Skip to content

Latest commit

 

History

History
188 lines (117 loc) · 5.68 KB

README.md

File metadata and controls

188 lines (117 loc) · 5.68 KB

Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC) for large genomic data

Install packages

Install the most recent version of the KLFDAPC package using devtools:

library("devtools")

devtools::install_github("xinghuq/KLFDAPC")

Alternatively, you can install from the source files, run the following commands in the shell:

R CMD build KLFDAPC
R CMD check --as-cran KLFDAPC_0.1.0.tar.gz
R CMD INSTALL KLFDAPC_0.1.0.tar.gz

Dependencies

Before install or during installation, make sure the below dependences are installed.

requireNamespace("SNPRelate")

if (!requireNamespace("BiocManager", quietly=TRUE))

  install.packages("BiocManager",repos = "http://cran.us.r-project.org")
  
if (!requireNamespace("SNPRelate", quietly=TRUE))

  BiocManager::install("SNPRelate")
  
 if (!requireNamespace("DA", quietly=TRUE))
 
  devtools::install_github("xinghuq/DA")
  
   if (!requireNamespace("vegan", quietly=TRUE))
 
  install.packages("vegan")
  
    if (!requireNamespace("PCAviz", quietly=TRUE))
 
 devtools::install_github("NovembreLab/PCAviz",build_vignettes = FALSE)
 
 library(KLFDAPC)
 library(SNPRelate)
 library(vegan)
 library(PCAviz)
  

Vignettes and tutorials


vignette("Population_structure_of_Covid")

vignette("Population_structure_of_RegMap")

vignette("Genome_scan_KLFDAPC")

GDS format

GDS is portable across platforms with hierarchical structure to store multiple scalable array-oriented data sets with metadata information. Details can be found here.

You can convert PLINK/Oxford files to GDS using SNPRelate (Zheng et al. 2012).

snpgdsBED2GDS Conversion from PLINK BED to GDS.

snpgdsPED2GDS Conversion from PLINK PED to GDS.

snpgdsVCF2GDS Conversion from vcf to GDS.

snpgdsGEN2GDS Conversion from Oxford GEN format to GDS.

Below, is an example on how to convert PLINK bed files to GDS,

library("SNPRelate")
# PLINK BED files
bed.fn ="/file_location/target.bed"
fam.fn = "/file_location/target.fam"
bim.fn = "/file_location/target.bim"

# convert
snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "HapMap.gds")

# open
genofile <- snpgdsOpen("HapMap.gds")
genofile

# close
snpgdsClose(genofile)

Implementation of KLFDAPC

The best practice for KLFDAPC is to use the below code instead of using the specific kernel function from kernelab (i.e., rbfdot kernel).

library(KLFDAPC)
# Open the GDS file
genofile <- SNPRelate::snpgdsOpen(snpgdsExampleFileName())
## obtaining pop code
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))
pop_code <- read.gdsn(index.gdsn(genofile, path="sample.annot/pop.group"))
##  Note your pop_code should be align with the pop levels, if you deleted single individuals in some pops, your should update the pop factor levels as well.
pop_code=factor(pop_code,levels=unique(pop_code))
## Doing PCA
pcadata <- SNPRelate::snpgdsPCA(genofile)
snpgdsClose(genofile)

## normalization function
normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}

pcanorm=apply(pcadata$eigenvect[,1:20], 2, normalize)

the Gaussian kernel
kmat <- kmatrixGauss(pcanorm,sigma=5)

klfdapc=KLFDA(kmat, y=pop_code, r=3, knn = 2)

Plotting the genetic structure

plot(klfdapc$Z[,1], klfdapc$Z[,2], col=as.integer(pop_code), xlab="RD 1", ylab="RD 2")
legend("topright", legend=levels(pop_code), pch="o", col=1:nlevels(pop_code))

Aligning with geography

Procrustes transformation

library(vegan)

protest_trans_sigma5=protest(Y = klfdapc$Z[,1:2], X = Geo_ind[,c("long","lat")], scores = "sites", permutations = 100000)

plot(protest_trans_sigma5$Yrot[,1:2])

Projecting KLFDAPC features on the map

KLFDAPC_geo_prot_5=as.data.frame(cbind(Geo_ind[,1:10],as.data.frame(protest_trans_sigma5$Yrot))) ## Geo_ind contains the pop labels,  individual geographic coordinates

colnames(KLFDAPC_geo_prot_5)[11]=c("PC1") ## change the column names of the rotated features to PCs, note the PC1 is the transformed "KLFDAPC1"
colnames(KLFDAPC_geo_prot_5)[12]=c("PC2")

KLFDAPC_geo_sigma5=pcaviz(dat = KLFDAPC_geo_prot_5)

fit1 <- lm(lat ~ PC1,KLFDAPC_geo_sigma5$data)
fit2 <- lm(long ~ PC2,KLFDAPC_geo_sigma5$data)
mu1  <- coef(fit1)[["(Intercept)"]]
mu2  <- coef(fit2)[["(Intercept)"]]
b1   <- coef(fit1)[["PC1"]]
b2   <- coef(fit2)[["PC2"]]
KLFDAPC_map_5 <- 
  pcaviz_scale(KLFDAPC_geo_sigma5, scale = c(b1,b2),dims = c("PC1","PC2")) %>%
  pcaviz_translate(a = c(mu1,mu2),dims = c("PC1","PC2"))
plot(KLFDAPC_map_5,label = "pop",group = NULL,
     show.legend = FALSE,overlay = overlay_map_world(), draw.pc.axes=FALSE, plot.title = NULL,hide.xy.axes=T,draw.points = T)

Welcome any feedback and pull request.

Citation

Qin. X. 2020. KLFDAPC: Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC) for large genomic data. R package version 0.2.0.

Qin, X., Chiang, C.W.K., and Gaggiotti, O.E. (2022). KLFDAPC: A Supervised Machine Learning Approach for Spatial Genetic Structure Analysis. Briefings in Bioinformatics, bbac202, https://doi.org/10.1093/bib/bbac202.