-
Notifications
You must be signed in to change notification settings - Fork 334
/
yolo_main.py
156 lines (138 loc) · 5.3 KB
/
yolo_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import caffe
GPU_ID = 0 # Switch between 0 and 1 depending on the GPU you want to use.
caffe.set_mode_gpu()
caffe.set_device(GPU_ID)
# caffe.set_mode_cpu()
from datetime import datetime
import numpy as np
import sys, getopt
import cv2
def interpret_output(output, img_width, img_height):
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train","tvmonitor"]
w_img = img_width
h_img = img_height
print w_img, h_img
threshold = 0.2
iou_threshold = 0.5
num_class = 20
num_box = 2
grid_size = 7
probs = np.zeros((7,7,2,20))
class_probs = np.reshape(output[0:980],(7,7,20))
# print class_probs
scales = np.reshape(output[980:1078],(7,7,2))
# print scales
boxes = np.reshape(output[1078:],(7,7,2,4))
offset = np.transpose(np.reshape(np.array([np.arange(7)]*14),(2,7,7)),(1,2,0))
boxes[:,:,:,0] += offset
boxes[:,:,:,1] += np.transpose(offset,(1,0,2))
boxes[:,:,:,0:2] = boxes[:,:,:,0:2] / 7.0
boxes[:,:,:,2] = np.multiply(boxes[:,:,:,2],boxes[:,:,:,2])
boxes[:,:,:,3] = np.multiply(boxes[:,:,:,3],boxes[:,:,:,3])
boxes[:,:,:,0] *= w_img
boxes[:,:,:,1] *= h_img
boxes[:,:,:,2] *= w_img
boxes[:,:,:,3] *= h_img
for i in range(2):
for j in range(20):
probs[:,:,i,j] = np.multiply(class_probs[:,:,j],scales[:,:,i])
filter_mat_probs = np.array(probs>=threshold,dtype='bool')
filter_mat_boxes = np.nonzero(filter_mat_probs)
boxes_filtered = boxes[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]]
probs_filtered = probs[filter_mat_probs]
classes_num_filtered = np.argmax(probs,axis=3)[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]]
argsort = np.array(np.argsort(probs_filtered))[::-1]
boxes_filtered = boxes_filtered[argsort]
probs_filtered = probs_filtered[argsort]
classes_num_filtered = classes_num_filtered[argsort]
for i in range(len(boxes_filtered)):
if probs_filtered[i] == 0 : continue
for j in range(i+1,len(boxes_filtered)):
if iou(boxes_filtered[i],boxes_filtered[j]) > iou_threshold :
probs_filtered[j] = 0.0
filter_iou = np.array(probs_filtered>0.0,dtype='bool')
boxes_filtered = boxes_filtered[filter_iou]
probs_filtered = probs_filtered[filter_iou]
classes_num_filtered = classes_num_filtered[filter_iou]
result = []
for i in range(len(boxes_filtered)):
result.append([classes[classes_num_filtered[i]],boxes_filtered[i][0],boxes_filtered[i][1],boxes_filtered[i][2],boxes_filtered[i][3],probs_filtered[i]])
return result
def iou(box1,box2):
tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2])
lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3])
if tb < 0 or lr < 0 : intersection = 0
else : intersection = tb*lr
return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection)
def show_results(img,results, img_width, img_height):
img_cp = img.copy()
disp_console = True
imshow = True
# if self.filewrite_txt :
# ftxt = open(self.tofile_txt,'w')
for i in range(len(results)):
x = int(results[i][1])
y = int(results[i][2])
w = int(results[i][3])//2
h = int(results[i][4])//2
if disp_console : print ' class : ' + results[i][0] + ' , [x,y,w,h]=[' + str(x) + ',' + str(y) + ',' + str(int(results[i][3])) + ',' + str(int(results[i][4]))+'], Confidence = ' + str(results[i][5])
xmin = x-w
xmax = x+w
ymin = y-h
ymax = y+h
if xmin<0:
xmin = 0
if ymin<0:
ymin = 0
if xmax>img_width:
xmax = img_width
if ymax>img_height:
ymax = img_height
if imshow:
cv2.rectangle(img_cp,(xmin,ymin),(xmax,ymax),(0,255,0),2)
print xmin, ymin, xmax, ymax
cv2.rectangle(img_cp,(xmin,ymin-20),(xmax,ymin),(125,125,125),-1)
cv2.putText(img_cp,results[i][0] + ' : %.2f' % results[i][5],(xmin+5,ymin-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1)
if imshow :
cv2.imshow('YOLO detection',img_cp)
cv2.waitKey(1000)
def main(argv):
model_filename = ''
weight_filename = ''
img_filename = ''
try:
opts, args = getopt.getopt(argv, "hm:w:i:")
print opts
except getopt.GetoptError:
print 'yolo_main.py -m <model_file> -w <output_file> -i <img_file>'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'yolo_main.py -m <model_file> -w <weight_file> -i <img_file>'
sys.exit()
elif opt == "-m":
model_filename = arg
elif opt == "-w":
weight_filename = arg
elif opt == "-i":
img_filename = arg
print 'model file is "', model_filename
print 'weight file is "', weight_filename
print 'image file is "', img_filename
net = caffe.Net(model_filename, weight_filename, caffe.TEST)
img = caffe.io.load_image(img_filename) # load the image using caffe io
inputs = img
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
start = datetime.now()
out = net.forward_all(data=np.asarray([transformer.preprocess('data', inputs)]))
end = datetime.now()
elapsedTime = end-start
print 'total time is " milliseconds', elapsedTime.total_seconds()*1000
print out.iteritems()
img_cv = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
results = interpret_output(out['result'][0], img.shape[1], img.shape[0]) # fc27 instead of fc12 for yolo_small
show_results(img_cv,results, img.shape[1], img.shape[0])
cv2.waitKey(10000)
if __name__=='__main__':
main(sys.argv[1:])