Note
A more up-to-date version of the Typescript client has been released and you are strongly encouraged to update and migrate to the new client export, Pinecone
. This older version of the README is intended to serve as documentation for legacy usage of the PineconeClient
export.
⚠️ WarningAll 0.x versions of the Pinecone client should be regarded as a public preview ("Beta") client. Test thoroughly before using this client for production workloads. No SLAs or technical support commitments are provided for this client. Expect potential breaking changes in future releases.
npm i @pinecone-database/pinecone
Set the following environment variables:
PINECONE_API_KEY=your_api_key
PINECONE_ENVIRONMENT=your_environment
import { PineconeClient } from '@pinecone-database/pinecone';
// Create a client
const client = new PineconeClient();
// Initialize the client
await client.init({
apiKey: process.env.PINECONE_API_KEY,
environment: process.env.PINECONE_ENVIRONMENT,
});
The Pinecone control plane allows you to perform the following operations:
- Create, configure and delete indexes
- Get information about an existing indexes
- Create and delete collections
- Select an index to operate on
const createRequest: CreateRequest = {
name: indexName,
dimension: dimensions,
metric,
};
await client.createIndex({ createRequest });
await client.deleteIndex({ indexName });
const indexDescription = await client.describeIndex({ indexName });
Example result:
{
"database": {
"name": "my-index",
"metric": "cosine",
"dimension": 10,
"replicas": 1,
"shards": 1,
"pods": 1,
"pod_type": "p1.x1"
},
"status": {
"waiting": [],
"crashed": [],
"host": "my-index-[project-id].svc.[environment].pinecone.io",
"port": 433,
"state": "Ready",
"ready": true
}
}
const list = await client.listIndexes();
Example result:
["index1", "index2"]
To operate on an index, you must select it. This is done by calling the Index
method on the client.
const index = client.Index(indexName);
const createCollectionRequest: CreateCollectionRequest = {
name: collection,
source: indexName,
};
await client.createCollection({ createCollectionRequest });
await client.deleteCollection(collection);
const describeCollection = await client.describeCollection({ collectionName });
Example result:
{
"name": "my-collection",
"status": "Ready",
"size": 3059815,
"dimension": 10
}
const list = await client.listCollections();
Example result:
["collection1", "collection2"]
The Pinecone index operations allow you to perform the following operations instances of Vector
.
A Vector
is defined as follows:
type Vector = {
id: string;
values: number[];
metadata?: object;
sparseValues: {
indices: [15, 30, 11];
values: [0.1, 0.2, 0.3];
}; // optional sparse values
};
After selecting an index to operate on, you can:
const upsertRequest: UpsertRequest = {
vectors,
namespace,
};
await index.upsert({ upsertRequest });
const vector = [...] // a vector
const queryRequest: QueryRequest = {
topK: 1,
vector,
namespace,
includeMetadata: true,
includeValues: true,
}
To query with a sparse vector:
const queryRequest: QueryRequest = {
topK: 1,
vector,
namespace,
includeMetadata: true,
includeValues: true,
sparseVector: {
indices: [15, 30, 11],
values: [0.1, 0.2, 0.3],
},
};
To execute the query:
const queryResponse = await index.query({ queryRequest });
const updateRequest: UpdateRequest = {
id: vectorId, // the ID of the vector to update
values: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], // the new vector values
sparseValues: {
indices: [15, 30, 11],
values: [0.1, 0.2, 0.3],
}, // optional sparse values
metadata: metadata, // the new metadata
namespace,
};
await index.update({ updateRequest });
const fetchResult = await index.fetch({
ids: [vectorIDs],
namespace,
});
await index.delete1({
ids: [vectorIDs],
namespace,
});
await index.delete1({
deleteAll: true,
namespace,
});