From 17702e280c4b0b030870962fcb3d50c3085ae862 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Thu, 15 May 2014 23:31:43 -0700 Subject: [PATCH 001/118] SPARK-1862: Support for MapR in the Maven build. Author: Patrick Wendell Closes #803 from pwendell/mapr-support and squashes the following commits: 8df60e4 [Patrick Wendell] SPARK-1862: Support for MapR in the Maven build. --- pom.xml | 36 +++++++++++++++++++++++++++++++++++- 1 file changed, 35 insertions(+), 1 deletion(-) diff --git a/pom.xml b/pom.xml index 5df7036585b75..088d4cacb8bb5 100644 --- a/pom.xml +++ b/pom.xml @@ -123,6 +123,7 @@ 2.4.1 ${hadoop.version} 0.94.6 + 3.4.5 0.12.0 1.4.3 1.2.3 @@ -194,6 +195,17 @@ false + + mapr-repo + MapR Repository + http://repository.mapr.com/maven + + true + + + false + + @@ -490,6 +502,14 @@ commons-logging commons-logging + + org.mortbay.jetty + servlet-api-2.5 + + + junit + junit + @@ -979,6 +999,20 @@ + + mapr + + false + + + 1.0.3-mapr-3.0.3 + 2.3.0-mapr-4.0.0-beta + 0.94.17-mapr-1403 + 0.94.17-mapr-1403 + 3.4.5-mapr-1401 + + + hadoop-provided @@ -1024,7 +1058,7 @@ org.apache.zookeeper zookeeper - 3.4.5 + ${zookeeper.version} provided From e304eb998e3b2a44dc1f773cd75211679f217661 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Thu, 15 May 2014 23:33:27 -0700 Subject: [PATCH 002/118] HOTFIX: Duplication of hbase version --- pom.xml | 1 - 1 file changed, 1 deletion(-) diff --git a/pom.xml b/pom.xml index 088d4cacb8bb5..86264d1132ec4 100644 --- a/pom.xml +++ b/pom.xml @@ -1008,7 +1008,6 @@ 1.0.3-mapr-3.0.3 2.3.0-mapr-4.0.0-beta 0.94.17-mapr-1403 - 0.94.17-mapr-1403 3.4.5-mapr-1401 From fa6de408a131a3e84350a60af74a92c323dfc5eb Mon Sep 17 00:00:00 2001 From: Zhen Peng Date: Fri, 16 May 2014 11:37:18 -0700 Subject: [PATCH 003/118] bugfix: overflow of graphx Edge compare function Author: Zhen Peng Closes #769 from zhpengg/bugfix-graphx-edge-compare and squashes the following commits: 8a978ff [Zhen Peng] add ut for graphx Edge.lexicographicOrdering.compare 413c258 [Zhen Peng] there maybe a overflow for two Long's substraction --- .../scala/org/apache/spark/graphx/Edge.scala | 10 ++++- .../org/apache/spark/graphx/EdgeSuite.scala | 39 +++++++++++++++++++ 2 files changed, 47 insertions(+), 2 deletions(-) create mode 100644 graphx/src/test/scala/org/apache/spark/graphx/EdgeSuite.scala diff --git a/graphx/src/main/scala/org/apache/spark/graphx/Edge.scala b/graphx/src/main/scala/org/apache/spark/graphx/Edge.scala index 580faa0866789..7e842ec4cc82f 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/Edge.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/Edge.scala @@ -56,7 +56,13 @@ case class Edge[@specialized(Char, Int, Boolean, Byte, Long, Float, Double) ED] object Edge { private[graphx] def lexicographicOrdering[ED] = new Ordering[Edge[ED]] { - override def compare(a: Edge[ED], b: Edge[ED]): Int = - (if (a.srcId != b.srcId) a.srcId - b.srcId else a.dstId - b.dstId).toInt + override def compare(a: Edge[ED], b: Edge[ED]): Int = { + if (a.srcId == b.srcId) { + if (a.dstId == b.dstId) 0 + else if (a.dstId < b.dstId) -1 + else 1 + } else if (a.srcId < b.srcId) -1 + else 1 + } } } diff --git a/graphx/src/test/scala/org/apache/spark/graphx/EdgeSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/EdgeSuite.scala new file mode 100644 index 0000000000000..5a2c73b414279 --- /dev/null +++ b/graphx/src/test/scala/org/apache/spark/graphx/EdgeSuite.scala @@ -0,0 +1,39 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.graphx + +import org.scalatest.FunSuite + +class EdgeSuite extends FunSuite { + test ("compare") { + // decending order + val testEdges: Array[Edge[Int]] = Array( + Edge(0x7FEDCBA987654321L, -0x7FEDCBA987654321L, 1), + Edge(0x2345L, 0x1234L, 1), + Edge(0x1234L, 0x5678L, 1), + Edge(0x1234L, 0x2345L, 1), + Edge(-0x7FEDCBA987654321L, 0x7FEDCBA987654321L, 1) + ) + // to ascending order + val sortedEdges = testEdges.sorted(Edge.lexicographicOrdering[Int]) + + for (i <- 0 until testEdges.length) { + assert(sortedEdges(i) == testEdges(testEdges.length - i - 1)) + } + } +} From 032d6632ad4ab88c97c9e568b63169a114220a02 Mon Sep 17 00:00:00 2001 From: Michael Armbrust Date: Fri, 16 May 2014 11:47:00 -0700 Subject: [PATCH 004/118] [SQL] Implement between in hql Author: Michael Armbrust Closes #804 from marmbrus/between and squashes the following commits: ae24672 [Michael Armbrust] add golden answer. d9997ef [Michael Armbrust] Implement between in hql. 9bd4433 [Michael Armbrust] Better error on parse failures. --- .../scala/org/apache/spark/sql/hive/HiveQl.scala | 16 ++++++++++++++++ .../between-0-df3cf89fcf2ef64199a582fae14a3321 | 1 + .../sql/hive/execution/HiveQuerySuite.scala | 4 ++++ 3 files changed, 21 insertions(+) create mode 100644 sql/hive/src/test/resources/golden/between-0-df3cf89fcf2ef64199a582fae14a3321 diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala index 1f688fe1117fe..93b9057a23816 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala @@ -233,6 +233,11 @@ private[hive] object HiveQl { } } catch { case e: Exception => throw new ParseException(sql, e) + case e: NotImplementedError => sys.error( + s""" + |Unsupported language features in query: $sql + |${dumpTree(getAst(sql))} + """.stripMargin) } } @@ -865,6 +870,17 @@ private[hive] object HiveQl { IsNull(nodeToExpr(child)) case Token("TOK_FUNCTION", Token("IN", Nil) :: value :: list) => In(nodeToExpr(value), list.map(nodeToExpr)) + case Token("TOK_FUNCTION", + Token("between", Nil) :: + Token("KW_FALSE", Nil) :: + target :: + minValue :: + maxValue :: Nil) => + + val targetExpression = nodeToExpr(target) + And( + GreaterThanOrEqual(targetExpression, nodeToExpr(minValue)), + LessThanOrEqual(targetExpression, nodeToExpr(maxValue))) /* Boolean Logic */ case Token(AND(), left :: right:: Nil) => And(nodeToExpr(left), nodeToExpr(right)) diff --git a/sql/hive/src/test/resources/golden/between-0-df3cf89fcf2ef64199a582fae14a3321 b/sql/hive/src/test/resources/golden/between-0-df3cf89fcf2ef64199a582fae14a3321 new file mode 100644 index 0000000000000..dcd1d8643e3cb --- /dev/null +++ b/sql/hive/src/test/resources/golden/between-0-df3cf89fcf2ef64199a582fae14a3321 @@ -0,0 +1 @@ +2 val_2 diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 87a92d83383ab..1a2b2f89182ae 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -24,6 +24,10 @@ import org.apache.spark.sql.hive.test.TestHive._ */ class HiveQuerySuite extends HiveComparisonTest { + createQueryTest("between", + "SELECT * FROM src WHERE key between 1 and 2" + ) + test("Query expressed in SQL") { assert(sql("SELECT 1").collect() === Array(Seq(1))) } From 40d6acd6ba2feccc600301f5c47d4f90157138b1 Mon Sep 17 00:00:00 2001 From: Andre Schumacher Date: Fri, 16 May 2014 13:41:41 -0700 Subject: [PATCH 005/118] SPARK-1487 [SQL] Support record filtering via predicate pushdown in Parquet Simple filter predicates such as LessThan, GreaterThan, etc., where one side is a literal and the other one a NamedExpression are now pushed down to the underlying ParquetTableScan. Here are some results for a microbenchmark with a simple schema of six fields of different types where most records failed the test: | Uncompressed | Compressed -------------| ------------- | ------------- File size | 10 GB | 2 GB Speedup | 2 | 1.8 Since mileage may vary I added a new option to SparkConf: `org.apache.spark.sql.parquet.filter.pushdown` Default value would be `true` and setting it to `false` disables the pushdown. When most rows are expected to pass the filter or when there are few fields performance can be better when pushdown is disabled. The default should fit situations with a reasonable number of (possibly nested) fields where not too many records on average pass the filter. Because of an issue with Parquet ([see here](https://github.com/Parquet/parquet-mr/issues/371])) currently only predicates on non-nullable attributes are pushed down. If one would know that for a given table no optional fields have missing values one could also allow overriding this. Author: Andre Schumacher Closes #511 from AndreSchumacher/parquet_filter and squashes the following commits: 16bfe83 [Andre Schumacher] Removing leftovers from merge during rebase 7b304ca [Andre Schumacher] Fixing formatting c36d5cb [Andre Schumacher] Scalastyle 3da98db [Andre Schumacher] Second round of review feedback 7a78265 [Andre Schumacher] Fixing broken formatting in ParquetFilter a86553b [Andre Schumacher] First round of code review feedback b0f7806 [Andre Schumacher] Optimizing imports in ParquetTestData 85fea2d [Andre Schumacher] Adding SparkConf setting to disable filter predicate pushdown f0ad3cf [Andre Schumacher] Undoing changes not needed for this PR 210e9cb [Andre Schumacher] Adding disjunctive filter predicates a93a588 [Andre Schumacher] Adding unit test for filtering 6d22666 [Andre Schumacher] Extending ParquetFilters 93e8192 [Andre Schumacher] First commit Parquet record filtering --- .../spark/sql/execution/SparkStrategies.scala | 31 +- .../spark/sql/parquet/ParquetFilters.scala | 436 ++++++++++++++++++ .../sql/parquet/ParquetTableOperations.scala | 90 +++- .../spark/sql/parquet/ParquetTestData.scala | 90 +++- .../spark/sql/parquet/ParquetQuerySuite.scala | 135 +++++- 5 files changed, 731 insertions(+), 51 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala index f763106da4e0e..394a59700dbaf 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala @@ -140,12 +140,35 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] { InsertIntoParquetTable(relation, planLater(child), overwrite=true)(sparkContext) :: Nil case logical.InsertIntoTable(table: ParquetRelation, partition, child, overwrite) => InsertIntoParquetTable(table, planLater(child), overwrite)(sparkContext) :: Nil - case PhysicalOperation(projectList, filters, relation: ParquetRelation) => - // TODO: Should be pushing down filters as well. + case PhysicalOperation(projectList, filters: Seq[Expression], relation: ParquetRelation) => { + val remainingFilters = + if (sparkContext.conf.getBoolean(ParquetFilters.PARQUET_FILTER_PUSHDOWN_ENABLED, true)) { + filters.filter { + // Note: filters cannot be pushed down to Parquet if they contain more complex + // expressions than simple "Attribute cmp Literal" comparisons. Here we remove + // all filters that have been pushed down. Note that a predicate such as + // "(A AND B) OR C" can result in "A OR C" being pushed down. + filter => + val recordFilter = ParquetFilters.createFilter(filter) + if (!recordFilter.isDefined) { + // First case: the pushdown did not result in any record filter. + true + } else { + // Second case: a record filter was created; here we are conservative in + // the sense that even if "A" was pushed and we check for "A AND B" we + // still want to keep "A AND B" in the higher-level filter, not just "B". + !ParquetFilters.findExpression(recordFilter.get, filter).isDefined + } + } + } else { + filters + } pruneFilterProject( projectList, - filters, - ParquetTableScan(_, relation, None)(sparkContext)) :: Nil + remainingFilters, + ParquetTableScan(_, relation, filters)(sparkContext)) :: Nil + } + case _ => Nil } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala new file mode 100644 index 0000000000000..052b0a9196717 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala @@ -0,0 +1,436 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.parquet + +import org.apache.hadoop.conf.Configuration + +import parquet.filter._ +import parquet.filter.ColumnPredicates._ +import parquet.column.ColumnReader + +import com.google.common.io.BaseEncoding + +import org.apache.spark.sql.catalyst.types._ +import org.apache.spark.sql.catalyst.expressions.