-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfactory.py
250 lines (212 loc) · 9.39 KB
/
factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import json
import logging
import os
import pathlib
import re
from copy import deepcopy
from pathlib import Path
from typing import Optional, Tuple
import time
import torch
import time
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .model import CLIP, convert_weights_to_fp16, resize_pos_embed
from .openai import load_openai_model
from .pretrained import get_pretrained_cfg, download_pretrained
from .transform import image_transform
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
def _natural_key(string_):
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def _rescan_model_configs():
global _MODEL_CONFIGS
config_ext = ('.json',)
config_files = []
for config_path in _MODEL_CONFIG_PATHS:
if config_path.is_file() and config_path.suffix in config_ext:
config_files.append(config_path)
elif config_path.is_dir():
for ext in config_ext:
config_files.extend(config_path.glob(f'*{ext}'))
for cf in config_files:
with open(cf, 'r') as f:
model_cfg = json.load(f)
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
_MODEL_CONFIGS[cf.stem] = model_cfg
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}
_rescan_model_configs() # initial populate of model config registry
def load_state_dict(checkpoint_path: str, map_location='cpu'):
checkpoint = torch.load(checkpoint_path, map_location=map_location)
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
#if next(iter(state_dict.items()))[0].startswith('module'):
state_dict_new = state_dict.copy()
for k, v in state_dict.items():
state_dict_new[k] = v
if 'transformer' in k[:11]:
new_k = k.replace('transformer', 'transformer_no')
state_dict_new[new_k] = v
#print(k)
#print(new_k)
if 'token_embedding' in k[:15]:
new_k = k.replace('token_embedding', 'token_embedding_no')
state_dict_new[new_k] = v
# #print(k)
# #print(new_k)
if 'positional_embedding' in k[:20]:
new_k = k.replace('positional_embedding', 'positional_embedding_no')
state_dict_new[new_k] = v
# #print(k)
# #print(new_k)
if 'ln_final' in k[:8]:
new_k = k.replace('ln_final', 'ln_final_no')
state_dict_new[new_k] = v
#print(k)
#print(new_k)
if 'text_projection' in k[:15]:
new_k = k.replace('text_projection', 'text_projection_no')
state_dict_new[new_k] = v
#print(k)
#print(new_k)
return state_dict_new
def load_state_dict_local(checkpoint_path: str, map_location='cpu'):
checkpoint = torch.load(checkpoint_path, map_location=map_location)
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
if next(iter(state_dict.items()))[0].startswith('module'):
state_dict = {k[7:]: v for k, v in state_dict.items()}
return state_dict
def load_checkpoint(model, checkpoint_path, is_download=True, strict=False):
if is_download:
state_dict = load_state_dict(checkpoint_path)
else:
state_dict = load_state_dict_local(checkpoint_path)
resize_pos_embed(state_dict, model)
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
return incompatible_keys
def create_model(
model_name: str,
pretrained: str = '',
precision: str = 'fp32',
device: torch.device = torch.device('cpu'),
jit: bool = False,
force_quick_gelu: bool = False,
pretrained_image: bool = False,
cache_dir: Optional[str] = None,
freeze = True,
):
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
if pretrained.lower() == 'openai':
logging.info(f'Loading pretrained {model_name} from OpenAI.')
model = load_openai_model(model_name, device=device, jit=jit, cache_dir=cache_dir)
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
if precision == "amp" or precision == "fp32":
model = model.float()
else:
if model_name in _MODEL_CONFIGS:
logging.info(f'Loading {model_name} model config.')
model_cfg = deepcopy(_MODEL_CONFIGS[model_name])
else:
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
raise RuntimeError(f'Model config for {model_name} not found.')
if force_quick_gelu:
# override for use of QuickGELU on non-OpenAI transformer models
model_cfg["quick_gelu"] = True
if pretrained_image:
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
# pretrained weight loading for timm models set via vision_cfg
model_cfg['vision_cfg']['timm_model_pretrained'] = True
else:
assert False, 'pretrained image towers currently only supported for timm models'
model = CLIP(**model_cfg)
#print("using local model")
#import time
#time.sleep(1000)
pretrained_cfg = {}
if pretrained:
checkpoint_path = ''
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
if pretrained_cfg:
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
is_download = True
elif os.path.exists(pretrained):
checkpoint_path = pretrained
is_download = False
if checkpoint_path:
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
load_checkpoint(model, checkpoint_path, is_download)
else:
logging.warning(f'Pretrained weights ({pretrained}) not found for model {model_name}.')
raise RuntimeError(f'Pretrained weights ({pretrained}) not found for model {model_name}.')
if pretrained and freeze: # freeze the visual transformer besides the project head
count = 0
for module_name in model.visual.named_parameters():
'''if "proj" == module_name[0]:
module_name[1].requires_grad = True
#count += 1
print("need gradients", module_name[0])
time.sleep(10)
else:'''
module_name[1].requires_grad = False
count += 1
for module_name in model.named_parameters():
if "_no" in module_name[0]:
module_name[1].requires_grad = True
#print(module_name[0])
else:
module_name[1].requires_grad = False
# module_name[1].requires_grad = False
# count += 1
print("finish to freeze the visual transformer for {} layers".format(str(count)))
time.sleep(60)
model.to(device=device)
if precision == "fp16":
assert device.type != 'cpu'
convert_weights_to_fp16(model)
# set image / mean metadata from pretrained_cfg if available, or use default
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
if jit:
model = torch.jit.script(model)
return model
def create_model_and_transforms(
model_name: str,
pretrained: str = '',
precision: str = 'fp32',
device: torch.device = torch.device('cpu'),
jit: bool = False,
force_quick_gelu: bool = False,
pretrained_image: bool = False,
image_mean: Optional[Tuple[float, ...]] = None,
image_std: Optional[Tuple[float, ...]] = None,
cache_dir: Optional[str] = None,
freeze = True
):
model = create_model(
model_name, pretrained, precision, device, jit,
force_quick_gelu=force_quick_gelu,
pretrained_image=pretrained_image,
cache_dir=cache_dir,
freeze = freeze
)
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
image_std = image_std or getattr(model.visual, 'image_std', None)
preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=image_mean, std=image_std)
scale = 1
image_size0, image_size1 = model.visual.image_size
image_size0, image_size1 = image_size0 * scale, image_size1 * scale
preprocess_val = image_transform((image_size0, image_size1), is_train=False, mean=image_mean, std=image_std)
return model, preprocess_train, preprocess_val
def list_models():
""" enumerate available model architectures based on config files """
return list(_MODEL_CONFIGS.keys())
def add_model_config(path):
""" add model config path or file and update registry """
if not isinstance(path, Path):
path = Path(path)
_MODEL_CONFIG_PATHS.append(path)
_rescan_model_configs()