-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathteacher.py
145 lines (112 loc) · 4.96 KB
/
teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import os.path as osp
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR100
from tensorboardX import SummaryWriter
from utils import AverageMeter, accuracy
from models import model_dict
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='train teacher network.')
parser.add_argument('--epoch', type=int, default=240)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--lr', type=float, default=0.05)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--milestones', type=int, nargs='+', default=[150,180,210])
parser.add_argument('--save-interval', type=int, default=40)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--arch', type=str)
parser.add_argument('--gpu-id', type=int)
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
exp_name = 'teacher_{}'.format(args.arch)
exp_path = './experiments/{}'.format(exp_name)
os.makedirs(exp_path, exist_ok=True)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5071, 0.4866, 0.4409], std=[0.2675, 0.2565, 0.2761]),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5071, 0.4866, 0.4409], std=[0.2675, 0.2565, 0.2761]),
])
trainset = CIFAR100('./data', train=True, transform=transform_train, download=True)
valset = CIFAR100('./data', train=False, transform=transform_test, download=True)
train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=False)
val_loader = DataLoader(valset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=False)
model = model_dict[args.arch](num_classes=100).cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
logger = SummaryWriter(osp.join(exp_path, 'events'))
best_acc = -1
for epoch in range(args.epoch):
model.train()
loss_record = AverageMeter()
acc_record = AverageMeter()
start = time.time()
for x, target in train_loader:
optimizer.zero_grad()
x = x.cuda()
target = target.cuda()
output = model(x)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
batch_acc = accuracy(output, target, topk=(1,))[0]
loss_record.update(loss.item(), x.size(0))
acc_record.update(batch_acc.item(), x.size(0))
logger.add_scalar('train/cls_loss', loss_record.avg, epoch+1)
logger.add_scalar('train/cls_acc', acc_record.avg, epoch+1)
run_time = time.time() - start
info = 'train_Epoch:{:03d}/{:03d}\t run_time:{:.3f}\t cls_loss:{:.3f}\t cls_acc:{:.2f}\t'.format(
epoch+1, args.epoch, run_time, loss_record.avg, acc_record.avg)
print(info)
model.eval()
acc_record = AverageMeter()
loss_record = AverageMeter()
start = time.time()
for x, target in val_loader:
x = x.cuda()
target = target.cuda()
with torch.no_grad():
output = model(x)
loss = F.cross_entropy(output, target)
batch_acc = accuracy(output, target, topk=(1,))[0]
loss_record.update(loss.item(), x.size(0))
acc_record.update(batch_acc.item(), x.size(0))
run_time = time.time() - start
logger.add_scalar('val/cls_loss', loss_record.avg, epoch+1)
logger.add_scalar('val/cls_acc', acc_record.avg, epoch+1)
info = 'test_Epoch:{:03d}/{:03d}\t run_time:{:.2f}\t cls_loss:{:.3f}\t cls_acc:{:.2f}\n'.format(
epoch+1, args.epoch, run_time, loss_record.avg, acc_record.avg)
print(info)
scheduler.step()
# save checkpoint
if (epoch+1) in args.milestones or epoch+1==args.epoch or (epoch+1)%args.save_interval==0:
state_dict = dict(epoch=epoch+1, state_dict=model.state_dict(), acc=acc_record.avg)
name = osp.join(exp_path, 'ckpt/{:03d}.pth'.format(epoch+1))
os.makedirs(osp.dirname(name), exist_ok=True)
torch.save(state_dict, name)
# save best
if acc_record.avg > best_acc:
state_dict = dict(epoch=epoch+1, state_dict=model.state_dict(), acc=acc_record.avg)
name = osp.join(exp_path, 'ckpt/best.pth')
os.makedirs(osp.dirname(name), exist_ok=True)
torch.save(state_dict, name)
best_acc = acc_record.avg
print('best_acc: {:.2f}'.format(best_acc))