forked from brain-research/deep-molecular-massspec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
molecule_predictors.py
506 lines (412 loc) · 19.2 KB
/
molecule_predictors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defining a library of prediction classes for predicting mass spec data.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import functools
from os import path
import feature_map_constants as fmap_constants
import library_matching
import mass_spec_constants as ms_constants
import parse_sdf_utils
import plot_spectra_utils
import similarity as similarity_lib
import util
import numpy as np
import tensorflow as tf
MODEL_REGISTRY = {}
def register_model(model_type):
"""Registers a model by name."""
def _decorator(model_cls):
if model_type in MODEL_REGISTRY:
raise ValueError('model type %s already registered' % model_type)
MODEL_REGISTRY[model_type] = model_cls
model_cls.model_type = type
return model_cls
return _decorator
class MassSpectraPrediction(object):
"""Class containing prediction and loss functions to predict mass spectra.
"""
__metaclass__ = abc.ABCMeta
# Will get overridden by @register_model.
model_type = None
@abc.abstractmethod
def _make_learned_features(self, feature_dict, hparams, mode):
"""Make learned features given raw features."""
@abc.abstractmethod
def _set_model_specific_hparams(self, hparams):
"""Add additional model-specific fields to hparams."""
@abc.abstractmethod
def _get_model_specific_hparam_for_tuning(self):
"""Get list of model-specific hparams to tune."""
@abc.abstractmethod
def _get_model_specific_feature_names(self, hparams):
"""Feature keys to load from input data that are specific to the model."""
def get_hparams_for_tuning(self, hparams):
"""Get list of names of hparams to tune."""
hparams_to_tune = ['learning_rate']
if hparams.loss == 'max_margin':
hparams_to_tune.append('ranking_loss_margin')
if hparams.bidirectional_prediction:
hparams_to_tune.append('gate_bidirectional_predictions')
return hparams_to_tune + self._get_model_specific_hparam_for_tuning()
def fingerprints_to_use(self, hparams):
if hparams.use_counting_fp:
key = fmap_constants.COUNTING_CIRCULAR_FP_BASENAME
else:
key = fmap_constants.CIRCULAR_FP_BASENAME
return str(
ms_constants.CircularFingerprintKey(key, hparams.fp_length,
hparams.radius))
def features_to_load(self, hparams):
"""Get names of features to load."""
feature_names = [
library_matching.FP_NAME_FOR_JACCARD_SIMILARITY,
fmap_constants.MOLECULE_WEIGHT, fmap_constants.DENSE_MASS_SPEC,
fmap_constants.INCHIKEY
]
if hparams.loss == 'max_margin':
feature_names.append(fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY)
# if hparams.reverse_prediction or hparams.bidirectional_prediction:
feature_names.append(fmap_constants.MOLECULE_WEIGHT)
return list(
set(feature_names + self._get_model_specific_feature_names(hparams)))
def get_default_hparams(self):
"""Construct default hparams values."""
hparams = tf.contrib.training.HParams(
init_weights='default',
init_bias='default',
label_names=[fmap_constants.INCHIKEY],
max_mass_spec_peak_loc=ms_constants.MAX_PEAK_LOC,
max_atoms=ms_constants.MAX_ATOMS,
max_atom_type=ms_constants.MAX_ATOM_ID,
include_atom_mass=True,
normalize_predictions=False,
make_spectra_plots=False,
save_spectra_plots_to_file=False,
do_library_matching=True,
loss='generalized_mse',
# When computing cosine similarity and generalized_mse, scale the
# contribution of each spectrum coordinate i by i^mass_power.
mass_power=1.,
# Transform all input data, for both model training and library matching
# evaluation by raising each peak height to this power.
intensity_power=0.5,
learning_rate=1e-3,
learning_rate_decay_method='sqrt',
learning_rate_decay_start=0,
learning_rate_decay_scale=1000.,
min_learning_rate_multiplier=0.05,
gradient_clip=1.0,
batch_size=100,
eval_batch_size=500,
num_inchikeys_for_plotting=5,
ranking_loss_margin=0.05, # Only used when loss == 'max_margin'
resnet_bottleneck_factor=0.5,
reverse_prediction=True,
max_prediction_above_molecule_mass=5,
bidirectional_prediction=True,
gate_bidirectional_predictions=False,
filter_library_matches_by_mass=False,
library_matching_mass_tolerance=5,
)
# Subclasses add architecture-specific hparams here.
self._set_model_specific_hparams(hparams)
return hparams
def _make_linear_prediction(self, learned_features, hparams):
"""A single linear layer to make the final spectra prediction."""
return tf.layers.dense(
inputs=learned_features,
units=hparams.max_mass_spec_peak_loc,
activation=None)
def make_prediction_ops(self, feature_dict, hparams, mode, reuse=False):
"""Make prediction of molecular weight based on features.