{Predicate => CatalystPredicate} +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.execution.SparkSqlSerializer + +object ParquetFilters { + val PARQUET_FILTER_DATA = "org.apache.spark.sql.parquet.row.filter" + // set this to false if pushdown should be disabled + val PARQUET_FILTER_PUSHDOWN_ENABLED = "spark.sql.hints.parquetFilterPushdown" + + def createRecordFilter(filterExpressions: Seq[Expression]): UnboundRecordFilter = { + val filters: Seq[CatalystFilter] = filterExpressions.collect { + case (expression: Expression) if createFilter(expression).isDefined => + createFilter(expression).get + } + if (filters.length > 0) filters.reduce(AndRecordFilter.and) else null + } + + def createFilter(expression: Expression): Option[CatalystFilter] = { + def createEqualityFilter( + name: String, + literal: Literal, + predicate: CatalystPredicate) = literal.dataType match { + case BooleanType => + ComparisonFilter.createBooleanFilter(name, literal.value.asInstanceOf[Boolean], predicate) + case IntegerType => + ComparisonFilter.createIntFilter( + name, + (x: Int) => x == literal.value.asInstanceOf[Int], + predicate) + case LongType => + ComparisonFilter.createLongFilter( + name, + (x: Long) => x == literal.value.asInstanceOf[Long], + predicate) + case DoubleType => + ComparisonFilter.createDoubleFilter( + name, + (x: Double) => x == literal.value.asInstanceOf[Double], + predicate) + case FloatType => + ComparisonFilter.createFloatFilter( + name, + (x: Float) => x == literal.value.asInstanceOf[Float], + predicate) + case StringType => + ComparisonFilter.createStringFilter(name, literal.value.asInstanceOf[String], predicate) + } + def createLessThanFilter( + name: String, + literal: Literal, + predicate: CatalystPredicate) = literal.dataType match { + case IntegerType => + ComparisonFilter.createIntFilter( + name, + (x: Int) => x < literal.value.asInstanceOf[Int], + predicate) + case LongType => + ComparisonFilter.createLongFilter( + name, + (x: Long) => x < literal.value.asInstanceOf[Long], + predicate) + case DoubleType => + ComparisonFilter.createDoubleFilter( + name, + (x: Double) => x < literal.value.asInstanceOf[Double], + predicate) + case FloatType => + ComparisonFilter.createFloatFilter( + name, + (x: Float) => x < literal.value.asInstanceOf[Float], + predicate) + } + def createLessThanOrEqualFilter( + name: String, + literal: Literal, + predicate: CatalystPredicate) = literal.dataType match { + case IntegerType => + ComparisonFilter.createIntFilter( + name, + (x: Int) => x <= literal.value.asInstanceOf[Int], + predicate) + case LongType => + ComparisonFilter.createLongFilter( + name, + (x: Long) => x <= literal.value.asInstanceOf[Long], + predicate) + case DoubleType => + ComparisonFilter.createDoubleFilter( + name, + (x: Double) => x <= literal.value.asInstanceOf[Double], + predicate) + case FloatType => + ComparisonFilter.createFloatFilter( + name, + (x: Float) => x <= literal.value.asInstanceOf[Float], + predicate) + } + // TODO: combine these two types somehow? + def createGreaterThanFilter( + name: String, + literal: Literal, + predicate: CatalystPredicate) = literal.dataType match { + case IntegerType => + ComparisonFilter.createIntFilter( + name, + (x: Int) => x > literal.value.asInstanceOf[Int], + predicate) + case LongType => + ComparisonFilter.createLongFilter( + name, + (x: Long) => x > literal.value.asInstanceOf[Long], + predicate) + case DoubleType => + ComparisonFilter.createDoubleFilter( + name, + (x: Double) => x > literal.value.asInstanceOf[Double], + predicate) + case FloatType => + ComparisonFilter.createFloatFilter( + name, + (x: Float) => x > literal.value.asInstanceOf[Float], + predicate) + } + def createGreaterThanOrEqualFilter( + name: String, + literal: Literal, + predicate: CatalystPredicate) = literal.dataType match { + case IntegerType => + ComparisonFilter.createIntFilter( + name, (x: Int) => x >= literal.value.asInstanceOf[Int], + predicate) + case LongType => + ComparisonFilter.createLongFilter( + name, + (x: Long) => x >= literal.value.asInstanceOf[Long], + predicate) + case DoubleType => + ComparisonFilter.createDoubleFilter( + name, + (x: Double) => x >= literal.value.asInstanceOf[Double], + predicate) + case FloatType => + ComparisonFilter.createFloatFilter( + name, + (x: Float) => x >= literal.value.asInstanceOf[Float], + predicate) + } + + /** + * TODO: we currently only filter on non-nullable (Parquet REQUIRED) attributes until + * https://github.com/Parquet/parquet-mr/issues/371 + * has been resolved. + */ + expression match { + case p @ Or(left: Expression, right: Expression) + if createFilter(left).isDefined && createFilter(right).isDefined => { + // If either side of this Or-predicate is empty then this means + // it contains a more complex comparison than between attribute and literal + // (e.g., it contained a CAST). The only safe thing to do is then to disregard + // this disjunction, which could be contained in a conjunction. If it stands + // alone then it is also safe to drop it, since a Null return value of this + // function is interpreted as having no filters at all. + val leftFilter = createFilter(left).get + val rightFilter = createFilter(right).get + Some(new OrFilter(leftFilter, rightFilter)) + } + case p @ And(left: Expression, right: Expression) => { + // This treats nested conjunctions; since either side of the conjunction + // may contain more complex filter expressions we may actually generate + // strictly weaker filter predicates in the process. + val leftFilter = createFilter(left) + val rightFilter = createFilter(right) + (leftFilter, rightFilter) match { + case (None, Some(filter)) => Some(filter) + case (Some(filter), None) => Some(filter) + case (_, _) => + Some(new AndFilter(leftFilter.get, rightFilter.get)) + } + } + case p @ Equals(left: Literal, right: NamedExpression) if !right.nullable => + Some(createEqualityFilter(right.name, left, p)) + case p @ Equals(left: NamedExpression, right: Literal) if !left.nullable => + Some(createEqualityFilter(left.name, right, p)) + case p @ LessThan(left: Literal, right: NamedExpression) if !right.nullable => + Some(createLessThanFilter(right.name, left, p)) + case p @ LessThan(left: NamedExpression, right: Literal) if !left.nullable => + Some(createLessThanFilter(left.name, right, p)) + case p @ LessThanOrEqual(left: Literal, right: NamedExpression) if !right.nullable => + Some(createLessThanOrEqualFilter(right.name, left, p)) + case p @ LessThanOrEqual(left: NamedExpression, right: Literal) if !left.nullable => + Some(createLessThanOrEqualFilter(left.name, right, p)) + case p @ GreaterThan(left: Literal, right: NamedExpression) if !right.nullable => + Some(createGreaterThanFilter(right.name, left, p)) + case p @ GreaterThan(left: NamedExpression, right: Literal) if !left.nullable => + Some(createGreaterThanFilter(left.name, right, p)) + case p @ GreaterThanOrEqual(left: Literal, right: NamedExpression) if !right.nullable => + Some(createGreaterThanOrEqualFilter(right.name, left, p)) + case p @ GreaterThanOrEqual(left: NamedExpression, right: Literal) if !left.nullable => + Some(createGreaterThanOrEqualFilter(left.name, right, p)) + case _ => None + } + } + + /** + * Note: Inside the Hadoop API we only have access to `Configuration`, not to + * [[org.apache.spark.SparkContext]], so we cannot use broadcasts to convey + * the actual filter predicate. + */ + def serializeFilterExpressions(filters: Seq[Expression], conf: Configuration): Unit = { + if (filters.length > 0) { + val serialized: Array[Byte] = SparkSqlSerializer.serialize(filters) + val encoded: String = BaseEncoding.base64().encode(serialized) + conf.set(PARQUET_FILTER_DATA, encoded) + } + } + + /** + * Note: Inside the Hadoop API we only have access to `Configuration`, not to + * [[org.apache.spark.SparkContext]], so we cannot use broadcasts to convey + * the actual filter predicate. + */ + def deserializeFilterExpressions(conf: Configuration): Seq[Expression] = { + val data = conf.get(PARQUET_FILTER_DATA) + if (data != null) { + val decoded: Array[Byte] = BaseEncoding.base64().decode(data) + SparkSqlSerializer.deserialize(decoded) + } else { + Seq() + } + } + + /** + * Try to find the given expression in the tree of filters in order to + * determine whether it is safe to remove it from the higher level filters. Note + * that strictly speaking we could stop the search whenever an expression is found + * that contains this expression as subexpression (e.g., when searching for "a" + * and "(a or c)" is found) but we don't care about optimizations here since the + * filter tree is assumed to be small. + * + * @param filter The [[org.apache.spark.sql.parquet.CatalystFilter]] to expand + * and search + * @param expression The expression to look for + * @return An optional [[org.apache.spark.sql.parquet.CatalystFilter]] that + * contains the expression. + */ + def findExpression( + filter: CatalystFilter, + expression: Expression): Option[CatalystFilter] = filter match { + case f @ OrFilter(_, leftFilter, rightFilter, _) => + if (f.predicate == expression) { + Some(f) + } else { + val left = findExpression(leftFilter, expression) + if (left.isDefined) left else findExpression(rightFilter, expression) + } + case f @ AndFilter(_, leftFilter, rightFilter, _) => + if (f.predicate == expression) { + Some(f) + } else { + val left = findExpression(leftFilter, expression) + if (left.isDefined) left else findExpression(rightFilter, expression) + } + case f @ ComparisonFilter(_, _, predicate) => + if (predicate == expression) Some(f) else None + case _ => None + } +} + +abstract private[parquet] class CatalystFilter( + @transient val predicate: CatalystPredicate) extends UnboundRecordFilter + +private[parquet] case class ComparisonFilter( + val columnName: String, + private var filter: UnboundRecordFilter, + @transient override val predicate: CatalystPredicate) + extends CatalystFilter(predicate) { + override def bind(readers: java.lang.Iterable[ColumnReader]): RecordFilter = { + filter.bind(readers) + } +} + +private[parquet] case class OrFilter( + private var filter: UnboundRecordFilter, + @transient val left: CatalystFilter, + @transient val right: CatalystFilter, + @transient override val predicate: Or) + extends CatalystFilter(predicate) { + def this(l: CatalystFilter, r: CatalystFilter) = + this( + OrRecordFilter.or(l, r), + l, + r, + Or(l.predicate, r.predicate)) + + override def bind(readers: java.lang.Iterable[ColumnReader]): RecordFilter = { + filter.bind(readers) + } +} + +private[parquet] case class AndFilter( + private var filter: UnboundRecordFilter, + @transient val left: CatalystFilter, + @transient val right: CatalystFilter, + @transient override val predicate: And) + extends CatalystFilter(predicate) { + def this(l: CatalystFilter, r: CatalystFilter) = + this( + AndRecordFilter.and(l, r), + l, + r, + And(l.predicate, r.predicate)) + + override def bind(readers: java.lang.Iterable[ColumnReader]): RecordFilter = { + filter.bind(readers) + } +} + +private[parquet] object ComparisonFilter { + def createBooleanFilter( + columnName: String, + value: Boolean, + predicate: CatalystPredicate): CatalystFilter = + new ComparisonFilter( + columnName, + ColumnRecordFilter.column( + columnName, + ColumnPredicates.applyFunctionToBoolean( + new BooleanPredicateFunction { + def functionToApply(input: Boolean): Boolean = input == value + } + )), + predicate) + + def createStringFilter( + columnName: String, + value: String, + predicate: CatalystPredicate): CatalystFilter = + new ComparisonFilter( + columnName, + ColumnRecordFilter.column( + columnName, + ColumnPredicates.applyFunctionToString ( + new ColumnPredicates.PredicateFunction[String] { + def functionToApply(input: String): Boolean = input == value + } + )), + predicate) + + def createIntFilter( + columnName: String, + func: Int => Boolean, + predicate: CatalystPredicate): CatalystFilter = + new ComparisonFilter( + columnName, + ColumnRecordFilter.column( + columnName, + ColumnPredicates.applyFunctionToInteger( + new IntegerPredicateFunction { + def functionToApply(input: Int) = func(input) + } + )), + predicate) + + def createLongFilter( + columnName: String, + func: Long => Boolean, + predicate: CatalystPredicate): CatalystFilter = + new ComparisonFilter( + columnName, + ColumnRecordFilter.column( + columnName, + ColumnPredicates.applyFunctionToLong( + new LongPredicateFunction { + def functionToApply(input: Long) = func(input) + } + )), + predicate) + + def createDoubleFilter( + columnName: String, + func: Double => Boolean, + predicate: CatalystPredicate): CatalystFilter = + new ComparisonFilter( + columnName, + ColumnRecordFilter.column( + columnName, + ColumnPredicates.applyFunctionToDouble( + new DoublePredicateFunction { + def functionToApply(input: Double) = func(input) + } + )), + predicate) + + def createFloatFilter( + columnName: String, + func: Float => Boolean, + predicate: CatalystPredicate): CatalystFilter = + new ComparisonFilter( + columnName, + ColumnRecordFilter.column( + columnName, + ColumnPredicates.applyFunctionToFloat( + new FloatPredicateFunction { + def functionToApply(input: Float) = func(input) + } + )), + predicate) +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala index f825ca3c028ef..65ba1246fbf9a 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala @@ -27,26 +27,27 @@ import org.apache.hadoop.mapreduce._ import org.apache.hadoop.mapreduce.lib.input.{FileInputFormat => NewFileInputFormat} import org.apache.hadoop.mapreduce.lib.output.{FileOutputFormat => NewFileOutputFormat, FileOutputCommitter} -import parquet.hadoop.{ParquetInputFormat, ParquetOutputFormat} +import parquet.hadoop.{ParquetRecordReader, ParquetInputFormat, ParquetOutputFormat} +import parquet.hadoop.api.ReadSupport import parquet.hadoop.util.ContextUtil import parquet.io.InvalidRecordException import parquet.schema.MessageType -import org.apache.spark.{SerializableWritable, SparkContext, TaskContext} +import org.apache.spark.{Logging, SerializableWritable, SparkContext, TaskContext} import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.expressions.{Attribute, Expression, Row} import org.apache.spark.sql.execution.