-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
66 lines (54 loc) · 2.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (C) 2021 Xiyuan Li
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import numpy as np
import scipy
import matplotlib.pyplot as plt
import TFchirp
def test():
# Generate a quadratic chirp signal
dt = 0.0001
rate = int(1/dt)
ts = np.linspace(0, 1, int(1/dt))
data = scipy.signal.chirp(ts, 10, 1, 120, method='quadratic')
# Compute S Transform Spectrogram
spectrogram = TFchirp.sTransform(data, sample_rate=rate, frange=[0,500])
plt.imshow(abs(spectrogram), origin='lower', aspect='auto')
plt.title('Original Spectrogram')
plt.show()
# Quick Recovery of ts from S Transform 0 frequency row
recovered_ts = TFchirp.recoverS(spectrogram)
plt.plot(recovered_ts-data)
plt.title('Time Series Reconstruction Error')
plt.show()
# Compute S Transform Spectrogram on the recovered time series
recoveredSpectrogram = TFchirp.sTransform(recovered_ts, sample_rate=rate, frange=[0,500])
plt.imshow(abs(recoveredSpectrogram), origin='lower', aspect='auto')
plt.title('Recovered Specctrogram')
plt.show()
# Quick Inverse of ts from S Transform
inverse_ts, inverse_tsFFT = TFchirp.inverseS(spectrogram)
plt.plot(inverse_ts)
plt.plot(inverse_ts-data)
plt.title('Time Series Reconstruction Error')
plt.legend(['Recovered ts', 'Error'])
plt.show()
# Compute S Transform Spectrogram on the recovered time series
inverseSpectrogram = TFchirp.sTransform(inverse_ts, sample_rate=rate, frange=[0,500])
plt.imshow(abs(inverseSpectrogram), origin='lower', aspect='auto')
plt.title('Recovered Specctrogram')
plt.show()
return
if __name__ == '__main__':
test()