forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
maximum_subarray.py
30 lines (27 loc) · 936 Bytes
/
maximum_subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Author : Yagao0o
# Date : 2015-02-11
# Source : https://oj.leetcode.com/problems/maximum-subarray/
# Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
#
# For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
# the contiguous subarray [4,-1,2,1] has the largest sum = 6.
#
# click to show more practice.
#
# More practice:
# If you have figured out the O(n) solution,
# try coding another solution using the divide and conquer approach, which is more subtle.
# YagaoNote:
# O(n) - DP ,
# O(nlogn) - Divide and conquer
class Solution:
# @param A, a list of integers
# @return an integer
def maxSubArray(self, A):
max = A[0]
max_of_last = A[0]
for i in range(1, len(A)):
max_of_last = A[i] if max_of_last <= 0 else A[i] + max_of_last
if max < max_of_last:
max = max_of_last
return max