{LeafNode, SparkPlan, UnaryNode} /** * Parquet table scan operator. Imports the file that backs the given - * [[ParquetRelation]] as a RDD[Row]. + * [[org.apache.spark.sql.parquet.ParquetRelation]] as a ``RDD[Row]``. */ case class ParquetTableScan( // note: output cannot be transient, see // https://issues.apache.org/jira/browse/SPARK-1367 output: Seq[Attribute], relation: ParquetRelation, - columnPruningPred: Option[Expression])( + columnPruningPred: Seq[Expression])( @transient val sc: SparkContext) extends LeafNode { @@ -62,18 +63,30 @@ case class ParquetTableScan( for (path <- fileList if !path.getName.startsWith("_")) { NewFileInputFormat.addInputPath(job, path) } + + // Store Parquet schema in `Configuration` conf.set( RowReadSupport.PARQUET_ROW_REQUESTED_SCHEMA, ParquetTypesConverter.convertFromAttributes(output).toString) - // TODO: think about adding record filters - /* Comments regarding record filters: it would be nice to push down as much filtering - to Parquet as possible. However, currently it seems we cannot pass enough information - to materialize an (arbitrary) Catalyst [[Predicate]] inside Parquet's - ``FilteredRecordReader`` (via Configuration, for example). Simple - filter-rows-by-column-values however should be supported. - */ - sc.newAPIHadoopRDD(conf, classOf[ParquetInputFormat[Row]], classOf[Void], classOf[Row]) - .map(_._2) + + // Store record filtering predicate in `Configuration` + // Note 1: the input format ignores all predicates that cannot be expressed + // as simple column predicate filters in Parquet. Here we just record + // the whole pruning predicate. + // Note 2: you can disable filter predicate pushdown by setting + // "spark.sql.hints.parquetFilterPushdown" to false inside SparkConf. + if (columnPruningPred.length > 0 && + sc.conf.getBoolean(ParquetFilters.PARQUET_FILTER_PUSHDOWN_ENABLED, true)) { + ParquetFilters.serializeFilterExpressions(columnPruningPred, conf) + } + + sc.newAPIHadoopRDD( + conf, + classOf[org.apache.spark.sql.parquet.FilteringParquetRowInputFormat], + classOf[Void], + classOf[Row]) + .map(_._2) + .filter(_ != null) // Parquet's record filters may produce null values } override def otherCopyArgs = sc :: Nil @@ -184,10 +197,19 @@ case class InsertIntoParquetTable( override def otherCopyArgs = sc :: Nil - // based on ``saveAsNewAPIHadoopFile`` in [[PairRDDFunctions]] - // TODO: Maybe PairRDDFunctions should use Product2 instead of Tuple2? - // .. then we could use the default one and could use [[MutablePair]] - // instead of ``Tuple2`` + /** + * Stores the given Row RDD as a Hadoop file. + * + * Note: We cannot use ``saveAsNewAPIHadoopFile`` from [[org.apache.spark.rdd.PairRDDFunctions]] + * together with [[org.apache.spark.util.MutablePair]] because ``PairRDDFunctions`` uses + * ``Tuple2`` and not ``Product2``. Also, we want to allow appending files to an existing + * directory and need to determine which was the largest written file index before starting to + * write. + * + * @param rdd The [[org.apache.spark.rdd.RDD]] to writer + * @param path The directory to write to. + * @param conf A [[org.apache.hadoop.conf.Configuration]]. + */ private def saveAsHadoopFile( rdd: RDD[Row], path: String, @@ -244,8 +266,10 @@ case class InsertIntoParquetTable( } } -// TODO: this will be able to append to directories it created itself, not necessarily -// to imported ones +/** + * TODO: this will be able to append to directories it created itself, not necessarily + * to imported ones. + */ private[parquet] class AppendingParquetOutputFormat(offset: Int) extends parquet.hadoop.ParquetOutputFormat[Row] { // override to accept existing directories as valid output directory @@ -262,6 +286,30 @@ private[parquet] class AppendingParquetOutputFormat(offset: Int) } } +/** + * We extend ParquetInputFormat in order to have more control over which + * RecordFilter we want to use. + */ +private[parquet] class FilteringParquetRowInputFormat + extends parquet.hadoop.ParquetInputFormat[Row] with Logging { + override def createRecordReader( + inputSplit: InputSplit, + taskAttemptContext: TaskAttemptContext): RecordReader[Void, Row] = { + val readSupport: ReadSupport[Row] = new RowReadSupport() + + val filterExpressions = + ParquetFilters.deserializeFilterExpressions(ContextUtil.getConfiguration(taskAttemptContext)) + if (filterExpressions.length > 0) { + logInfo(s"Pushing down predicates for RecordFilter: ${filterExpressions.mkString(", ")}") + new ParquetRecordReader[Row]( + readSupport, + ParquetFilters.createRecordFilter(filterExpressions)) + } else { + new ParquetRecordReader[Row](readSupport) + } + } +} + private[parquet] object FileSystemHelper { def listFiles(pathStr: String, conf: Configuration): Seq[Path] = { val origPath = new Path(pathStr) @@ -278,7 +326,9 @@ private[parquet] object FileSystemHelper { fs.listStatus(path).map(_.getPath) } - // finds the maximum taskid in the output file names at the given path + /** + * Finds the maximum taskid in the output file names at the given path. + */ def findMaxTaskId(pathStr: String, conf: Configuration): Int = { val files = FileSystemHelper.listFiles(pathStr, conf) // filename pattern is part-r-.parquet diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala index f37976f7313c1..46c7172985642 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala @@ -19,15 +19,34 @@ package org.apache.spark.sql.parquet import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path -import org.apache.hadoop.mapreduce.Job +import parquet.example.data.{GroupWriter, Group} +import parquet.example.data.simple.SimpleGroup import parquet.hadoop.ParquetWriter -import parquet.hadoop.util.ContextUtil +import parquet.hadoop.api.WriteSupport +import parquet.hadoop.api.WriteSupport.WriteContext +import parquet.io.api.RecordConsumer import parquet.schema.{MessageType, MessageTypeParser} -import org.apache.spark.sql.catalyst.expressions.GenericRow import org.apache.spark.util.Utils +// Write support class for nested groups: ParquetWriter initializes GroupWriteSupport +// with an empty configuration (it is after all not intended to be used in this way?) +// and members are private so we need to make our own in order to pass the schema +// to the writer. +private class TestGroupWriteSupport(schema: MessageType) extends WriteSupport[Group] { + var groupWriter: GroupWriter = null + override def prepareForWrite(recordConsumer: RecordConsumer): Unit = { + groupWriter = new GroupWriter(recordConsumer, schema) + } + override def init(configuration: Configuration): WriteContext = { + new WriteContext(schema, new java.util.HashMap[String, String]()) + } + override def write(record: Group) { + groupWriter.write(record) + } +} + private[sql] object ParquetTestData { val testSchema = @@ -43,7 +62,7 @@ private[sql] object ParquetTestData { // field names for test assertion error messages val testSchemaFieldNames = Seq( "myboolean:Boolean", - "mtint:Int", + "myint:Int", "mystring:String", "mylong:Long", "myfloat:Float", @@ -58,6 +77,18 @@ private[sql] object ParquetTestData { |} """.stripMargin + val testFilterSchema = + """ + |message myrecord { + |required boolean myboolean; + |required int32 myint; + |required binary mystring; + |required int64 mylong; + |required float myfloat; + |required double mydouble; + |} + """.stripMargin + // field names for test assertion error messages val subTestSchemaFieldNames = Seq( "myboolean:Boolean", @@ -65,36 +96,57 @@ private[sql] object ParquetTestData { ) val testDir = Utils.createTempDir() + val testFilterDir = Utils.createTempDir() lazy val testData = new ParquetRelation(testDir.toURI.toString) def writeFile() = { testDir.delete val path: Path = new Path(new Path(testDir.toURI), new Path("part-r-0.parquet")) - val job = new Job() - val configuration: Configuration = ContextUtil.getConfiguration(job) val schema: MessageType = MessageTypeParser.parseMessageType(testSchema) + val writeSupport = new TestGroupWriteSupport(schema) + val writer = new ParquetWriter[Group](path, writeSupport) - val writeSupport = new RowWriteSupport() - writeSupport.setSchema(schema, configuration) - val writer = new ParquetWriter(path, writeSupport) for(i <- 0 until 15) { - val data = new Array[Any](6) + val record = new SimpleGroup(schema) if (i % 3 == 0) { - data.update(0, true) + record.add(0, true) } else { - data.update(0, false) + record.add(0, false) } if (i % 5 == 0) { - data.update(1, 5) + record.add(1, 5) + } + record.add(2, "abc") + record.add(3, i.toLong << 33) + record.add(4, 2.5F) + record.add(5, 4.5D) + writer.write(record) + } + writer.close() + } + + def writeFilterFile(records: Int = 200) = { + // for microbenchmark use: records = 300000000 + testFilterDir.delete + val path: Path = new Path(new Path(testFilterDir.toURI), new Path("part-r-0.parquet")) + val schema: MessageType = MessageTypeParser.parseMessageType(testFilterSchema) + val writeSupport = new TestGroupWriteSupport(schema) + val writer = new ParquetWriter[Group](path, writeSupport) + + for(i <- 0 to records) { + val record = new SimpleGroup(schema) + if (i % 4 == 0) { + record.add(0, true) } else { - data.update(1, null) // optional + record.add(0, false) } - data.update(2, "abc") - data.update(3, i.toLong << 33) - data.update(4, 2.5F) - data.update(5, 4.5D) - writer.write(new GenericRow(data.toArray)) + record.add(1, i) + record.add(2, i.toString) + record.add(3, i.toLong) + record.add(4, i.toFloat + 0.5f) + record.add(5, i.toDouble + 0.5d) + writer.write(record) } writer.close() } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala index ff1677eb8a480..65f4c17aeee3a 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala @@ -17,25 +17,25 @@ package org.apache.spark.sql.parquet -import java.io.File - import org.scalatest.{BeforeAndAfterAll, FunSuite} import org.apache.hadoop.fs.{Path, FileSystem} import org.apache.hadoop.mapreduce.Job import parquet.hadoop.ParquetFileWriter -import parquet.schema.MessageTypeParser import parquet.hadoop.util.ContextUtil +import parquet.schema.MessageTypeParser import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.util.getTempFilePath -import org.apache.spark.sql.catalyst.expressions.{AttributeReference, Row} +import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.test.TestSQLContext import org.apache.spark.sql.TestData +import org.apache.spark.sql.SchemaRDD +import org.apache.spark.sql.catalyst.expressions.Row +import org.apache.spark.sql.catalyst.expressions.Equals +import org.apache.spark.sql.catalyst.types.IntegerType import org.apache.spark.util.Utils -import org.apache.spark.sql.catalyst.types.{StringType, IntegerType, DataType} -import org.apache.spark.sql.{parquet, SchemaRDD} // Implicits import org.apache.spark.sql.test.TestSQLContext._ @@ -64,12 +64,16 @@ class ParquetQuerySuite extends QueryTest with FunSuite with BeforeAndAfterAll { override def beforeAll() { ParquetTestData.writeFile() + ParquetTestData.writeFilterFile() testRDD = parquetFile(ParquetTestData.testDir.toString) testRDD.registerAsTable("testsource") + parquetFile(ParquetTestData.testFilterDir.toString) + .registerAsTable("testfiltersource") } override def afterAll() { Utils.deleteRecursively(ParquetTestData.testDir) + Utils.deleteRecursively(ParquetTestData.testFilterDir) // here we should also unregister the table?? } @@ -120,7 +124,7 @@ class ParquetQuerySuite extends QueryTest with FunSuite with BeforeAndAfterAll { val scanner = new ParquetTableScan( ParquetTestData.testData.output, ParquetTestData.testData, - None)(TestSQLContext.sparkContext) + Seq())(TestSQLContext.sparkContext) val projected = scanner.pruneColumns(ParquetTypesConverter .convertToAttributes(MessageTypeParser .parseMessageType(ParquetTestData.subTestSchema))) @@ -196,7 +200,6 @@ class ParquetQuerySuite extends QueryTest with FunSuite with BeforeAndAfterAll { assert(true) } - test("insert (appending) to same table via Scala API") { sql("INSERT INTO testsource SELECT * FROM testsource").collect() val double_rdd = sql("SELECT * FROM testsource").collect() @@ -239,5 +242,121 @@ class ParquetQuerySuite extends QueryTest with FunSuite with BeforeAndAfterAll { Utils.deleteRecursively(file) assert(true) } + + test("create RecordFilter for simple predicates") { + val attribute1 = new AttributeReference("first", IntegerType, false)() + val predicate1 = new Equals(attribute1, new Literal(1, IntegerType)) + val filter1 = ParquetFilters.createFilter(predicate1) + assert(filter1.isDefined) + assert(filter1.get.predicate == predicate1, "predicates do not match") + assert(filter1.get.isInstanceOf[ComparisonFilter]) + val cmpFilter1 = filter1.get.asInstanceOf[ComparisonFilter] + assert(cmpFilter1.columnName == "first", "column name incorrect") + + val predicate2 = new LessThan(attribute1, new Literal(4, IntegerType)) + val filter2 = ParquetFilters.createFilter(predicate2) + assert(filter2.isDefined) + assert(filter2.get.predicate == predicate2, "predicates do not match") + assert(filter2.get.isInstanceOf[ComparisonFilter]) + val cmpFilter2 = filter2.get.asInstanceOf[ComparisonFilter] + assert(cmpFilter2.columnName == "first", "column name incorrect") + + val predicate3 = new And(predicate1, predicate2) + val filter3 = ParquetFilters.createFilter(predicate3) + assert(filter3.isDefined) + assert(filter3.get.predicate == predicate3, "predicates do not match") + assert(filter3.get.isInstanceOf[AndFilter]) + + val predicate4 = new Or(predicate1, predicate2) + val filter4 = ParquetFilters.createFilter(predicate4) + assert(filter4.isDefined) + assert(filter4.get.predicate == predicate4, "predicates do not match") + assert(filter4.get.isInstanceOf[OrFilter]) + + val