forked from brain-research/deep-molecular-massspec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_spectra_prediction.py
62 lines (47 loc) · 2.1 KB
/
make_spectra_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
r"""Makes spectra prediction using model and writes predictions to SDF.
Make predictions using our trained model. Example of how to run:
# Save weights to a models directory
$ MODEL_WEIGHTS_DIR=/tmp/neims_model
$ cd $MODEL_WEIGHTS_DIR
$ wget https://storage.googleapis.com/deep-molecular-massspec/massspec_weights/massspec_weights.zip # pylint: disable=line-too-long
$ unzip massspec_weights.zip
$ python make_spectra_prediction.py \
--input_file=examples/pentachlorobenzene.sdf \
--output_file=/tmp/neims_model/annotated.sdf \
--weights_dir=$MODEL_WEIGHTS_DIR/massspec_weights
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import spectra_predictor
FLAGS = flags.FLAGS
flags.DEFINE_string('input_file', 'input.sdf',
'Name of input file for predictions.')
flags.DEFINE_string('weights_dir',
'/usr/local/massspec_weights',
'Name of directory that stores model weights.')
flags.DEFINE_string('output_file', 'annotated.sdf',
'Name of output file for predictions.')
def main(_):
logging.info('Loading weights from %s', FLAGS.weights_dir)
predictor = spectra_predictor.NeimsSpectraPredictor(
model_checkpoint_dir=FLAGS.weights_dir)
logging.info('Loading molecules from %s', FLAGS.input_file)
mols_from_file = spectra_predictor.get_mol_list_from_sdf(
FLAGS.input_file)
fingerprints, mol_weights = predictor.get_inputs_for_model_from_mol_list(
mols_from_file)
logging.info('Making predictions ...')
spectra_predictions = predictor.make_spectra_prediction(
fingerprints, mol_weights)
logging.info('Updating molecules in place with predictions.')
spectra_predictor.update_mols_with_spectra(mols_from_file,
spectra_predictions)
logging.info('Writing predictions to %s', FLAGS.output_file)
with open(FLAGS.output_file, 'w') as f:
spectra_predictor.write_rdkit_mols_to_sdf(mols_from_file, f)
if __name__ == '__main__':
app.run(main)