forked from soosiey/gnn-formation-control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpointcloud.py
152 lines (129 loc) · 5.4 KB
/
pointcloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 6 09:08:39 2018
@author: cz
"""
import numpy as np
import math
# import cv2
class PointCloud():
def __init__(self, robot):
self.robot = robot
self.data = []
self.dataCropped = []
# For visualization of laser scan vector (option 2)
self.lenScanVector = 100
#self.lenScanVector = 1000
self.maxRange = 10
#self.maxRange = 100
self.scanVector = np.ones((1, self.lenScanVector), np.float32) * self.maxRange
self.scanAngle = ((np.asarray(range(self.lenScanVector)) + 0.5) *
(2 * math.pi / self.lenScanVector))
# For visualization of occupancy map (option 1)
self.wPix = 100
self.hPix = 100
#self.wPix = 1000
#self.hPix = 1000
self.xMax = 10
self.yMax = 10
#self.xMax = 100
#self.yMax = 100
self.clearOccupancyMap()
def clearOccupancyMap(self):
if self.robot.scene.occupancyMapType == self.robot.scene.OCCUPANCY_MAP_BINARY:
self.occupancyMap = np.ones((self.hPix, self.wPix), np.uint8) * 255
elif self.robot.scene.occupancyMapType == self.robot.scene.OCCUPANCY_MAP_THREE_CHANNEL:
self.occupancyMap = np.zeros((self.hPix, self.wPix, 3), np.uint8)
def clearData(self):
self.data = []
self.dataCropped = []
def addRawData(self, rawData):
# print(rawData)
newData = []
for i in range(0, len(rawData), 3):
x = rawData[i]
z = rawData[i + 1]
y = rawData[i + 2]
newData.append(np.float32([x, y, z]))
#newData = self.rotate(newData)
self.data = self.data + newData
def updateOccupancyMap(self):
self.clearOccupancyMap()
if self.robot.scene.occupancyMapType == self.robot.scene.OCCUPANCY_MAP_BINARY:
#r = int(self.l/2*self.m2pix()) # radius, option 1
pointCloudPix = self.m2pix(self.dataCropped) # option 1
for i in range(len(pointCloudPix)):
self.occupancyMap[(pointCloudPix[i][0], pointCloudPix[i][1])] = 0 # option 1
elif self.robot.scene.occupancyMapType == self.robot.scene.OCCUPANCY_MAP_THREE_CHANNEL:
self.occupancyMap = np.zeros((self.hPix, self.wPix, 3), np.uint8)
def updateScanVector(self):
self.scanVector = np.ones((1, self.lenScanVector), np.float32) * self.maxRange
for i in range(len(self.data)):
x = self.data[i][0]
y = self.data[i][1]
dist = (x ** 2 + y ** 2 ) ** 0.5
k = math.ceil((math.atan2(y, x) + math.pi)
/ 2 / math.pi * self.lenScanVector) - 1 # bin index
if self.scanVector[0, k] > dist:
self.scanVector[0, k] = dist
#print('dist: ', dist)
def getObservation(self):
if self.robot.scene.occupancyMapType == self.robot.scene.OCCUPANCY_MAP_BINARY:
osbervation = self.occupancyMap.reshape((1, self.wPix * self.wPix))
elif self.robot.scene.occupancyMapType == self.robot.scene.OCCUPANCY_MAP_THREE_CHANNEL:
osbervation = self.occupancyMap.reshape((1, self.wPix * self.wPix * 3))
return osbervation
def rotate(self, data = None):
if data is None:
raise Exception('input cannot be None')
alpha = self.robot.xi.alpha
beta = self.robot.xi.beta
gamma = self.robot.xi.theta
Rx = self.getRotationMatrix([1, 0, 0], alpha)
Ry = self.getRotationMatrix([0, 1, 0], beta)
Rz = self.getRotationMatrix([0, 0, 1], gamma)
R = Rx.dot(Ry)
R = np.linalg.inv(R)
#v = np.dot(R, np.dot(Rx, np.dot(Ry, np.dot(Rz, np.array([0, 0, 1])))))# for test
#print("v = ", v)
for i in range(len(data)):
data[i] = np.dot(R, data[i])
return data
#self.show()
def crop(self):
self.dataCropped = []
for i in range(len(self.data)):
x = float(self.data[i][0])
y = float(self.data[i][1])
z = float(self.data[i][2])
MIN = 0.20
if any([x > self.xMax, x < -self.xMax, y > self.yMax, y < -self.yMax, z < -0.3]): #
continue
elif (x < MIN and y < MIN and x > -MIN and y > -MIN):
continue
self.dataCropped.append(np.float32([x, y]))
def getRotationMatrix(self, axis, theta):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by theta radians.
"""
axis = np.asarray(axis)
axis = axis/math.sqrt(np.dot(axis, axis))
a = math.cos(theta/2.0)
b, c, d = -axis*math.sin(theta/2.0)
aa, bb, cc, dd = a*a, b*b, c*c, d*d
bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d
return np.array([[aa+bb-cc-dd, 2*(bc+ad), 2*(bd-ac)],
[2*(bc-ad), aa+cc-bb-dd, 2*(cd+ab)],
[2*(bd+ac), 2*(cd-ab), aa+dd-bb-cc]])
def m2pix(self, p = None):
if p is None: # if p is None
return (self.wPix / self.xMax / 2)
xyPix = []
for i in range(len(p)):
xPix = ((self.xMax - p[i][0]) * (self.wPix / self.xMax / 2))
yPix = ((self.yMax - p[i][1]) * (self.hPix / self.yMax / 2))
xyPix.append(np.uint16([xPix, yPix]))
return xyPix
def show(self):
pass