First, this method postprocesses the raw features predicted using
_make_learned_features into a spectrum prediction of shape
(, hparams.max_mass_spec_peak_loc). Then, performs additional
postprocessing operations, such as mass_masking and relu/softmax.
Args:
feature_dict: Dictionary containing features parsed from TFDataset
hparams: tf.contrib.training.HParams object. Must contain :
max_atoms, batch_size, epochs, model_type,
init_weight_ones, init_bias_zeros, max_mass_spec_peak_loc
mode: whether in training or evaluation.
reuse: whether Variables created inside this function should be reused
from earlier calls to make_prediction.
Returns:
prediction: prediction of spectrum, of shape
(batch_size, hparams.max_mass_spec_peak_loc)
prediction_for_loss: prediction value used for downstream computation of
the loss. The shape is the same as prediction. These may differ, for
example, for the cross entropy loss the prediction is a probability
vector whereas the prediction_for_loss is the corresponding logits.
"""
with tf.variable_scope('spectrum_predictor', reuse=reuse):
learned_features = self._make_learned_features(feature_dict, hparams,
mode)
if hparams.bidirectional_prediction:
forward_prediction = self._make_linear_prediction(
learned_features, hparams)
forward_prediction = self._mask_prediction_by_mass(
forward_prediction, feature_dict, hparams)
backward_prediction = self._make_linear_prediction(
learned_features, hparams)
backward_prediction = self._reverse_prediction(backward_prediction,
feature_dict, hparams)
if hparams.gate_bidirectional_predictions:
gate = tf.nn.sigmoid(
self._make_linear_prediction(learned_features, hparams))
raw_prediction = (
gate * forward_prediction + (1. - gate) * backward_prediction)
else:
raw_prediction = (forward_prediction + backward_prediction)
else:
raw_prediction = self._make_linear_prediction(learned_features, hparams)
if hparams.reverse_prediction:
raw_prediction = self._reverse_prediction(raw_prediction,
feature_dict, hparams)
else:
raw_prediction = self._mask_prediction_by_mass(
raw_prediction, feature_dict, hparams)
if hparams.loss == 'cross_entropy':
final_prediction = tf.nn.softmax(raw_prediction)
prediction_for_loss = raw_prediction
else:
final_prediction = tf.nn.relu(raw_prediction)
prediction_for_loss = final_prediction
return final_prediction, prediction_for_loss
def _make_prediction(self, feature_dict, hparams, mode, reuse=False):
return self.make_prediction_ops(feature_dict, hparams, mode, reuse)[0]
def make_loss(self, pred_val, feature_dict, hparams):
"""Make training loss function."""
true_spectra = feature_dict[fmap_constants.DENSE_MASS_SPEC]
if hparams.loss == 'generalized_mse':
return similarity_lib.GeneralizedCosineSimilarityProvider(
hparams).make_training_loss(true_spectra, pred_val)
elif hparams.loss == 'cross_entropy':
normalized_true_spectra = (
true_spectra / tf.maximum(
tf.reduce_sum(true_spectra, axis=1, keep_dims=True), 0.00001))
return tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
labels=normalized_true_spectra, logits=pred_val))
elif hparams.loss == 'max_margin':
target_indices = feature_dict[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY]
library = feature_dict['SPECTRUM_PREDICTION_LIBRARY']
similarity_provider = similarity_lib.GeneralizedCosineSimilarityProvider(
hparams)
return similarity_lib.max_margin_ranking_loss(
pred_val, target_indices, library, similarity_provider,
hparams.ranking_loss_margin)
else:
raise ValueError('loss type %s not supported' % hparams.loss)
def _mask_prediction_by_mass(self, raw_prediction, feature_dict, hparams):
"""Zero out predictions to the right of the maximum possible mass."""
total_mass = feature_dict[fmap_constants.MOLECULE_WEIGHT][..., 0]
total_mass = tf.cast(tf.round(total_mass), dtype=tf.int32)
# We mask out things that are to the right of total mass
indices = np.arange(raw_prediction.shape[-1].value)[np.newaxis, ...]