attribute2 = new AttributeReference("second", IntegerType, false)() + val predicate5 = new GreaterThan(attribute1, attribute2) + val badfilter = ParquetFilters.createFilter(predicate5) + assert(badfilter.isDefined === false) + } + + test("test filter by predicate pushdown") { + for(myval <- Seq("myint", "mylong", "mydouble", "myfloat")) { + println(s"testing field $myval") + val query1 = sql(s"SELECT * FROM testfiltersource WHERE $myval < 150 AND $myval >= 100") + assert( + query1.queryExecution.executedPlan(0)(0).isInstanceOf[ParquetTableScan], + "Top operator should be ParquetTableScan after pushdown") + val result1 = query1.collect() + assert(result1.size === 50) + assert(result1(0)(1) === 100) + assert(result1(49)(1) === 149) + val query2 = sql(s"SELECT * FROM testfiltersource WHERE $myval > 150 AND $myval <= 200") + assert( + query2.queryExecution.executedPlan(0)(0).isInstanceOf[ParquetTableScan], + "Top operator should be ParquetTableScan after pushdown") + val result2 = query2.collect() + assert(result2.size === 50) + if (myval == "myint" || myval == "mylong") { + assert(result2(0)(1) === 151) + assert(result2(49)(1) === 200) + } else { + assert(result2(0)(1) === 150) + assert(result2(49)(1) === 199) + } + } + for(myval <- Seq("myint", "mylong")) { + val query3 = sql(s"SELECT * FROM testfiltersource WHERE $myval > 190 OR $myval < 10") + assert( + query3.queryExecution.executedPlan(0)(0).isInstanceOf[ParquetTableScan], + "Top operator should be ParquetTableScan after pushdown") + val result3 = query3.collect() + assert(result3.size === 20) + assert(result3(0)(1) === 0) + assert(result3(9)(1) === 9) + assert(result3(10)(1) === 191) + assert(result3(19)(1) === 200) + } + for(myval <- Seq("mydouble", "myfloat")) { + val result4 = + if (myval == "mydouble") { + val query4 = sql(s"SELECT * FROM testfiltersource WHERE $myval > 190.5 OR $myval < 10.0") + assert( + query4.queryExecution.executedPlan(0)(0).isInstanceOf[ParquetTableScan], + "Top operator should be ParquetTableScan after pushdown") + query4.collect() + } else { + // CASTs are problematic. Here myfloat will be casted to a double and it seems there is + // currently no way to specify float constants in SqlParser? + sql(s"SELECT * FROM testfiltersource WHERE $myval > 190.5 OR $myval < 10").collect() + } + assert(result4.size === 20) + assert(result4(0)(1) === 0) + assert(result4(9)(1) === 9) + assert(result4(10)(1) === 191) + assert(result4(19)(1) === 200) + } + val query5 = sql(s"SELECT * FROM testfiltersource WHERE myboolean = true AND myint < 40") + assert( + query5.queryExecution.executedPlan(0)(0).isInstanceOf[ParquetTableScan], + "Top operator should be ParquetTableScan after pushdown") + val booleanResult = query5.collect() + assert(booleanResult.size === 10) + for(i <- 0 until 10) { + if (!booleanResult(i).getBoolean(0)) { + fail(s"Boolean value in result row $i not true") + } + if (booleanResult(i).getInt(1) != i * 4) { + fail(s"Int value in result row $i should be ${4*i}") + } + } + val query6 = sql("SELECT * FROM testfiltersource WHERE mystring = \"100\"") + assert( + query6.queryExecution.executedPlan(0)(0).isInstanceOf[ParquetTableScan], + "Top operator should be ParquetTableScan after pushdown") + val stringResult = query6.collect() + assert(stringResult.size === 1) + assert(stringResult(0).getString(2) == "100", "stringvalue incorrect") + assert(stringResult(0).getInt(1) === 100) + } } From fed6303f29250bd5e656dbdd731b38938c933a61 Mon Sep 17 00:00:00 2001 From: Matei Zaharia Date: Fri, 16 May 2014 17:35:05 -0700 Subject: [PATCH 006/118] Tweaks to Mesos docs - Mention Apache downloads first - Shorten some wording Author: Matei Zaharia Closes #806 from mateiz/doc-update and squashes the following commits: d9345cd [Matei Zaharia] typo a179f8d [Matei Zaharia] Tweaks to Mesos docs --- docs/running-on-mesos.md | 71 +++++++++++++++++++--------------------- 1 file changed, 34 insertions(+), 37 deletions(-) diff --git a/docs/running-on-mesos.md b/docs/running-on-mesos.md index ef762aa7b8fcc..df8687f81f3ef 100644 --- a/docs/running-on-mesos.md +++ b/docs/running-on-mesos.md @@ -3,16 +3,15 @@ layout: global title: Running Spark on Mesos --- -# Why Mesos - Spark can run on hardware clusters managed by [Apache Mesos](http://mesos.apache.org/). The advantages of deploying Spark with Mesos include: + - dynamic partitioning between Spark and other [frameworks](https://mesos.apache.org/documentation/latest/mesos-frameworks/) - scalable partitioning between multiple instances of Spark -# How it works +# How it Works In a standalone cluster deployment, the cluster manager in the below diagram is a Spark master instance. When using Mesos, the Mesos master replaces the Spark master as the cluster manager. @@ -37,11 +36,25 @@ require any special patches of Mesos. If you already have a Mesos cluster running, you can skip this Mesos installation step. Otherwise, installing Mesos for Spark is no different than installing Mesos for use by other -frameworks. You can install Mesos using either prebuilt packages or by compiling from source. +frameworks. You can install Mesos either from source or using prebuilt packages. + +## From Source + +To install Apache Mesos from source, follow these steps: + +1. Download a Mesos release from a + [mirror](http://www.apache.org/dyn/closer.cgi/mesos/{{site.MESOS_VERSION}}/) +2. Follow the Mesos [Getting Started](http://mesos.apache.org/gettingstarted) page for compiling and + installing Mesos + +**Note:** If you want to run Mesos without installing it into the default paths on your system +(e.g., if you lack administrative privileges to install it), pass the +`--prefix` option to `configure` to tell it where to install. For example, pass +`--prefix=/home/me/mesos`. By default the prefix is `/usr/local`. -## Prebuilt packages +## Third-Party Packages -The Apache Mesos project only publishes source package releases, no binary releases. But other +The Apache Mesos project only publishes source releases, not binary packages. But other third party projects publish binary releases that may be helpful in setting Mesos up. One of those is Mesosphere. To install Mesos using the binary releases provided by Mesosphere: @@ -52,20 +65,6 @@ One of those is Mesosphere. To install Mesos using the binary releases provided The Mesosphere installation documents suggest setting up ZooKeeper to handle Mesos master failover, but Mesos can be run without ZooKeeper using a single master as well. -## From source - -To install Mesos directly from the upstream project rather than a third party, install from source. - -1. Download the Mesos distribution from a - [mirror](http://www.apache.org/dyn/closer.cgi/mesos/{{site.MESOS_VERSION}}/) -2. Follow the Mesos [Getting Started](http://mesos.apache.org/gettingstarted) page for compiling and - installing Mesos - -**Note:** If you want to run Mesos without installing it into the default paths on your system -(e.g., if you lack administrative privileges to install it), you should also pass the -`--prefix` option to `configure` to tell it where to install. For example, pass -`--prefix=/home/user/mesos`. By default the prefix is `/usr/local`. - ## Verification To verify that the Mesos cluster is ready for Spark, navigate to the Mesos master webui at port @@ -74,32 +73,30 @@ To verify that the Mesos cluster is ready for Spark, navigate to the Mesos maste # Connecting Spark to Mesos -To use Mesos from Spark, you need a Spark distribution available in a place accessible by Mesos, and +To use Mesos from Spark, you need a Spark binary package available in a place accessible by Mesos, and a Spark driver program configured to connect to Mesos. -## Uploading Spark Distribution - -When Mesos runs a task on a Mesos slave for the first time, that slave must have a distribution of -Spark available for running the Spark Mesos executor backend. A distribution of Spark is just a -compiled binary version of Spark. +## Uploading Spark Package -The Spark distribution can be hosted at any Hadoop URI, including HTTP via `http://`, [Amazon Simple -Storage Service](http://aws.amazon.com/s3) via `s3://`, or HDFS via `hdfs:///`. +When Mesos runs a task on a Mesos slave for the first time, that slave must have a Spark binary +package for running the Spark Mesos executor backend. +The Spark package can be hosted at any Hadoop-accessible URI, including HTTP via `http://`, +[Amazon Simple Storage Service](http://aws.amazon.com/s3) via `s3n://`, or HDFS via `hdfs://`. -To use a precompiled distribution: +To use a precompiled package: -1. Download a Spark distribution from the Spark [download page](https://spark.apache.org/downloads.html) +1. Download a Spark binary package from the Spark [download page](https://spark.apache.org/downloads.html) 2. Upload to hdfs/http/s3 To host on HDFS, use the Hadoop fs put command: `hadoop fs -put spark-{{site.SPARK_VERSION}}.tar.gz /path/to/spark-{{site.SPARK_VERSION}}.tar.gz` -Or if you are using a custom-compiled version of Spark, you will need to create a distribution using +Or if you are using a custom-compiled version of Spark, you will need to create a package using the `make-distribution.sh` script included in a Spark source tarball/checkout. 1. Download and build Spark using the instructions [here](index.html) -2. Create a Spark distribution using `make-distribution.sh --tgz`. +2. Create a binary package using `make-distribution.sh --tgz`. 3. Upload archive to http/s3/hdfs @@ -115,8 +112,8 @@ The driver also needs some configuration in `spark-env.sh` to interact properly `/lib/libmesos.so` where the prefix is `/usr/local` by default. See Mesos installation instructions above. On Mac OS X, the library is called `libmesos.dylib` instead of `libmesos.so`. - * `export SPARK_EXECUTOR_URI=`. -2. Also set `spark.executor.uri` to + * `export SPARK_EXECUTOR_URI=`. +2. Also set `spark.executor.uri` to ``. Now when starting a Spark application against the cluster, pass a `mesos://` or `zk://` URL as the master when creating a `SparkContext`. For example: @@ -129,7 +126,7 @@ val conf = new SparkConf() val sc = new SparkContext(conf) {% endhighlight %} -When running a shell the `spark.executor.uri` parameter is inherited from `SPARK_EXECUTOR_URI`, so +When running a shell, the `spark.executor.uri` parameter is inherited from `SPARK_EXECUTOR_URI`, so it does not need to be redundantly passed in as a system property. {% highlight bash %} @@ -168,7 +165,7 @@ using `conf.set("spark.cores.max", "10")` (for example). # Running Alongside Hadoop You can run Spark and Mesos alongside your existing Hadoop cluster by just launching them as a -separate service on the machines. To access Hadoop data from Spark, a full hdfs:// URL is required +separate service on the machines. To access Hadoop data from Spark, a full `hdfs://` URL is required (typically `hdfs://:9000/path`, but you can find the right URL on your Hadoop Namenode web UI). @@ -195,7 +192,7 @@ A few places to look during debugging: And common pitfalls: - Spark assembly not reachable/accessible - - Slaves need to be able to download the distribution + - Slaves must be able to download the Spark binary package from the `http://`, `hdfs://` or `s3n://` URL you gave - Firewall blocking communications - Check for messages about failed connections - Temporarily disable firewalls for debugging and then poke appropriate holes From a80a6a139e729ee3f81ec4f0028e084d2d9f7e82 Mon Sep 17 00:00:00 2001 From: Michael Armbrust Date: Fri, 16 May 2014 20:25:10 -0700 Subject: [PATCH 007/118] SPARK-1864 Look in spark conf instead of system properties when propagating configuration to executors. Author: Michael Armbrust Closes #808 from marmbrus/confClasspath and squashes the following commits: 4c31d57 [Michael Armbrust] Look in spark conf instead of system properties when propagating configuration to executors. --- .../scheduler/cluster/SparkDeploySchedulerBackend.scala | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala index 933f6e0571518..9768670855f80 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala @@ -46,12 +46,13 @@ private[spark] class SparkDeploySchedulerBackend( CoarseGrainedSchedulerBackend.ACTOR_NAME) val args = Seq(driverUrl, "{{EXECUTOR_ID}}", "{{HOSTNAME}}", "{{CORES}}", "{{WORKER_URL}}") val extraJavaOpts = sc.conf.getOption("spark.executor.extraJavaOptions") - val classPathEntries = sys.props.get("spark.executor.extraClassPath").toSeq.flatMap { cp => - cp.split(java.io.File.pathSeparator) - } - val libraryPathEntries = sys.props.get("spark.executor.extraLibraryPath").toSeq.flatMap { cp => + val classPathEntries = sc.conf.getOption("spark.executor.extraClassPath").toSeq.flatMap { cp => cp.split(java.io.File.pathSeparator) } + val libraryPathEntries = + sc.conf.getOption("spark.executor.extraLibraryPath").toSeq.flatMap { cp => + cp.split(java.io.File.pathSeparator) + } val command = Command( "org.apache.spark.executor.CoarseGrainedExecutorBackend", args, sc.executorEnvs, From c0ab85d7320cea90e6331fb03a70349bc804c1b1 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Fri, 16 May 2014 21:42:14 -0700 Subject: [PATCH 008/118] Version bump of spark-ec2 scripts This will allow us to change things in spark-ec2 related to the 1.0 release. Author: Patrick Wendell Closes #809 from pwendell/spark-ec2 and squashes the following commits: 59117fb [Patrick Wendell] Version bump of spark-ec2 scripts --- ec2/spark_ec2.