-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfun_SMILE.m
58 lines (45 loc) · 1.52 KB
/
fun_SMILE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
function [train_acc,test_acc,train_err,test_err,obj_fun] = fun_SMILE(name1,name2,pars)
load(name1);
S = pars.S;
lambda = pars.lambda;
N_a = pars.N_a;
N_b = pars.N_b;
alpha = pars.alpha;
max_iter = pars.N_iter;
%L2-normalization and label conversion
X = S*data_train_norm';
Y = (label_train-0.5)*2;
X_test = S*data_test_norm';
Y_test = (label_test-0.5)*2;
%initialize representative instances
D = size(X,1);
X_a = X(:,(Y==1));
X_b = X(:,(Y==-1));
L = eye(D);
rng(1)
[~,R_a] = kmeans(X_a',N_a); R_a = R_a';
[~,R_b] = kmeans(X_b',N_b); R_b = R_b';
obj_fun = zeros(max_iter,1);
train_err = zeros(max_iter,1);
test_err = zeros(max_iter,1);
for iter = 1:max_iter
%update prototypes
[G_ra,G_rb] = gradient_r(X,Y,L,R_a,R_b);
R_a = (1-alpha*lambda)*R_a-alpha*G_ra;
R_b = (1-alpha*lambda)*R_b-alpha*G_rb;
%update projection matrix
G_L = gradient_l(X,Y,L,R_a,R_b);
L = (1-alpha*lambda)*L-alpha*G_L;
%calculate objective function, training and test error
H = classifier_ie(X,L,R_a,R_b);
obj_fun(iter) = mean(loss_ie(H,Y)) + lambda/2*...
(sum(vecnorm(R_a,2,1)+vecnorm(R_b,2,1))+norm(L,'fro'));
train_err(iter) = mean(H.*Y<=0);
H_test = classifier_ie(X_test,L,R_a,R_b);
test_err(iter) = mean(H_test.*Y_test<=0);
end
[train_acc,idx] = min(train_err);
train_acc = 1-train_acc;
test_acc = 1-test_err(idx,1);
save(name2,'train_acc','test_acc','train_err','test_err','obj_fun');
end