right_of_total_mass = indices > (
total_mass[..., tf.newaxis] +
hparams.max_prediction_above_molecule_mass)
return tf.where(right_of_total_mass, tf.zeros_like(raw_prediction),
raw_prediction)
def _reverse_prediction(self, raw_prediction, feature_dict, hparams):
total_mass = feature_dict[fmap_constants.MOLECULE_WEIGHT][..., 0]
total_mass = tf.cast(tf.round(total_mass), dtype=tf.int32)
return util.scatter_by_anchor_indices(
total_mass, raw_prediction, hparams.max_prediction_above_molecule_mass)
def make_evaluation_metrics(self, feature_dict, hparams, dataset_config_file,
output_dir):
"""Make a dict of Estimator-compatible evaluation metrics."""
make_prediction = functools.partial(
self._make_prediction,
hparams=hparams,
mode=tf.estimator.ModeKeys.EVAL,
reuse=tf.AUTO_REUSE)
if hparams.do_library_matching:
# The library matching is generally very memory-intensive, so we
# place all of its computation on the CPU.
with tf.device('/CPU:0'):
prediction_log_dir = path.join(output_dir, 'predictions')
tf.gfile.MakeDirs(prediction_log_dir)
mass_tolerance = (
hparams.library_matching_mass_tolerance
if hparams.filter_library_matches_by_mass else None)
(metrics, library_match_spectra,
library_match_inchikeys) = library_matching.library_match_accuracy(
feature_dict[fmap_constants.LIBRARY_MATCHING],
make_prediction,
hparams.eval_batch_size,
similarity_provider=similarity_lib.
GeneralizedCosineSimilarityProvider(hparams),
mass_tolerance=mass_tolerance,
log_dir=prediction_log_dir)
else:
metrics = {}
if hparams.make_spectra_plots:
data_for_spectra_plots = feature_dict[fmap_constants.SPECTRUM_PREDICTION]
pred_val = self._make_prediction(
data_for_spectra_plots,
hparams,
tf.estimator.ModeKeys.EVAL,
reuse=True)
inchikey_list_for_plotting = plot_spectra_utils.inchikeys_for_plotting(
dataset_config_file, hparams.num_inchikeys_for_plotting,
hparams.eval_batch_size)
# Undo the effect of any preprocessing done to the input spectra.
inchikey_list = data_for_spectra_plots[fmap_constants.INCHIKEY]
true_spectra = data_for_spectra_plots[fmap_constants.DENSE_MASS_SPEC]
pred_val = parse_sdf_utils.postprocess_spectrum(pred_val, hparams)
true_spectra = parse_sdf_utils.postprocess_spectrum(true_spectra, hparams)
if hparams.do_library_matching:
library_match_spectra = parse_sdf_utils.postprocess_spectrum(
library_match_spectra, hparams)
for inchikey in inchikey_list_for_plotting:
inchikey = inchikey.strip()
if hparams.save_spectra_plots_to_file:
spectra_plot_dir = output_dir
else:
spectra_plot_dir = ''
predict_spectra_keyname = plot_spectra_utils.name_metric(
plot_spectra_utils.PlotModeKeys.PREDICTED_SPECTRUM, inchikey)
metrics[predict_spectra_keyname] = (
plot_spectra_utils.spectra_plot_summary_op(
inchikey_list,
true_spectra,
pred_val,
inchikey,
plot_mode_key=plot_spectra_utils.PlotModeKeys.
PREDICTED_SPECTRUM,
image_directory=spectra_plot_dir))
if hparams.do_library_matching:
lib_match_keyname = plot_spectra_utils.name_metric(
plot_spectra_utils.PlotModeKeys.LIBRARY_MATCHED_SPECTRUM,
inchikey)
metrics[lib_match_keyname] = (
plot_spectra_utils.spectra_plot_summary_op(
inchikey_list,
true_spectra,
library_match_spectra,
inchikey,
plot_mode_key=plot_spectra_utils.PlotModeKeys.
LIBRARY_MATCHED_SPECTRUM,
library_match_inchikeys=library_match_inchikeys,
image_directory=spectra_plot_dir))
return metrics
@register_model('mlp')
class MLPSpectraPrediction(MassSpectraPrediction):
"""Prediction with a multi-layer perceptron."""
def _set_model_specific_hparams(self, hparams):
hparams.add_hparam('num_hidden_units', 2000)
hparams.add_hparam('hidden_layer_activation', 'relu')
hparams.add_hparam('dropout_rate', 0.25)
hparams.add_hparam('num_hidden_layers', 1)
hparams.add_hparam('use_counting_fp', True)
hparams.add_hparam('fp_length', 4096)
hparams.add_hparam('radius', 2)
def _get_model_specific_feature_names(self, hparams):
return [self.fingerprints_to_use(hparams)]
def _get_model_specific_hparam_for_tuning(self):
return ['num_hidden_units', 'dropout_rate', 'num_hidden_layers']
def _batch_norm(self, features, is_training):
return tf.layers.batch_normalization(features, training=is_training)
def _residual_block(self, features, hparams, activation_fn, is_training):
"""Construct a single block for a residual network."""