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ec2/spark_ec2.py b/ec2/spark_ec2.py index 0a8d6ca5d7519..4c5a99f5f6b2e 100755 --- a/ec2/spark_ec2.py +++ b/ec2/spark_ec2.py @@ -443,7 +443,7 @@ def setup_cluster(conn, master_nodes, slave_nodes, opts, deploy_ssh_key): # NOTE: We should clone the repository before running deploy_files to # prevent ec2-variables.sh from being overwritten - ssh(master, opts, "rm -rf spark-ec2 && git clone https://github.com/mesos/spark-ec2.git -b v2") + ssh(master, opts, "rm -rf spark-ec2 && git clone https://github.com/mesos/spark-ec2.git -b v3") print "Deploying files to master..." deploy_files(conn, "deploy.generic", opts, master_nodes, slave_nodes, modules) From 4b8ec6fcfd7a7ef0857d5b21917183c181301c95 Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Fri, 16 May 2014 22:34:38 -0700 Subject: [PATCH 009/118] [SPARK-1808] Route bin/pyspark through Spark submit **Problem.** For `bin/pyspark`, there is currently no other way to specify Spark configuration properties other than through `SPARK_JAVA_OPTS` in `conf/spark-env.sh`. However, this mechanism is supposedly deprecated. Instead, it needs to pick up configurations explicitly specified in `conf/spark-defaults.conf`. **Solution.** Have `bin/pyspark` invoke `bin/spark-submit`, like all of its counterparts in Scala land (i.e. `bin/spark-shell`, `bin/run-example`). This has the additional benefit of making the invocation of all the user facing Spark scripts consistent. **Details.** `bin/pyspark` inherently handles two cases: (1) running python applications and (2) running the python shell. For (1), Spark submit already handles running python applications. For cases in which `bin/pyspark` is given a python file, we can simply call pass the file directly to Spark submit and let it handle the rest. For case (2), `bin/pyspark` starts a python process as before, which launches the JVM as a sub-process. The existing code already provides a code path to do this. All we needed to change is to use `bin/spark-submit` instead of `spark-class` to launch the JVM. This requires modifications to Spark submit to handle the pyspark shell as a special case. This has been tested locally (OSX and Windows 7), on a standalone cluster, and on a YARN cluster. Running IPython also works as before, except now it takes in Spark submit arguments too. Author: Andrew Or Closes #799 from andrewor14/pyspark-submit and squashes the following commits: bf37e36 [Andrew Or] Minor changes 01066fa [Andrew Or] bin/pyspark for Windows c8cb3bf [Andrew Or] Handle perverse app names (with escaped quotes) 1866f85 [Andrew Or] Windows is not cooperating 456d844 [Andrew Or] Guard against shlex hanging if PYSPARK_SUBMIT_ARGS is not set 7eebda8 [Andrew Or] Merge branch 'master' of github.com:apache/spark into pyspark-submit b7ba0d8 [Andrew Or] Address a few comments (minor) 06eb138 [Andrew Or] Use shlex instead of writing our own parser 05879fa [Andrew Or] Merge branch 'master' of github.com:apache/spark into pyspark-submit a823661 [Andrew Or] Fix --die-on-broken-pipe not propagated properly 6fba412 [Andrew Or] Deal with quotes + address various comments fe4c8a7 [Andrew Or] Update --help for bin/pyspark afe47bf [Andrew Or] Fix spark shell f04aaa4 [Andrew Or] Merge branch 'master' of github.com:apache/spark into pyspark-submit a371d26 [Andrew Or] Route bin/pyspark through Spark submit --- bin/pyspark | 35 ++++++++++-- bin/pyspark2.cmd | 21 ++++++- bin/spark-shell | 6 +- bin/spark-shell.cmd | 2 +- .../apache/spark/deploy/PythonRunner.scala | 2 +- .../org/apache/spark/deploy/SparkSubmit.scala | 55 ++++++++++++++----- .../spark/deploy/SparkSubmitArguments.scala | 6 +- .../scala/org/apache/spark/util/Utils.scala | 2 +- python/pyspark/java_gateway.py | 10 ++-- python/pyspark/shell.py | 2 +- 10 files changed, 107 insertions(+), 34 deletions(-) diff --git a/bin/pyspark b/bin/pyspark index 10e35e0f1734e..9e1364e44c8c4 100755 --- a/bin/pyspark +++ b/bin/pyspark @@ -25,6 +25,12 @@ export SPARK_HOME="$FWDIR" SCALA_VERSION=2.10 +if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; then + echo "Usage: ./bin/pyspark [options]" + ./bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 + exit 0 +fi + # Exit if the user hasn't compiled Spark if [ ! -f "$FWDIR/RELEASE" ]; then # Exit if the user hasn't compiled Spark @@ -52,13 +58,34 @@ export PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.8.1-src.zip:$PYTHONPATH export OLD_PYTHONSTARTUP=$PYTHONSTARTUP export PYTHONSTARTUP=$FWDIR/python/pyspark/shell.py +# If IPython options are specified, assume user wants to run IPython if [ -n "$IPYTHON_OPTS" ]; then IPYTHON=1 fi -# Only use ipython if no command line arguments were provided [SPARK-1134] -if [[ "$IPYTHON" = "1" && $# = 0 ]] ; then - exec ipython $IPYTHON_OPTS +# Build up arguments list manually to preserve quotes and backslashes. +# We export Spark submit arguments as an environment variable because shell.py must run as a +# PYTHONSTARTUP script, which does not take in arguments. This is required for IPython notebooks. + +PYSPARK_SUBMIT_ARGS="" +whitespace="[[:space:]]" +for i in "$@"; do + if [[ $i =~ \" ]]; then i=$(echo $i | sed 's/\"/\\\"/g'); fi + if [[ $i =~ $whitespace ]]; then i=\"$i\"; fi + PYSPARK_SUBMIT_ARGS="$PYSPARK_SUBMIT_ARGS $i" +done +export PYSPARK_SUBMIT_ARGS + +# If a python file is provided, directly run spark-submit. +if [[ "$1" =~ \.py$ ]]; then + echo -e "\nWARNING: Running python applications through ./bin/pyspark is deprecated as of Spark 1.0." 1>&2 + echo -e "Use ./bin/spark-submit \n" 1>&2 + exec $FWDIR/bin/spark-submit "$@" else - exec "$PYSPARK_PYTHON" "$@" + # Only use ipython if no command line arguments were provided [SPARK-1134] + if [[ "$IPYTHON" = "1" ]]; then + exec ipython $IPYTHON_OPTS + else + exec "$PYSPARK_PYTHON" + fi fi diff --git a/bin/pyspark2.cmd b/bin/pyspark2.cmd index d7cfd5eec501c..0ef9eea95342e 100644 --- a/bin/pyspark2.cmd +++ b/bin/pyspark2.cmd @@ -31,7 +31,7 @@ set FOUND_JAR=0 for %%d in ("%FWDIR%assembly\target\scala-%SCALA_VERSION%\spark-assembly*hadoop*.jar") do ( set FOUND_JAR=1 ) -if "%FOUND_JAR%"=="0" ( +if [%FOUND_JAR%] == [0] ( echo Failed to find Spark assembly JAR. echo You need to build Spark with sbt\sbt assembly before running this program. goto exit @@ -42,15 +42,30 @@ rem Load environment variables from conf\spark-env.cmd, if it exists if exist "%FWDIR%conf\spark-env.cmd" call "%FWDIR%conf\spark-env.cmd" rem Figure out which Python to use. -if "x%PYSPARK_PYTHON%"=="x" set PYSPARK_PYTHON=python +if [%PYSPARK_PYTHON%] == [] set PYSPARK_PYTHON=python set PYTHONPATH=%FWDIR%python;%PYTHONPATH% set PYTHONPATH=%FWDIR%python\lib\py4j-0.8.1-src.zip;%PYTHONPATH% set OLD_PYTHONSTARTUP=%PYTHONSTARTUP% set PYTHONSTARTUP=%FWDIR%python\pyspark\shell.py +set PYSPARK_SUBMIT_ARGS=%* echo Running %PYSPARK_PYTHON% with PYTHONPATH=%PYTHONPATH% -"%PYSPARK_PYTHON%" %* +rem Check whether the argument is a file +for /f %%i in ('echo %1^| findstr /R "\.py"') do ( + set PYTHON_FILE=%%i +) + +if [%PYTHON_FILE%] == [] ( + %PYSPARK_PYTHON% +) else ( + echo. + echo WARNING: Running python applications through ./bin/pyspark.cmd is deprecated as of Spark 1.0. + echo Use ./bin/spark-submit ^ + echo. + "%FWDIR%\bin\spark-submit.cmd" %PYSPARK_SUBMIT_ARGS% +) + :exit diff --git a/bin/spark-shell b/bin/spark-shell index 7f03349c5e910..c158683ab3f99 100755 --- a/bin/spark-shell +++ b/bin/spark-shell @@ -28,7 +28,7 @@ esac # Enter posix mode for bash set -o posix -if [[ "$@" == *--help* ]]; then +if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; then echo "Usage: ./bin/spark-shell [options]" ./bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 exit 0 @@ -46,11 +46,11 @@ function main(){ # (see https://github.com/sbt/sbt/issues/562). stty -icanon min 1 -echo > /dev/null 2>&1 export SPARK_SUBMIT_OPTS="$SPARK_SUBMIT_OPTS -Djline.terminal=unix" - $FWDIR/bin/spark-submit spark-internal "$@" --class org.apache.spark.repl.Main + $FWDIR/bin/spark-submit spark-shell "$@" --class org.apache.spark.repl.Main stty icanon echo > /dev/null 2>&1 else export SPARK_SUBMIT_OPTS - $FWDIR/bin/spark-submit spark-internal "$@" --class org.apache.spark.repl.Main + $FWDIR/bin/spark-submit spark-shell "$@" --class org.apache.spark.repl.Main fi } diff --git a/bin/spark-shell.cmd b/bin/spark-shell.cmd index ca0c722c926f5..4b9708a8c03f3 100755 --- a/bin/spark-shell.cmd +++ b/bin/spark-shell.cmd @@ -19,4 +19,4 @@ rem set SPARK_HOME=%~dp0.. -cmd /V /E /C %SPARK_HOME%\bin\spark-submit.cmd spark-internal %* --class org.apache.spark.repl.Main +cmd /V /E /C %SPARK_HOME%\bin\spark-submit.cmd spark-shell %* --class org.apache.spark.repl.Main diff --git a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala index e20d4486c8f0c..2dfa02bd26f13 100644 --- a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala +++ b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala @@ -42,7 +42,7 @@ object PythonRunner { // Build up a PYTHONPATH that includes the Spark assembly JAR (where this class is), the // python directories in SPARK_HOME (if set), and any files in the pyFiles argument val pathElements = new ArrayBuffer[String] - pathElements ++= pyFiles.split(",") + pathElements ++= Option(pyFiles).getOrElse("").split(",") pathElements += PythonUtils.sparkPythonPath pathElements += sys.env.getOrElse("PYTHONPATH", "") val pythonPath = PythonUtils.mergePythonPaths(pathElements: _*) diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala index e86182e4c56ce..a99b2176e2b5e 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala @@ -41,10 +41,10 @@ object SparkSubmit { private var clusterManager: Int = LOCAL /** - * A special jar name that indicates the class being run is inside of Spark itself, - * and therefore no user jar is needed. + * Special primary resource names that represent shells rather than application jars. */ - private val RESERVED_JAR_NAME = "spark-internal" + private val SPARK_SHELL = "spark-shell" + private val PYSPARK_SHELL = "pyspark-shell" def main(args: Array[String]) { val appArgs = new SparkSubmitArguments(args) @@ -71,8 +71,8 @@ object SparkSubmit { * entries for the child, a list of system properties, a list of env vars * and the main class for the child */ - private[spark] def createLaunchEnv(args: SparkSubmitArguments): (ArrayBuffer[String], - ArrayBuffer[String], Map[String, String], String) = { + private[spark] def createLaunchEnv(args: SparkSubmitArguments) + : (ArrayBuffer[String], ArrayBuffer[String], Map[String, String], String) = { if (args.master.startsWith("local")) { clusterManager = LOCAL } else if (args.master.startsWith("yarn")) { @@ -121,24 +121,30 @@ object SparkSubmit { printErrorAndExit("Cannot currently run driver on the cluster in Mesos") } - // If we're running a Python app, set the Java class to run to be our PythonRunner, add - // Python files to deployment list, and pass the main file and Python path to PythonRunner + // If we're running a python app, set the main class to our specific python runner if (isPython) { if (deployOnCluster) { printErrorAndExit("Cannot currently run Python driver programs on cluster") } - args.mainClass = "org.apache.spark.deploy.PythonRunner" - args.files = mergeFileLists(args.files, args.pyFiles, args.primaryResource) + if (args.primaryResource == PYSPARK_SHELL) { + args.mainClass = "py4j.GatewayServer" + args.childArgs = ArrayBuffer("--die-on-broken-pipe", "0") + } else { + // If a python file is provided, add it to the child arguments and list of files to deploy. + // Usage: PythonAppRunner
