Skip to content

Latest commit

 

History

History

scripts

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Data Preprocessing

nuScenes

Create Environment

$ conda create -n nuscenes
$ conda activate nuscenes
$ conda install python=3.9
$ pip install nuscenes-devkit==1.1.9
$ pip install pyquaternion==0.9.9
$ pip install pandas==1.3.4

Prepare data

Download Full dataset (v1.0) - Trainval - Metadata and Map expansion pack (v1.3) from https://www.nuscenes.org/nuscenes#download

Uncompress v1.0-trainval_meta.tgz into <raw_dataset_folder> folder.

Uncompress nuScenes-map-expansion-v1.3.zip into <raw_dataset_folder>/map folder.

Preprocessing

Run command

$ python process_nuscenes.py <raw_dataset_folder> <target_dataset_folder>

It will put training data into the folder of <target_dataset_folder>/train, evaluation data into <target_dataset_folder>/val, and map data into <target_dataset_folder>/map.

Lyft

Create Environment

$ conda create -n lyft
$ conda activate lyft
$ conda install python=3.9
$ pip install l5kit==1.5.0
$ pip install opencv-python

Prepare data

Download dataset

$ wget https://lyft-l5-datasets-public.s3-us-west-2.amazonaws.com/prediction/v1.1/train.tar
$ wget https://lyft-l5-datasets-public.s3-us-west-2.amazonaws.com/prediction/v1.1/validate.tar
$ wget https://lyft-l5-datasets-public.s3-us-west-2.amazonaws.com/prediction/v1.1/semantic_map.tar

Uncompress downloaded data to <raw_dataset_folder>

$ tar -xf train.tar -C <raw_dataset_folder>/train
$ tar -xf validate.tar -C <raw_dataset_folder>/validate
$ tar -xf semantic_map.tar -C <raw_dataset_folder>/semantic_map

Preprocessing

Run command

$ python process_lyft.py <raw_dataset_folder> <target_dataset_folder> --frameskip 2 --split 4

It will split the data into 4 parts, and put training data into the folder of <target_dataset_folder>/train, evaluation data into <target_dataset_folder>/validate and map data into <target_dataset_folder>/map.

Waymo

Create Environment

$ conda create -n waymo
$ conda activate waymo
$ conda install python=3.9
$ conda install -c conda-forge openexr-python
$ conda install -c conda-forge gsutil
$ pip install waymo-open-dataset-tf-2-6-0
$ pip install opencv-python

Prepare data

Download data to <raw_dataset_folder>

$ gsutil -m cp -r \
    "gs://waymo_open_dataset_motion_v_1_1_0/uncompressed/scenario/training" \
    "gs://waymo_open_dataset_motion_v_1_1_0/uncompressed/scenario/validation" \
    <raw_dataset_folder>

Preprocessing

Run command

$ python process_waymo.py <raw_dataset_folder> <target_dataset_folder> --frameskip 2 --split 8

It will split the data into 8 parts, and put training data into the folder of <target_dataset_folder>/training, evaluation data into <target_dataset_folder>/validation and map data into <target_dataset_folder>/map.