
if not fnames:
raise ValueError('Input list of filenames is empty.')
dataset = tf.data.TFRecordDataset(fnames, compression_type='ZLIB')
total_data_length = sum(
[parse_info_file(fname)['num_examples'] for fname in fnames])
if mode == tf.estimator.ModeKeys.TRAIN and not all_data_in_one_batch:
dataset = dataset.shuffle(SHUFFLE_BUFFER_SIZE)
# It is important to parse before we batch. Otherwise, the batched data
# will have all of the fields in the input data, not just those in
# features_to_load. This becomes very expensive if we are in
# all_data_in_one_batch mode.
dataset = dataset.map(
lambda proto: _parse_example(proto, hparams, features_to_load))
if all_data_in_one_batch:
batch_size = total_data_length
elif mode == tf.estimator.ModeKeys.TRAIN:
batch_size = hparams.batch_size
else:
batch_size = hparams.eval_batch_size
if features_to_load is None or fmap_constants.SMILES in features_to_load:
padded_shapes = make_padded_shapes_for_dataset(dataset)
padded_shapes[fmap_constants.SMILES] = ms_constants.MAX_TOKEN_LIST_LENGTH
dataset = dataset.padded_batch(batch_size, padded_shapes=padded_shapes)
assert dataset.output_shapes[fmap_constants.SMILES].ndims == 2
else:
dataset = dataset.batch(batch_size)
if all_data_in_one_batch:
dataset = get_dataset_in_one_batch(dataset, total_data_length)
return dataset
def make_features_and_labels(dataset, feature_names, label_names, mode):
"""Get features and labels given a TFDataset.
Args:
dataset : TFDataset to parse
feature_names : list of names of features, should be keys in dataset
label_names : list of names of labels, should be keys in dataset
mode : Sets either training or evaluation mode.
Returns:
features : Dictionary containing the subset of the input data corresponding
to the feature_names and label_names. Note that we put *all* data in
features, including prediction targets.
labels : Dictionary containing a subset of the input data corresponding to
label_names.
Raises:
ValueError : If any elements of feature_names or label_names are not keys
in dataset.
"""
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.repeat()
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
if fmap_constants.SMILES in feature_names:
feature_names.append(fmap_constants.SMILES_TOKEN_LIST_LENGTH)
all_prop_names = set(feature_names + label_names)
missing_props = tuple(p for p in all_prop_names if p not in next_element)
if missing_props:
raise ValueError('{} not found in TFRecord keys.'.format(missing_props))
features = {n: next_element[n] for n in all_prop_names}
labels = {n: next_element[n] for n in label_names}
return features, labels
def load_training_spectra_array(spectra_array_path_name):
"""Get np.array stored in fpath.
Assumes that the np.array is saved as mainlib_train_from_mainlib.npy, and
is the np.array for the training data.
Args:
spectra_array_path_name: pathname to target np.array
Returns:
np.array with shape (len(training_data), ms_constants.max_peak_loc)
"""
with tf.gfile.Open(spectra_array_path_name, 'rb') as f:
spectra_array = np.load(f, encoding='bytes')
return spectra_array
def validate_spectra_array_contents(record_path_name, hparams,
spectra_array_path_name):
"""Checks that np.array containing spectra matches contents of record.
Args:
record_path_name: pathname to tf.Record file matching np.array
hparams: See get_dataset_from_record
spectra_array_path_name : pathname to spectra np.array.
Raises:
ValueError: if values in np.array stored at spectra_array_path_name
does not match the spectra values in the TFRecord stored in the
record_path_name.
"""
dataset = get_dataset_from_record(
[record_path_name],
hparams,
mode=tf.estimator.ModeKeys.EVAL,
all_data_in_one_batch=True)
feature_names = [fmap_constants.DENSE_MASS_SPEC]
label_names = [fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY]
features, labels = make_features_and_labels(
dataset, feature_names, label_names, mode=tf.estimator.ModeKeys.EVAL)
with tf.Session() as sess:
feature_values, label_values = sess.run([features, labels])
spectra_array = load_training_spectra_array(spectra_array_path_name)
for i in range(np.shape(spectra_array)[0]):
test_idx = label_values[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY][i]
spectra_from_dataset = feature_values[fmap_constants.DENSE_MASS_SPEC][
test_idx, :]
spectra_from_array = spectra_array[test_idx, :]
if not all(spectra_from_dataset.flatten() == spectra_from_array.flatten()):
raise ValueError('np.array of spectra stored at {} does not match spectra'
' values in tf.Record {}'.format(spectra_array_path_name,
record_path_name))
return