Skip to content

Latest commit

 

History

History
276 lines (210 loc) · 4.78 KB

README.v0.md

File metadata and controls

276 lines (210 loc) · 4.78 KB

Pinecone Node.js Client (Legacy 0.x versions)

Note

A more up-to-date version of the Typescript client has been released and you are strongly encouraged to update and migrate to the new client export, Pinecone. This older version of the README is intended to serve as documentation for legacy usage of the PineconeClient export.

⚠️ Warning

All 0.x versions of the Pinecone client should be regarded as a public preview ("Beta") client. Test thoroughly before using this client for production workloads. No SLAs or technical support commitments are provided for this client. Expect potential breaking changes in future releases.

Installation

npm i @pinecone-database/pinecone

Usage

Set the following environment variables:

PINECONE_API_KEY=your_api_key
PINECONE_ENVIRONMENT=your_environment

Initializing the client

import { PineconeClient } from '@pinecone-database/pinecone';

// Create a client
const client = new PineconeClient();

// Initialize the client
await client.init({
  apiKey: process.env.PINECONE_API_KEY,
  environment: process.env.PINECONE_ENVIRONMENT,
});

Control plane operations

The Pinecone control plane allows you to perform the following operations:

  1. Create, configure and delete indexes
  2. Get information about an existing indexes
  3. Create and delete collections
  4. Select an index to operate on

Indexes

Create Index

const createRequest: CreateRequest = {
  name: indexName,
  dimension: dimensions,
  metric,
};

await client.createIndex({ createRequest });

Delete Index

await client.deleteIndex({ indexName });

Describe Index

const indexDescription = await client.describeIndex({ indexName });

Example result:

{
  "database": {
    "name": "my-index",
    "metric": "cosine",
    "dimension": 10,
    "replicas": 1,
    "shards": 1,
    "pods": 1,
    "pod_type": "p1.x1"
  },
  "status": {
    "waiting": [],
    "crashed": [],
    "host": "my-index-[project-id].svc.[environment].pinecone.io",
    "port": 433,
    "state": "Ready",
    "ready": true
  }
}

List Indexes

const list = await client.listIndexes();

Example result:

["index1", "index2"]

Select an index

To operate on an index, you must select it. This is done by calling the Index method on the client.

const index = client.Index(indexName);

Collections

Create Collection

const createCollectionRequest: CreateCollectionRequest = {
  name: collection,
  source: indexName,
};
await client.createCollection({ createCollectionRequest });

Delete Collection

await client.deleteCollection(collection);

Describe Collection

const describeCollection = await client.describeCollection({ collectionName });

Example result:

{
  "name": "my-collection",
  "status": "Ready",
  "size": 3059815,
  "dimension": 10
}

List Collections

const list = await client.listCollections();

Example result:

["collection1", "collection2"]

Index operations

The Pinecone index operations allow you to perform the following operations instances of Vector.

A Vector is defined as follows:

type Vector = {
  id: string;
  values: number[];
  metadata?: object;
  sparseValues: {
    indices: [15, 30, 11];
    values: [0.1, 0.2, 0.3];
  }; // optional sparse values
};

After selecting an index to operate on, you can:

Upsert vectors

const upsertRequest: UpsertRequest = {
  vectors,
  namespace,
};
await index.upsert({ upsertRequest });

Query vectors

const vector = [...] // a vector

const queryRequest: QueryRequest = {
  topK: 1,
  vector,
  namespace,
  includeMetadata: true,
  includeValues: true,
}

To query with a sparse vector:

const queryRequest: QueryRequest = {
  topK: 1,
  vector,
  namespace,
  includeMetadata: true,
  includeValues: true,
  sparseVector: {
    indices: [15, 30, 11],
    values: [0.1, 0.2, 0.3],
  },
};

To execute the query:

const queryResponse = await index.query({ queryRequest });

Update a vector

const updateRequest: UpdateRequest = {
  id: vectorId, // the ID of the vector to update
  values: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], // the new vector values
  sparseValues: {
    indices: [15, 30, 11],
    values: [0.1, 0.2, 0.3],
  }, // optional sparse values
  metadata: metadata, // the new metadata
  namespace,
};
await index.update({ updateRequest });

Fetch vectors by their IDs

const fetchResult = await index.fetch({
  ids: [vectorIDs],
  namespace,
});

Delete vectors

await index.delete1({
  ids: [vectorIDs],
  namespace,
});

Delete all vectors in a namespace

await index.delete1({
  deleteAll: true,
  namespace,
});