[app arguments] + args.mainClass = "org.apache.spark.deploy.PythonRunner" + args.childArgs = ArrayBuffer(args.primaryResource, args.pyFiles) ++ args.childArgs + args.files = mergeFileLists(args.files, args.primaryResource) + } val pyFiles = Option(args.pyFiles).getOrElse("") - args.childArgs = ArrayBuffer(args.primaryResource, pyFiles) ++ args.childArgs - args.primaryResource = RESERVED_JAR_NAME + args.files = mergeFileLists(args.files, pyFiles) sysProps("spark.submit.pyFiles") = pyFiles } // If we're deploying into YARN, use yarn.Client as a wrapper around the user class if (!deployOnCluster) { childMainClass = args.mainClass - if (args.primaryResource != RESERVED_JAR_NAME) { + if (isUserJar(args.primaryResource)) { childClasspath += args.primaryResource } } else if (clusterManager == YARN) { @@ -219,7 +225,7 @@ object SparkSubmit { // For python files, the primary resource is already distributed as a regular file if (!isYarnCluster && !isPython) { var jars = sysProps.get("spark.jars").map(x => x.split(",").toSeq).getOrElse(Seq()) - if (args.primaryResource != RESERVED_JAR_NAME) { + if (isUserJar(args.primaryResource)) { jars = jars ++ Seq(args.primaryResource) } sysProps.put("spark.jars", jars.mkString(",")) @@ -293,7 +299,7 @@ object SparkSubmit { } private def addJarToClasspath(localJar: String, loader: ExecutorURLClassLoader) { - val localJarFile = new File(new URI(localJar).getPath()) + val localJarFile = new File(new URI(localJar).getPath) if (!localJarFile.exists()) { printWarning(s"Jar $localJar does not exist, skipping.") } @@ -302,6 +308,27 @@ object SparkSubmit { loader.addURL(url) } + /** + * Return whether the given primary resource represents a user jar. + */ + private def isUserJar(primaryResource: String): Boolean = { + !isShell(primaryResource) && !isPython(primaryResource) + } + + /** + * Return whether the given primary resource represents a shell. + */ + private def isShell(primaryResource: String): Boolean = { + primaryResource == SPARK_SHELL || primaryResource == PYSPARK_SHELL + } + + /** + * Return whether the given primary resource requires running python. + */ + private[spark] def isPython(primaryResource: String): Boolean = { + primaryResource.endsWith(".py") || primaryResource == PYSPARK_SHELL + } + /** * Merge a sequence of comma-separated file lists, some of which may be null to indicate * no files, into a single comma-separated string. diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala index 2d327aa3fb27f..264d4544cd31c 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala @@ -298,11 +298,13 @@ private[spark] class SparkSubmitArguments(args: Seq[String]) { case v => primaryResource = v inSparkOpts = false - isPython = v.endsWith(".py") + isPython = SparkSubmit.isPython(v) parse(tail) } } else { - childArgs += value + if (!value.isEmpty) { + childArgs += value + } parse(tail) } diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index 388f7222428db..0c7cff019fce1 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -1101,7 +1101,7 @@ private[spark] object Utils extends Logging { * Strip the directory from a path name */ def stripDirectory(path: String): String = { - path.split(File.separator).last + new File(path).getName } /** diff --git a/python/pyspark/java_gateway.py b/python/pyspark/java_gateway.py index 3d0936fdca911..91ae8263f66b8 100644 --- a/python/pyspark/java_gateway.py +++ b/python/pyspark/java_gateway.py @@ -18,12 +18,12 @@ import os import sys import signal +import shlex import platform from subprocess import Popen, PIPE from threading import Thread from py4j.java_gateway import java_import, JavaGateway, GatewayClient - def launch_gateway(): SPARK_HOME = os.environ["SPARK_HOME"] @@ -34,9 +34,11 @@ def launch_gateway(): # Launch the Py4j gateway using Spark's run command so that we pick up the # proper classpath and settings from spark-env.sh on_windows = platform.system() == "Windows" - script = "./bin/spark-class.cmd" if on_windows else "./bin/spark-class" - command = [os.path.join(SPARK_HOME, script), "py4j.GatewayServer", - "--die-on-broken-pipe", "0"] + script = "./bin/spark-submit.cmd" if on_windows else "./bin/spark-submit" + submit_args = os.environ.get("PYSPARK_SUBMIT_ARGS") + submit_args = submit_args if submit_args is not None else "" + submit_args = shlex.split(submit_args) + command = [os.path.join(SPARK_HOME, script), "pyspark-shell"] + submit_args if not on_windows: # Don't send ctrl-c / SIGINT to the Java gateway: def preexec_func(): diff --git a/python/pyspark/shell.py b/python/pyspark/shell.py index d172d588bfbd8..ebd714db7a918 100644 --- a/python/pyspark/shell.py +++ b/python/pyspark/shell.py @@ -40,7 +40,7 @@ if os.environ.get("SPARK_EXECUTOR_URI"): SparkContext.setSystemProperty("spark.executor.uri", os.environ["SPARK_EXECUTOR_URI"]) -sc = SparkContext(os.environ.get("MASTER", "local[*]"), "PySparkShell", pyFiles=add_files) +sc = SparkContext(appName="PySparkShell", pyFiles=add_files) print("""Welcome to ____ __ From cf6cbe9f76c3b322a968c836d039fc5b70d4ce43 Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Fri, 16 May 2014 22:36:23 -0700 Subject: [PATCH 010/118] [SPARK-1824] Remove from Python examples A recent PR (#552) fixed this for all Scala / Java examples. We need to do it for python too. Note that this blocks on #799, which makes `bin/pyspark` go through Spark submit. With only the changes in this PR, the only way to run these examples is through Spark submit. Once #799 goes in, you can use `bin/pyspark` to run them too. For example, ``` bin/pyspark examples/src/main/python/pi.py 100 --master local-cluster[4,1,512] ``` Author: Andrew Or Closes #802 from andrewor14/python-examples and squashes the following commits: cf50b9f [Andrew Or] De-indent python comments (minor) 50f80b1 [Andrew Or] Remove pyFiles from SparkContext construction c362f69 [Andrew Or] Update docs to use spark-submit for python applications 7072c6a [Andrew Or] Merge branch 'master' of github.com:apache/spark into python-examples 427a5f0 [Andrew Or] Update docs d32072c [Andrew Or] Remove from examples + update usages --- docs/index.md | 11 ++++--- docs/python-programming-guide.md | 32 ++++++++++--------- examples/src/main/python/als.py | 18 +++++------ examples/src/main/python/kmeans.py | 12 +++---- .../src/main/python/logistic_regression.py | 10 +++--- examples/src/main/python/mllib/kmeans.py | 10 +++--- .../main/python/mllib/logistic_regression.py | 10 +++--- examples/src/main/python/pagerank.py | 10 +++--- examples/src/main/python/pi.py | 10 +++--- examples/src/main/python/sort.py | 8 ++--- .../src/main/python/transitive_closure.py | 10 +++--- examples/src/main/python/wordcount.py | 8 ++--- 12 files changed, 77 insertions(+), 72 deletions(-) diff --git a/docs/index.md b/docs/index.md index 48182a27d28ae..c9b10376cc809 100644 --- a/docs/index.md +++ b/docs/index.md @@ -43,12 +43,15 @@ The `--master` option specifies the locally with one thread, or `local[N]` to run locally with N threads. You should start by using `local` for testing. For a full list of options, run Spark shell with the `--help` option. -Spark also provides a Python interface. To run an example Spark application written in Python, use -`bin/pyspark [params]`. For example, +Spark also provides a Python interface. To run Spark interactively in a Python interpreter, use +`bin/pyspark`. As in Spark shell, you can also pass in the `--master` option to configure your +master URL. - ./bin/pyspark examples/src/main/python/pi.py local[2] 10 + ./bin/pyspark --master local[2] -or simply `bin/pyspark` without any arguments to run Spark interactively in a python interpreter. +Example applications are also provided in Python. For example, + + ./bin/spark-submit examples/src/main/python/pi.py 10 # Launching on a Cluster diff --git a/docs/python-programming-guide.md b/docs/python-programming-guide.md index 17675acba6bb8..b686bee1aebe2 100644 --- a/docs/python-programming-guide.md +++ b/docs/python-programming-guide.md @@ -60,13 +60,9 @@ By default, PySpark requires `python` to be available on the system `PATH` and u All of PySpark's library dependencies, including [Py4J](http://py4j.sourceforge.net/), are bundled with PySpark and automatically imported. -Standalone PySpark applications should be run using the `bin/spark-submit` script, which automatically -configures the Java and Python environment for running Spark. - - # Interactive Use -The `bin/pyspark` script launches a Python interpreter that is configured to run PySpark applications. To use `pyspark` interactively, first build Spark, then launch it directly from the command line without any options: +The `bin/pyspark` script launches a Python interpreter that is configured to run PySpark applications. To use `pyspark` interactively, first build Spark, then launch it directly from the command line: {% highlight bash %} $ sbt/sbt assembly @@ -83,20 +79,24 @@ The Python shell can be used explore data interactively and is a simple way to l {% endhighlight %} By default, the `bin/pyspark` shell creates SparkContext that runs applications locally on all of -your machine's logical cores. -To connect to a non-local cluster, or to specify a number of cores, set the `MASTER` environment variable. -For example, to use the `bin/pyspark` shell with a [standalone Spark cluster](spark-standalone.html): +your machine's logical cores. To connect to a non-local cluster, or to specify a number of cores, +set the `--master` flag. For example, to use the `bin/pyspark` shell with a +[standalone Spark cluster](spark-standalone.html): {% highlight bash %} -$ MASTER=spark://IP:PORT ./bin/pyspark +$ ./bin/pyspark --master spark://1.2.3.4:7077 {% endhighlight %} Or, to use exactly four cores on the local machine: {% highlight bash %} -$ MASTER=local[4] ./bin/pyspark +$ ./bin/pyspark --master local[4] {% endhighlight %} +Under the hood `bin/pyspark` is a wrapper around the +[Spark submit script](cluster-overview.html#launching-applications-with-spark-submit), so these +two scripts share the same list of options. For a complete list of options, run `bin/pyspark` with +the `--help` option. ## IPython @@ -115,13 +115,14 @@ the [IPython Notebook](http://ipython.org/notebook.html) with PyLab graphing sup $ IPYTHON_OPTS="notebook --pylab inline" ./bin/pyspark {% endhighlight %} -IPython also works on a cluster or on multiple cores if you set the `MASTER` environment variable. +IPython also works on a cluster or on multiple cores if you set the `--master` flag. # Standalone Programs -PySpark can also be used from standalone Python scripts by creating a SparkContext in your script and running the script using `bin/spark-submit`. -The Quick Start guide includes a [complete example](quick-start.html#standalone-applications) of a standalone Python application. +PySpark can also be used from standalone Python scripts by creating a SparkContext in your script +and running the script using `bin/spark-submit`. The Quick Start guide includes a +[complete example](quick-start.html#standalone-applications) of a standalone Python application. Code dependencies can be deployed by passing .zip or .egg files in the `--py-files` option of `spark-submit`: @@ -138,6 +139,7 @@ You can set [configuration properties](configuration.html#spark-properties) by p {% highlight python %} from pyspark import SparkConf, SparkContext conf = (SparkConf() + .setMaster("local") .setAppName("My app") .set("spark.executor.memory", "1g")) sc = SparkContext(conf = conf) @@ -164,6 +166,6 @@ some example applications. PySpark also includes several sample programs in the [`examples/src/main/python` folder](https://github.com/apache/spark/tree/master/examples/src/main/python). You can run them by passing the files to `pyspark`; e.g.: - ./bin/spark-submit examples/src/main/python/wordcount.py local[2] README.md + ./bin/spark-submit examples/src/main/python/wordcount.py README.md -Each program prints usage help when run without arguments. +Each program prints usage help when run without the sufficient arguments. diff --git a/examples/src/main/python/als.py b/examples/src/main/python/als.py index 01552dc1d449e..f0b46cd28b7aa 100755 --- a/examples/src/main/python/als.py +++ b/examples/src/main/python/als.py @@ -46,15 +46,15 @@ def update(i, vec, mat, ratings): return np.linalg.solve(XtX, Xty) if __name__ == "__main__": - if len(sys.argv) < 2: - print >> sys.stderr, "Usage: als " - exit(-1) - sc = SparkContext(sys.argv[1], "PythonALS", pyFiles=[realpath(__file__)]) - M = int(sys.argv[2]) if len(sys.argv) > 2 else 100 - U = int(sys.argv[3]) if len(sys.argv) > 3 else 500 - F = int(sys.argv[4]) if len(sys.argv) > 4 else 10 - ITERATIONS = int(sys.argv[5]) if len(sys.argv) > 5 else 5 - slices = int(sys.argv[6]) if len(sys.argv) > 6 else 2 + """ + Usage: als [M] [U] [F] [iterations] [slices]" + """ + sc = SparkContext(appName="PythonALS") + M = int(sys.argv[1]) if len(sys.argv) > 1 else 100 + U = int(sys.argv[2]) if len(sys.argv) > 2 else 500 + F = int(sys.argv[3]) if len(sys.argv) > 3 else 10 + ITERATIONS = int(sys.argv[4]) if len(sys.argv) > 4 else 5 + slices = int(sys.argv[5]) if len(sys.argv) > 5 else 2 print "Running ALS with M=%d, U=%d, F=%d, iters=%d, slices=%d\n" % \ (M, U, F, ITERATIONS, slices) diff --git a/examples/src/main/python/kmeans.py b/examples/src/main/python/kmeans.py index e3596488faf9e..fc16586c28a46 100755 --- a/examples/src/main/python/kmeans.py +++ b/examples/src/main/python/kmeans.py @@ -45,14 +45,14 @@ def closestPoint(p, centers): if __name__ == "__main__": - if len(sys.argv) < 5: - print >> sys.stderr, "Usage: kmeans " + if len(sys.argv) != 4: + print >> sys.stderr, "Usage: kmeans " exit(-1) - sc = SparkContext(sys.argv[1], "PythonKMeans") - lines = sc.textFile(sys.argv[2]) + sc = SparkContext(appName="PythonKMeans") + lines = sc.textFile(sys.argv[1]) data = lines.map(parseVector).cache() - K = int(sys.argv[3]) - convergeDist = float(sys.argv[4]) + K = int(sys.argv[2]) + convergeDist = float(sys.argv[3]) kPoints = data.takeSample(False, K, 1) tempDist = 1.0 diff --git a/examples/src/main/python/logistic_regression.py b/examples/src/main/python/logistic_regression.py index fe5373cf799b1..0f22d0b32319e 100755 --- a/examples/src/main/python/logistic_regression.py +++ b/examples/src/main/python/logistic_regression.py @@ -47,12 +47,12 @@ def readPointBatch(iterator): return [matrix] if __name__ == "__main__": - if len(sys.argv) != 4: - print >> sys.stderr, "Usage: logistic_regression " + if len(sys.argv) != 3: + print >> sys.stderr, "Usage: