This demo demonstrates Automatic Speech Recognition (ASR) with pretrained QuartzNet model.
After computing audio features, running a neural network to get character probabilities, and CTC greedy decoding, the demo prints the decoded text.
The list of models supported by the demo is in <omz_dir>/demos/speech_recognition_quartznet_demo/python/models.lst
file.
This file can be used as a parameter for Model Downloader and Converter to download and, if necessary, convert models to OpenVINO IR format (*.xml + *.bin).
An example of using the Model Downloader:
omz_downloader --list models.lst
An example of using the Model Converter:
omz_converter --list models.lst
- quartznet-15x5-en
NOTE: Refer to the tables Intel's Pre-Trained Models Device Support and Public Pre-Trained Models Device Support for the details on models inference support at different devices.
Run the application with -h
option to see help message.
usage: speech_recognition_quartznet_demo.py [-h] -m MODEL -i INPUT [-d DEVICE]
optional arguments:
-h, --help Show this help message and exit.
-m MODEL, --model MODEL
Required. Path to an .xml file with a trained model.
-i INPUT, --input INPUT
Required. Path to an audio file in WAV PCM 16 kHz mono format
-d DEVICE, --device DEVICE
Optional. Specify the target device to infer on, for
example: CPU, GPU, HDDL, MYRIAD or HETERO. The
demo will look for a suitable OpenVINO Runtime plugin for this
device. Default value is CPU.
The typical command line is:
python3 speech_recognition_quartznet_demo.py -m quartznet-15x5-en.xml -i audio.wav
NOTE: Only 16-bit, 16 kHz, mono-channel WAVE audio files are supported.
An example audio file can be taken from OpenVINO test data folder.
The application prints the decoded text for the audio file. The demo reports
- Latency: total processing time required to process input data (from reading the data to displaying the results).