$ conda create -n nuscenes
$ conda activate nuscenes
$ conda install python=3.9
$ pip install nuscenes-devkit==1.1.9
$ pip install pyquaternion==0.9.9
$ pip install pandas==1.3.4
Download Full dataset (v1.0)
- Trainval
- Metadata
and Map expansion pack (v1.3)
from https://www.nuscenes.org/nuscenes#download
Uncompress v1.0-trainval_meta.tgz
into <raw_dataset_folder>
folder.
Uncompress nuScenes-map-expansion-v1.3.zip
into <raw_dataset_folder>/map
folder.
Run command
$ python process_nuscenes.py <raw_dataset_folder> <target_dataset_folder>
It will put training data into the folder of <target_dataset_folder>/train
, evaluation data into <target_dataset_folder>/val
, and map data into <target_dataset_folder>/map
.
$ conda create -n lyft
$ conda activate lyft
$ conda install python=3.9
$ pip install l5kit==1.5.0
$ pip install opencv-python
Download dataset
$ wget https://lyft-l5-datasets-public.s3-us-west-2.amazonaws.com/prediction/v1.1/train.tar
$ wget https://lyft-l5-datasets-public.s3-us-west-2.amazonaws.com/prediction/v1.1/validate.tar
$ wget https://lyft-l5-datasets-public.s3-us-west-2.amazonaws.com/prediction/v1.1/semantic_map.tar
Uncompress downloaded data to <raw_dataset_folder>
$ tar -xf train.tar -C <raw_dataset_folder>/train
$ tar -xf validate.tar -C <raw_dataset_folder>/validate
$ tar -xf semantic_map.tar -C <raw_dataset_folder>/semantic_map
Run command
$ python process_lyft.py <raw_dataset_folder> <target_dataset_folder> --frameskip 2 --split 4
It will split the data into 4 parts, and put training data into the folder of <target_dataset_folder>/train
, evaluation data into <target_dataset_folder>/validate
and map data into <target_dataset_folder>/map
.
$ conda create -n waymo
$ conda activate waymo
$ conda install python=3.9
$ conda install -c conda-forge openexr-python
$ conda install -c conda-forge gsutil
$ pip install waymo-open-dataset-tf-2-6-0
$ pip install opencv-python
Download data to <raw_dataset_folder>
$ gsutil -m cp -r \
"gs://waymo_open_dataset_motion_v_1_1_0/uncompressed/scenario/training" \
"gs://waymo_open_dataset_motion_v_1_1_0/uncompressed/scenario/validation" \
<raw_dataset_folder>
Run command
$ python process_waymo.py <raw_dataset_folder> <target_dataset_folder> --frameskip 2 --split 8
It will split the data into 8 parts, and put training data into the folder of <target_dataset_folder>/training
, evaluation data into <target_dataset_folder>/validation
and map data into <target_dataset_folder>/map
.