logistic_regression " exit(-1) - sc = SparkContext(sys.argv[1], "PythonLR", pyFiles=[realpath(__file__)]) - points = sc.textFile(sys.argv[2]).mapPartitions(readPointBatch).cache() - iterations = int(sys.argv[3]) + sc = SparkContext(appName="PythonLR") + points = sc.textFile(sys.argv[1]).mapPartitions(readPointBatch).cache() + iterations = int(sys.argv[2]) # Initialize w to a random value w = 2 * np.random.ranf(size=D) - 1 diff --git a/examples/src/main/python/mllib/kmeans.py b/examples/src/main/python/mllib/kmeans.py index dec82ff34fbac..b308132c9aeeb 100755 --- a/examples/src/main/python/mllib/kmeans.py +++ b/examples/src/main/python/mllib/kmeans.py @@ -33,12 +33,12 @@ def parseVector(line): if __name__ == "__main__": - if len(sys.argv) < 4: - print >> sys.stderr, "Usage: kmeans " + if len(sys.argv) != 3: + print >> sys.stderr, "Usage: kmeans " exit(-1) - sc = SparkContext(sys.argv[1], "KMeans") - lines = sc.textFile(sys.argv[2]) + sc = SparkContext(appName="KMeans") + lines = sc.textFile(sys.argv[1]) data = lines.map(parseVector) - k = int(sys.argv[3]) + k = int(sys.argv[2]) model = KMeans.train(data, k) print "Final centers: " + str(model.clusterCenters) diff --git a/examples/src/main/python/mllib/logistic_regression.py b/examples/src/main/python/mllib/logistic_regression.py index 8631051d00ff2..6e0f7a4ee5a81 100755 --- a/examples/src/main/python/mllib/logistic_regression.py +++ b/examples/src/main/python/mllib/logistic_regression.py @@ -39,12 +39,12 @@ def parsePoint(line): if __name__ == "__main__": - if len(sys.argv) != 4: - print >> sys.stderr, "Usage: logistic_regression " + if len(sys.argv) != 3: + print >> sys.stderr, "Usage: logistic_regression " exit(-1) - sc = SparkContext(sys.argv[1], "PythonLR") - points = sc.textFile(sys.argv[2]).map(parsePoint) - iterations = int(sys.argv[3]) + sc = SparkContext(appName="PythonLR") + points = sc.textFile(sys.argv[1]).map(parsePoint) + iterations = int(sys.argv[2]) model = LogisticRegressionWithSGD.train(points, iterations) print "Final weights: " + str(model.weights) print "Final intercept: " + str(model.intercept) diff --git a/examples/src/main/python/pagerank.py b/examples/src/main/python/pagerank.py index cd774cf3a319f..d350fa46fa49a 100755 --- a/examples/src/main/python/pagerank.py +++ b/examples/src/main/python/pagerank.py @@ -36,19 +36,19 @@ def parseNeighbors(urls): if __name__ == "__main__": - if len(sys.argv) < 3: - print >> sys.stderr, "Usage: pagerank " + if len(sys.argv) != 3: + print >> sys.stderr, "Usage: pagerank " exit(-1) # Initialize the spark context. - sc = SparkContext(sys.argv[1], "PythonPageRank") + sc = SparkContext(appName="PythonPageRank") # Loads in input file. It should be in format of: # URL neighbor URL # URL neighbor URL # URL neighbor URL # ... - lines = sc.textFile(sys.argv[2], 1) + lines = sc.textFile(sys.argv[1], 1) # Loads all URLs from input file and initialize their neighbors. links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache() @@ -57,7 +57,7 @@ def parseNeighbors(urls): ranks = links.map(lambda (url, neighbors): (url, 1.0)) # Calculates and updates URL ranks continuously using PageRank algorithm. - for iteration in xrange(int(sys.argv[3])): + for iteration in xrange(int(sys.argv[2])): # Calculates URL contributions to the rank of other URLs. contribs = links.join(ranks).flatMap(lambda (url, (urls, rank)): computeContribs(urls, rank)) diff --git a/examples/src/main/python/pi.py b/examples/src/main/python/pi.py index ab0645fc2f326..234720b55fa49 100755 --- a/examples/src/main/python/pi.py +++ b/examples/src/main/python/pi.py @@ -23,11 +23,11 @@ if __name__ == "__main__": - if len(sys.argv) == 1: - print >> sys.stderr, "Usage: pi []" - exit(-1) - sc = SparkContext(sys.argv[1], "PythonPi") - slices = int(sys.argv[2]) if len(sys.argv) > 2 else 2 + """ + Usage: pi [slices] + """ + sc = SparkContext(appName="PythonPi") + slices = int(sys.argv[1]) if len(sys.argv) > 1 else 2 n = 100000 * slices def f(_): x = random() * 2 - 1 diff --git a/examples/src/main/python/sort.py b/examples/src/main/python/sort.py index 5de20a6d98f43..4913ee926aa03 100755 --- a/examples/src/main/python/sort.py +++ b/examples/src/main/python/sort.py @@ -21,11 +21,11 @@ if __name__ == "__main__": - if len(sys.argv) < 3: - print >> sys.stderr, "Usage: sort " + if len(sys.argv) != 2: + print >> sys.stderr, "Usage: sort " exit(-1) - sc = SparkContext(sys.argv[1], "PythonSort") - lines = sc.textFile(sys.argv[2], 1) + sc = SparkContext(appName="PythonSort") + lines = sc.textFile(sys.argv[1], 1) sortedCount = lines.flatMap(lambda x: x.split(' ')) \ .map(lambda x: (int(x), 1)) \ .sortByKey(lambda x: x) diff --git a/examples/src/main/python/transitive_closure.py b/examples/src/main/python/transitive_closure.py index 744cce6651607..8698369b13d84 100755 --- a/examples/src/main/python/transitive_closure.py +++ b/examples/src/main/python/transitive_closure.py @@ -36,11 +36,11 @@ def generateGraph(): if __name__ == "__main__": - if len(sys.argv) == 1: - print >> sys.stderr, "Usage: transitive_closure []" - exit(-1) - sc = SparkContext(sys.argv[1], "PythonTransitiveClosure") - slices = int(sys.argv[2]) if len(sys.argv) > 2 else 2 + """ + Usage: transitive_closure [slices] + """ + sc = SparkContext(appName="PythonTransitiveClosure") + slices = int(sys.argv[1]) if len(sys.argv) > 1 else 2 tc = sc.parallelize(generateGraph(), slices).cache() # Linear transitive closure: each round grows paths by one edge, diff --git a/examples/src/main/python/wordcount.py b/examples/src/main/python/wordcount.py index b9139b9d76520..dcc095fdd0ed9 100755 --- a/examples/src/main/python/wordcount.py +++ b/examples/src/main/python/wordcount.py @@ -22,11 +22,11 @@ if __name__ == "__main__": - if len(sys.argv) < 3: - print >> sys.stderr, "Usage: wordcount " + if len(sys.argv) != 2: + print >> sys.stderr, "Usage: wordcount " exit(-1) - sc = SparkContext(sys.argv[1], "PythonWordCount") - lines = sc.textFile(sys.argv[2], 1) + sc = SparkContext(appName="PythonWordCount") + lines = sc.textFile(sys.argv[1], 1) counts = lines.flatMap(lambda x: x.split(' ')) \ .map(lambda x: (x, 1)) \ .reduceByKey(add) From 442808a7482b81c8de887c901b424683da62022e Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Fri, 16 May 2014 22:58:47 -0700 Subject: [PATCH 011/118] Make deprecation warning less severe Just a small change. I think it's good not to scare people who are using the old options. Author: Patrick Wendell Closes #810 from pwendell/warnings and squashes the following commits: cb8a311 [Patrick Wendell] Make deprecation warning less severe --- core/src/main/scala/org/apache/spark/SparkConf.scala | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkConf.scala b/core/src/main/scala/org/apache/spark/SparkConf.scala index 800616622d7bf..8ce4b91cae8ae 100644 --- a/core/src/main/scala/org/apache/spark/SparkConf.scala +++ b/core/src/main/scala/org/apache/spark/SparkConf.scala @@ -238,10 +238,10 @@ class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging { // Check for legacy configs sys.env.get("SPARK_JAVA_OPTS").foreach { value => - val error = + val warning = s""" |SPARK_JAVA_OPTS was detected (set to '$value'). - |This has undefined behavior when running on a cluster and is deprecated in Spark 1.0+. + |This is deprecated in Spark 1.0+. | |Please instead use: | - ./spark-submit with conf/spark-defaults.conf to set defaults for an application @@ -249,7 +249,7 @@ class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging { | - spark.executor.extraJavaOptions to set -X options for executors | - SPARK_DAEMON_JAVA_OPTS to set java options for standalone daemons (master or worker) """.stripMargin - logError(error) + logWarning(warning) for (key <- Seq(executorOptsKey, driverOptsKey)) { if (getOption(key).isDefined) { @@ -262,16 +262,16 @@ class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging { } sys.env.get("SPARK_CLASSPATH").foreach { value => - val error = + val warning = s""" |SPARK_CLASSPATH was detected (set to '$value'). - | This has undefined behavior when running on a cluster and is deprecated in Spark 1.0+. + |This is deprecated in Spark 1.0+. | |Please instead use: | - ./spark-submit with --driver-class-path to augment the driver classpath | - spark.executor.extraClassPath to augment the executor classpath """.stripMargin - logError(error) + logWarning(warning) for (key <- Seq(executorClasspathKey, driverClassPathKey)) { if (getOption(key).isDefined) { From ebcd2d68897f423614d0629758240da97dca4a12 Mon Sep 17 00:00:00 2001 From: Neville Li Date: Sun, 18 May 2014 13:31:23 -0700 Subject: [PATCH 012/118] Fix spark-submit path in spark-shell & pyspark Author: Neville Li Closes #812 from nevillelyh/neville/v1.0 and squashes the following commits: 0dc33ed [Neville Li] Fix spark-submit path in pyspark becec64 [Neville Li] Fix spark-submit path in spark-shell --- bin/pyspark | 2 +- bin/spark-shell | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/bin/pyspark b/bin/pyspark index 9e1364e44c8c4..3908ffe79939b 100755 --- a/bin/pyspark +++ b/bin/pyspark @@ -27,7 +27,7 @@ SCALA_VERSION=2.10 if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; then echo "Usage: ./bin/pyspark [options]" - ./bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 + $FWDIR/bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 exit 0 fi diff --git a/bin/spark-shell b/bin/spark-shell index c158683ab3f99..850e9507ec38f 100755 --- a/bin/spark-shell +++ b/bin/spark-shell @@ -28,15 +28,15 @@ esac # Enter posix mode for bash set -o posix +## Global script variables +FWDIR="$(cd `dirname $0`/..; pwd)" + if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; then echo "Usage: ./bin/spark-shell [options]" - ./bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 + $FWDIR/bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 exit 0 fi -## Global script variables -FWDIR="$(cd `dirname $0`/..; pwd)" - function main(){ if $cygwin; then # Workaround for issue involving JLine and Cygwin From 4ce479324bdcf603806fc90b5b0f4968c6de690e Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Sun, 18 May 2014 16:51:53 -0700 Subject: [PATCH 013/118] SPARK-1873: Add README.md file when making distributions Author: Patrick Wendell Closes #818 from pwendell/reamde and squashes the following commits: 4020b11 [Patrick Wendell] SPARK-1873: Add README.md file when making distributions --- make-distribution.sh | 1 + 1 file changed, 1 insertion(+) diff --git a/make-distribution.sh b/make-distribution.sh index 7a08d6b9151c4..1c89027d68bed 100755 --- a/make-distribution.sh +++ b/make-distribution.sh @@ -191,6 +191,7 @@ fi mkdir "$DISTDIR"/conf cp "$FWDIR"/conf/*.template "$DISTDIR"/conf cp "$FWDIR"/conf/slaves "$DISTDIR"/conf +cp "$FWDIR/README.md" "$DISTDIR" cp -r "$FWDIR/bin" "$DISTDIR" cp -r "$FWDIR/python" "$DISTDIR" cp -r "$FWDIR/sbin" "$DISTDIR" From df0aa8353ab6d3b19d838c6fa95a93a64948309f Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Sun, 18 May 2014 17:00:57 -0700 Subject: [PATCH 014/118] [WIP][SPARK-1871][MLLIB] Improve MLlib guide for v1.0 Some improvements to MLlib guide: 1. [SPARK-1872] Update API links for unidoc. 2. [SPARK-1783] Added `page.displayTitle` to the global layout. If it is defined, use it instead of `page.title` for title display. 3. Add more Java/Python examples. Author: Xiangrui Meng Closes #816 from mengxr/mllib-doc and squashes the following commits: ec2e407 [Xiangrui Meng] format scala example for ALS cd9f40b [Xiangrui Meng] add a paragraph to summarize distributed matrix types 4617f04 [Xiangrui Meng] add python example to loadLibSVMFile and fix Java example d6509c2 [Xiangrui Meng] [SPARK-1783] update mllib titles 561fdc0 [Xiangrui Meng] add a displayTitle option to global layout 195d06f [Xiangrui Meng] add Java example for summary stats and minor fix 9f1ff89 [Xiangrui Meng] update java api links in mllib-basics 7dad18e [Xiangrui Meng] update java api links in NB 3a0f4a6 [Xiangrui Meng] api/pyspark -> api/python 35bdeb9 [Xiangrui Meng] api/mllib -> api/scala e4afaa8 [Xiangrui Meng] explicity state what might change --- docs/_layouts/global.html | 6 +- docs/mllib-basics.md | 125 +++++++++++++++++-------- docs/mllib-clustering.md | 5 +- docs/mllib-collaborative-filtering.md | 29 +++--- docs/mllib-decision-tree.md | 3 +- docs/mllib-dimensionality-reduction.md | 3 +- docs/mllib-guide.md | 19 ++-- docs/mllib-linear-methods.md | 21 +++-- docs/mllib-naive-bayes.md | 21 +++-- docs/mllib-optimization.md | 11 ++- 10 files changed, 153 insertions(+), 90 deletions(-) diff --git a/docs/_layouts/global.html b/docs/_layouts/global.html index 8b543de574622..fb808129bb65d 100755 --- a/docs/_layouts/global.html +++ b/docs/_layouts/global.html @@ -114,7 +114,11 @@
-

{{ page.title }}

+ {% if page.displayTitle %} +

{{ page.displayTitle }}

+ {% else %} +

{{ page.title }}

+ {% endif %} {{ content }} diff --git a/docs/mllib-basics.md b/docs/mllib-basics.md index aa9321a547097..5796e16e8f99c 100644 --- a/docs/mllib-basics.md +++ b/docs/mllib-basics.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Basics +title: Basics - MLlib +displayTitle: MLlib - Basics --- * Table of contents @@ -26,11 +27,11 @@ of the vector.
