forked from letta-ai/letta
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathairoboros.py
413 lines (350 loc) · 16.8 KB
/
airoboros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import json
from .wrapper_base import LLMChatCompletionWrapper
class Airoboros21Wrapper(LLMChatCompletionWrapper):
"""Wrapper for Airoboros 70b v2.1: https://huggingface.co/jondurbin/airoboros-l2-70b-2.1
Note: this wrapper formats a prompt that only generates JSON, no inner thoughts
"""
def __init__(
self,
simplify_json_content=True,
clean_function_args=True,
include_assistant_prefix=True,
include_opening_brace_in_prefix=True,
include_section_separators=True,
):
self.simplify_json_content = simplify_json_content
self.clean_func_args = clean_function_args
self.include_assistant_prefix = include_assistant_prefix
self.include_opening_brance_in_prefix = include_opening_brace_in_prefix
self.include_section_separators = include_section_separators
def chat_completion_to_prompt(self, messages, functions):
"""Example for airoboros: https://huggingface.co/jondurbin/airoboros-l2-70b-2.1#prompt-format
A chat.
USER: {prompt}
ASSISTANT:
Functions support: https://huggingface.co/jondurbin/airoboros-l2-70b-2.1#agentfunction-calling
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
OpenAI functions schema style:
{
"name": "send_message",
"description": "Sends a message to the human user",
"parameters": {
"type": "object",
"properties": {
# https://json-schema.org/understanding-json-schema/reference/array.html
"message": {
"type": "string",
"description": "Message contents. All unicode (including emojis) are supported.",
},
},
"required": ["message"],
}
},
"""
prompt = ""
# System insturctions go first
assert messages[0]["role"] == "system"
prompt += messages[0]["content"]
# Next is the functions preamble
def create_function_description(schema):
# airorobos style
func_str = ""
func_str += f"{schema['name']}:"
func_str += f"\n description: {schema['description']}"
func_str += f"\n params:"
for param_k, param_v in schema["parameters"]["properties"].items():
# TODO we're ignoring type
func_str += f"\n {param_k}: {param_v['description']}"
# TODO we're ignoring schema['parameters']['required']
return func_str
# prompt += f"\nPlease select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format."
prompt += f"\nPlease select the most suitable function and parameters from the list of available functions below, based on the ongoing conversation. Provide your response in JSON format."
prompt += f"\nAvailable functions:"
for function_dict in functions:
prompt += f"\n{create_function_description(function_dict)}"
def create_function_call(function_call):
"""Go from ChatCompletion to Airoboros style function trace (in prompt)
ChatCompletion data (inside message['function_call']):
"function_call": {
"name": ...
"arguments": {
"arg1": val1,
...
}
Airoboros output:
{
"function": "send_message",
"params": {
"message": "Hello there! I am Sam, an AI developed by Liminal Corp. How can I assist you today?"
}
}
"""
airo_func_call = {
"function": function_call["name"],
"params": json.loads(function_call["arguments"]),
}
return json.dumps(airo_func_call, indent=2)
# Add a sep for the conversation
if self.include_section_separators:
prompt += "\n### INPUT"
# Last are the user/assistant messages
for message in messages[1:]:
assert message["role"] in ["user", "assistant", "function"], message
if message["role"] == "user":
if self.simplify_json_content:
try:
content_json = json.loads(message["content"])
content_simple = content_json["message"]
prompt += f"\nUSER: {content_simple}"
except:
prompt += f"\nUSER: {message['content']}"
elif message["role"] == "assistant":
prompt += f"\nASSISTANT: {message['content']}"
# need to add the function call if there was one
if message["function_call"]:
prompt += f"\n{create_function_call(message['function_call'])}"
elif message["role"] == "function":
# TODO find a good way to add this
# prompt += f"\nASSISTANT: (function return) {message['content']}"
prompt += f"\nFUNCTION RETURN: {message['content']}"
continue
else:
raise ValueError(message)
# Add a sep for the response
if self.include_section_separators:
prompt += "\n### RESPONSE"
if self.include_assistant_prefix:
prompt += f"\nASSISTANT:"
if self.include_opening_brance_in_prefix:
prompt += "\n{"
print(prompt)
return prompt
def clean_function_args(self, function_name, function_args):
"""Some basic MemGPT-specific cleaning of function args"""
cleaned_function_name = function_name
cleaned_function_args = function_args.copy()
if function_name == "send_message":
# strip request_heartbeat
cleaned_function_args.pop("request_heartbeat", None)
# TODO more cleaning to fix errors LLM makes
return cleaned_function_name, cleaned_function_args
def output_to_chat_completion_response(self, raw_llm_output):
"""Turn raw LLM output into a ChatCompletion style response with:
"message" = {
"role": "assistant",
"content": ...,
"function_call": {
"name": ...
"arguments": {
"arg1": val1,
...
}
}
}
"""
if self.include_opening_brance_in_prefix and raw_llm_output[0] != "{":
raw_llm_output = "{" + raw_llm_output
try:
function_json_output = json.loads(raw_llm_output)
except Exception as e:
raise Exception(f"Failed to decode JSON from LLM output:\n{raw_llm_output}")
function_name = function_json_output["function"]
function_parameters = function_json_output["params"]
if self.clean_func_args:
function_name, function_parameters = self.clean_function_args(function_name, function_parameters)
message = {
"role": "assistant",
"content": None,
"function_call": {
"name": function_name,
"arguments": json.dumps(function_parameters),
},
}
return message
class Airoboros21InnerMonologueWrapper(Airoboros21Wrapper):
"""Still expect only JSON outputs from model, but add inner monologue as a field"""
def __init__(
self,
simplify_json_content=True,
clean_function_args=True,
include_assistant_prefix=True,
include_opening_brace_in_prefix=True,
include_section_separators=True,
):
self.simplify_json_content = simplify_json_content
self.clean_func_args = clean_function_args
self.include_assistant_prefix = include_assistant_prefix
self.include_opening_brance_in_prefix = include_opening_brace_in_prefix
self.include_section_separators = include_section_separators
def chat_completion_to_prompt(self, messages, functions):
"""Example for airoboros: https://huggingface.co/jondurbin/airoboros-l2-70b-2.1#prompt-format
A chat.