features = self._batch_norm(features, is_training)
features = activation_fn(features)
features = tf.layers.dropout(
inputs=features, rate=hparams.dropout_rate, training=is_training)
features = tf.layers.dense(
features, (hparams.resnet_bottleneck_factor * hparams.num_hidden_units))
features = self._batch_norm(features, is_training=is_training)
features = activation_fn(features)
return tf.layers.dense(features, hparams.num_hidden_units)
def _make_learned_features(self, feature_dict, hparams, mode):
is_training = mode == tf.estimator.ModeKeys.TRAIN
activation_fn = getattr(tf.nn, hparams.hidden_layer_activation)
feature_to_use = self.fingerprints_to_use(hparams)
layer_output = feature_dict[feature_to_use]
if hparams.num_hidden_layers > 0:
layer_output = tf.layers.dense(
inputs=layer_output,
units=hparams.num_hidden_units,
activation=activation_fn)
for _ in range(hparams.num_hidden_layers):
layer_output += self._residual_block(layer_output, hparams, activation_fn,
is_training)
layer_output = self._batch_norm(layer_output, is_training)
return activation_fn(layer_output)
@register_model('linear')
class LinearSpectraPrediction(MLPSpectraPrediction):
def _set_model_specific_hparams(self, hparams):
super(LinearSpectraPrediction, self)._set_model_specific_hparams(hparams)
hparams.set_hparam('num_hidden_layers', 0)
def _get_model_specific_hparam_for_tuning(self):
return ['dropout_rate']
@register_model('smiles_rnn')
class SmilesRNNSpectraPrediction(MassSpectraPrediction):
"""RNN applied to SMILES representation."""
def _set_model_specific_hparams(self, hparams):
hparams.add_hparam('num_rnn_hidden_units', 500)
hparams.add_hparam('embedding_dim', 10)
hparams.add_hparam('average_rnn_outputs', True)
def _get_model_specific_feature_names(self, hparams):
return [fmap_constants.SMILES]
def _get_model_specific_hparam_for_tuning(self):
return ['num_rnn_hidden_units', 'embedding_dim', 'average_rnn_outputs']
def _make_learned_features(self, feature_dict, hparams, mode):
sequence_length = feature_dict[fmap_constants.SMILES_TOKEN_LIST_LENGTH]
embedding_table = tf.get_variable(
'atom_embeddings',
[len(ms_constants.SMILES_TOKEN_NAMES), hparams.embedding_dim])
processed_features = tf.nn.embedding_lookup(
embedding_table, feature_dict[fmap_constants.SMILES])
fw_rnn_cell = tf.nn.rnn_cell.LSTMCell(hparams.num_rnn_hidden_units)
bw_rnn_cell = tf.nn.rnn_cell.LSTMCell(hparams.num_rnn_hidden_units)
rnn_outputs, _ = tf.nn.bidirectional_dynamic_rnn(
fw_rnn_cell,
bw_rnn_cell,
processed_features,
sequence_length=sequence_length,
dtype=tf.float32)
# Concatenate forward and backward outputs
rnn_outputs = tf.concat(rnn_outputs, 2)
if hparams.average_rnn_outputs:
rnn_outputs = (
tf.reduce_sum(rnn_outputs, axis=1) / tf.cast(
sequence_length[..., tf.newaxis], tf.float32))
else:
rnn_outputs = rnn_outputs[:, -1, ...] # Take the final output.
return rnn_outputs
@register_model('baseline')
class BaselinePrediction(MLPSpectraPrediction):
"""Tune hparams for tuning to mass_power and intensity_power for baseline."""
def get_hparams_for_tuning(self, hparams):
del hparams
return ['mass_power', 'intensity_power']
def _set_model_specific_hparams(self, hparams):
super(BaselinePrediction, self)._set_model_specific_hparams(hparams)
hparams.set_hparam('use_counting_fp', False)
hparams.set_hparam('num_hidden_layers', 0)
hparams.set_hparam('bidirectional_prediction', False)
hparams.set_hparam('reverse_prediction', False)
def get_prediction_helper(model_type):
"""Provide the correct prediction helper, based on model type."""
if model_type not in MODEL_REGISTRY:
raise ValueError('Unrecognized model type: %s' % model_type)
return MODEL_REGISTRY[model_type]()