generated from xinntao/ProjectTemplate-Python
-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathinference_realesrgan.py
166 lines (151 loc) · 7.56 KB
/
inference_realesrgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import cv2
import glob
import os
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
def main():
"""Inference demo for Real-ESRGAN.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
parser.add_argument(
'-n',
'--model_name',
type=str,
default='RealESRGAN_x4plus',
help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | '
'realesr-animevideov3 | realesr-general-x4v3'))
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
parser.add_argument(
'-dn',
'--denoise_strength',
type=float,
default=0.5,
help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. '
'Only used for the realesr-general-x4v3 model'))
parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
parser.add_argument(
'--model_path', type=str, default=None, help='[Option] Model path. Usually, you do not need to specify it')
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
parser.add_argument(
'--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
parser.add_argument(
'--alpha_upsampler',
type=str,
default='realesrgan',
help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
parser.add_argument(
'--ext',
type=str,
default='auto',
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
parser.add_argument(
'-g', '--gpu-id', type=int, default=None, help='gpu device to use (default=None) can be 0,1,2 for multi-gpu')
args = parser.parse_args()
# determine models according to model names
args.model_name = args.model_name.split('.')[0]
if args.model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif args.model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif args.model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif args.model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif args.model_name == 'realesr-animevideov3': # x4 VGG-style model (XS size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth']
elif args.model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
]
# determine model paths
if args.model_path is not None:
model_path = args.model_path
else:
model_path = os.path.join('weights', args.model_name + '.pth')
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
# model_path will be updated
model_path = load_file_from_url(
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
# use dni to control the denoise strength
dni_weight = None
if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1:
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
model_path = [model_path, wdn_model_path]
dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
# restorer
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=args.tile,
tile_pad=args.tile_pad,
pre_pad=args.pre_pad,
half=not args.fp32,
gpu_id=args.gpu_id)
if args.face_enhance: # Use GFPGAN for face enhancement
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=args.outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler)
os.makedirs(args.output, exist_ok=True)
if os.path.isfile(args.input):
paths = [args.input]
else:
paths = sorted(glob.glob(os.path.join(args.input, '*')))
for idx, path in enumerate(paths):
imgname, extension = os.path.splitext(os.path.basename(path))
print('Testing', idx, imgname)
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
else:
img_mode = None
try:
if args.face_enhance:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=args.outscale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
if args.ext == 'auto':
extension = extension[1:]
else:
extension = args.ext
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
if args.suffix == '':
save_path = os.path.join(args.output, f'{imgname}.{extension}')
else:
save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
cv2.imwrite(save_path, output)
if __name__ == '__main__':
main()