USER: {prompt}
ASSISTANT:
Functions support: https://huggingface.co/jondurbin/airoboros-l2-70b-2.1#agentfunction-calling
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
OpenAI functions schema style:
{
"name": "send_message",
"description": "Sends a message to the human user",
"parameters": {
"type": "object",
"properties": {
# https://json-schema.org/understanding-json-schema/reference/array.html
"message": {
"type": "string",
"description": "Message contents. All unicode (including emojis) are supported.",
},
},
"required": ["message"],
}
},
"""
prompt = ""
# System insturctions go first
assert messages[0]["role"] == "system"
prompt += messages[0]["content"]
# Next is the functions preamble
def create_function_description(schema, add_inner_thoughts=True):
# airorobos style
func_str = ""
func_str += f"{schema['name']}:"
func_str += f"\n description: {schema['description']}"
func_str += f"\n params:"
if add_inner_thoughts:
func_str += f"\n inner_thoughts: Deep inner monologue private to you only."
for param_k, param_v in schema["parameters"]["properties"].items():
# TODO we're ignoring type
func_str += f"\n {param_k}: {param_v['description']}"
# TODO we're ignoring schema['parameters']['required']
return func_str
# prompt += f"\nPlease select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format."
prompt += f"\nPlease select the most suitable function and parameters from the list of available functions below, based on the ongoing conversation. Provide your response in JSON format."
prompt += f"\nAvailable functions:"
for function_dict in functions:
prompt += f"\n{create_function_description(function_dict)}"
def create_function_call(function_call, inner_thoughts=None):
"""Go from ChatCompletion to Airoboros style function trace (in prompt)
ChatCompletion data (inside message['function_call']):
"function_call": {
"name": ...
"arguments": {
"arg1": val1,
...
}
Airoboros output:
{
"function": "send_message",
"params": {
"message": "Hello there! I am Sam, an AI developed by Liminal Corp. How can I assist you today?"
}
}
"""
airo_func_call = {
"function": function_call["name"],
"params": {
"inner_thoughts": inner_thoughts,
**json.loads(function_call["arguments"]),
},
}
return json.dumps(airo_func_call, indent=2)
# Add a sep for the conversation
if self.include_section_separators:
prompt += "\n### INPUT"
# Last are the user/assistant messages
for message in messages[1:]:
assert message["role"] in ["user", "assistant", "function"], message
if message["role"] == "user":
if self.simplify_json_content:
try:
content_json = json.loads(message["content"])
content_simple = content_json["message"]
prompt += f"\nUSER: {content_simple}"
except:
prompt += f"\nUSER: {message['content']}"
elif message["role"] == "assistant":
prompt += f"\nASSISTANT:"
# need to add the function call if there was one
inner_thoughts = message["content"]
if message["function_call"]:
prompt += f"\n{create_function_call(message['function_call'], inner_thoughts=inner_thoughts)}"
elif message["role"] == "function":
# TODO find a good way to add this
# prompt += f"\nASSISTANT: (function return) {message['content']}"
prompt += f"\nFUNCTION RETURN: {message['content']}"
continue
else:
raise ValueError(message)
# Add a sep for the response
if self.include_section_separators:
prompt += "\n### RESPONSE"
if self.include_assistant_prefix:
prompt += f"\nASSISTANT:"
if self.include_opening_brance_in_prefix:
prompt += "\n{"
return prompt
def clean_function_args(self, function_name, function_args):
"""Some basic MemGPT-specific cleaning of function args"""
cleaned_function_name = function_name
cleaned_function_args = function_args.copy()
if function_name == "send_message":
# strip request_heartbeat
cleaned_function_args.pop("request_heartbeat", None)
inner_thoughts = None
if "inner_thoughts" in function_args:
inner_thoughts = cleaned_function_args.pop("inner_thoughts")
# TODO more cleaning to fix errors LLM makes
return inner_thoughts, cleaned_function_name, cleaned_function_args
def output_to_chat_completion_response(self, raw_llm_output):
"""Turn raw LLM output into a ChatCompletion style response with:
"message" = {
"role": "assistant",
"content": ...,
"function_call": {
"name": ...
"arguments": {
"arg1": val1,
...
}
}
}
"""
if self.include_opening_brance_in_prefix and raw_llm_output[0] != "{":
raw_llm_output = "{" + raw_llm_output
try:
function_json_output = json.loads(raw_llm_output)
except Exception as e:
raise Exception(f"Failed to decode JSON from LLM output:\n{raw_llm_output}")
function_name = function_json_output["function"]
function_parameters = function_json_output["params"]
if self.clean_func_args:
(
inner_thoughts,
function_name,
function_parameters,
) = self.clean_function_args(function_name, function_parameters)
message = {
"role": "assistant",
"content": inner_thoughts,
"function_call": {
"name": function_name,
"arguments": json.dumps(function_parameters),
},
}
return message