The base class of local vectors is -[`Vector`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector), and we provide two -implementations: [`DenseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseVector) and -[`SparseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.SparseVector). We recommend +[`Vector`](api/scala/index.html#org.apache.spark.mllib.linalg.Vector), and we provide two +implementations: [`DenseVector`](api/scala/index.html#org.apache.spark.mllib.linalg.DenseVector) and +[`SparseVector`](api/scala/index.html#org.apache.spark.mllib.linalg.SparseVector). We recommend using the factory methods implemented in -[`Vectors`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector) to create local vectors. +[`Vectors`](api/scala/index.html#org.apache.spark.mllib.linalg.Vector) to create local vectors. {% highlight scala %} import org.apache.spark.mllib.linalg.{Vector, Vectors} @@ -53,11 +54,11 @@ Scala imports `scala.collection.immutable.Vector` by default, so you have to imp
The base class of local vectors is -[`Vector`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector), and we provide two -implementations: [`DenseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseVector) and -[`SparseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.SparseVector). We recommend +[`Vector`](api/java/org/apache/spark/mllib/linalg/Vector.html), and we provide two +implementations: [`DenseVector`](api/java/org/apache/spark/mllib/linalg/DenseVector.html) and +[`SparseVector`](api/java/org/apache/spark/mllib/linalg/SparseVector.html). We recommend using the factory methods implemented in -[`Vectors`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector) to create local vectors. +[`Vectors`](api/java/org/apache/spark/mllib/linalg/Vector.html) to create local vectors. {% highlight java %} import org.apache.spark.mllib.linalg.Vector; @@ -78,13 +79,13 @@ MLlib recognizes the following types as dense vectors: and the following as sparse vectors: -* MLlib's [`SparseVector`](api/pyspark/pyspark.mllib.linalg.SparseVector-class.html). +* MLlib's [`SparseVector`](api/python/pyspark.mllib.linalg.SparseVector-class.html). * SciPy's [`csc_matrix`](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix) with a single column We recommend using NumPy arrays over lists for efficiency, and using the factory methods implemented -in [`Vectors`](api/pyspark/pyspark.mllib.linalg.Vectors-class.html) to create sparse vectors. +in [`Vectors`](api/python/pyspark.mllib.linalg.Vectors-class.html) to create sparse vectors. {% highlight python %} import numpy as np @@ -117,7 +118,7 @@ For multiclass classification, labels should be class indices staring from zero:
A labeled point is represented by the case class -[`LabeledPoint`](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint). +[`LabeledPoint`](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint). {% highlight scala %} import org.apache.spark.mllib.linalg.Vectors @@ -134,7 +135,7 @@ val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)))
A labeled point is represented by -[`LabeledPoint`](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint). +[`LabeledPoint`](api/java/org/apache/spark/mllib/regression/LabeledPoint.html). {% highlight java %} import org.apache.spark.mllib.linalg.Vectors; @@ -151,7 +152,7 @@ LabeledPoint neg = new LabeledPoint(1.0, Vectors.sparse(3, new int[] {0, 2}, new
A labeled point is represented by -[`LabeledPoint`](api/pyspark/pyspark.mllib.regression.LabeledPoint-class.html). +[`LabeledPoint`](api/python/pyspark.mllib.regression.LabeledPoint-class.html). {% highlight python %} from pyspark.mllib.linalg import SparseVector @@ -184,7 +185,7 @@ After loading, the feature indices are converted to zero-based.
-[`MLUtils.loadLibSVMFile`](api/mllib/index.html#org.apache.spark.mllib.util.MLUtils$) reads training +[`MLUtils.loadLibSVMFile`](api/scala/index.html#org.apache.spark.mllib.util.MLUtils$) reads training examples stored in LIBSVM format. {% highlight scala %} @@ -192,20 +193,32 @@ import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils import org.apache.spark.rdd.RDD -val training: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "mllib/data/sample_libsvm_data.txt") +val examples: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "mllib/data/sample_libsvm_data.txt") {% endhighlight %}
-[`MLUtils.loadLibSVMFile`](api/mllib/index.html#org.apache.spark.mllib.util.MLUtils$) reads training +[`MLUtils.loadLibSVMFile`](api/java/org/apache/spark/mllib/util/MLUtils.html) reads training examples stored in LIBSVM format. {% highlight java %} import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.util.MLUtils; -import org.apache.spark.rdd.RDDimport; +import org.apache.spark.api.java.JavaRDD; + +JavaRDD examples = + MLUtils.loadLibSVMFile(jsc.sc(), "mllib/data/sample_libsvm_data.txt").toJavaRDD(); +{% endhighlight %} +
+ +
+[`MLUtils.loadLibSVMFile`](api/python/pyspark.mllib.util.MLUtils-class.html) reads training +examples stored in LIBSVM format. -RDD training = MLUtils.loadLibSVMFile(jsc, "mllib/data/sample_libsvm_data.txt"); +{% highlight python %} +from pyspark.mllib.util import MLUtils + +examples = MLUtils.loadLibSVMFile(sc, "mllib/data/sample_libsvm_data.txt") {% endhighlight %}
@@ -227,10 +240,10 @@ We are going to add sparse matrix in the next release.
The base class of local matrices is -[`Matrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrix), and we provide one -implementation: [`DenseMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseMatrix). +[`Matrix`](api/scala/index.html#org.apache.spark.mllib.linalg.Matrix), and we provide one +implementation: [`DenseMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.DenseMatrix). Sparse matrix will be added in the next release. We recommend using the factory methods implemented -in [`Matrices`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrices) to create local +in [`Matrices`](api/scala/index.html#org.apache.spark.mllib.linalg.Matrices) to create local matrices. {% highlight scala %} @@ -244,10 +257,10 @@ val dm: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
The base class of local matrices is -[`Matrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrix), and we provide one -implementation: [`DenseMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseMatrix). +[`Matrix`](api/java/org/apache/spark/mllib/linalg/Matrix.html), and we provide one +implementation: [`DenseMatrix`](api/java/org/apache/spark/mllib/linalg/DenseMatrix.html). Sparse matrix will be added in the next release. We recommend using the factory methods implemented -in [`Matrices`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrices) to create local +in [`Matrices`](api/java/org/apache/spark/mllib/linalg/Matrices.html) to create local matrices. {% highlight java %} @@ -269,6 +282,15 @@ and distributed matrices. Converting a distributed matrix to a different format global shuffle, which is quite expensive. We implemented three types of distributed matrices in this release and will add more types in the future. +The basic type is called `RowMatrix`. A `RowMatrix` is a row-oriented distributed +matrix without meaningful row indices, e.g., a collection of feature vectors. +It is backed by an RDD of its rows, where each row is a local vector. +We assume that the number of columns is not huge for a `RowMatrix`. +An `IndexedRowMatrix` is similar to a `RowMatrix` but with row indices, +which can be used for identifying rows and joins. +A `CoordinateMatrix` is a distributed matrix stored in [coordinate list (COO)](https://en.wikipedia.org/wiki/Sparse_matrix) format, +backed by an RDD of its entries. + ***Note*** The underlying RDDs of a distributed matrix must be deterministic, because we cache the matrix size. @@ -284,7 +306,7 @@ limited by the integer range but it should be much smaller in practice.
-A [`RowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix) can be +A [`RowMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix) can be created from an `RDD[Vector]` instance. Then we can compute its column summary statistics. {% highlight scala %} @@ -303,7 +325,7 @@ val n = mat.numCols()
-A [`RowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix) can be +A [`RowMatrix`](api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html) can be created from a `JavaRDD` instance. Then we can compute its column summary statistics. {% highlight java %} @@ -333,8 +355,8 @@ which could be faster if the rows are sparse.
-`RowMatrix#computeColumnSummaryStatistics` returns an instance of -[`MultivariateStatisticalSummary`](api/mllib/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary), +[`RowMatrix#computeColumnSummaryStatistics`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix) returns an instance of +[`MultivariateStatisticalSummary`](api/scala/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary), which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the total count. @@ -355,6 +377,31 @@ println(summary.numNonzeros) // number of nonzeros in each column val cov: Matrix = mat.computeCovariance() {% endhighlight %}
+ +
+ +[`RowMatrix#computeColumnSummaryStatistics`](api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html#computeColumnSummaryStatistics()) returns an instance of +[`MultivariateStatisticalSummary`](api/java/org/apache/spark/mllib/stat/MultivariateStatisticalSummary.html), +which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the +total count. + +{% highlight java %} +import org.apache.spark.mllib.linalg.Matrix; +import org.apache.spark.mllib.linalg.distributed.RowMatrix; +import org.apache.spark.mllib.stat.MultivariateStatisticalSummary; + +RowMatrix mat = ... // a RowMatrix + +// Compute column summary statistics. +MultivariateStatisticalSummary summary = mat.computeColumnSummaryStatistics(); +System.out.println(summary.mean()); // a dense vector containing the mean value for each column +System.out.println(summary.variance()); // column-wise variance +System.out.println(summary.numNonzeros()); // number of nonzeros in each column + +// Compute the covariance matrix. +Matrix cov = mat.computeCovariance(); +{% endhighlight %} +
### IndexedRowMatrix @@ -366,9 +413,9 @@ an RDD of indexed rows, which each row is represented by its index (long-typed)
An -[`IndexedRowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix) +[`IndexedRowMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix) can be created from an `RDD[IndexedRow]` instance, where -[`IndexedRow`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRow) is a +[`IndexedRow`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRow) is a wrapper over `(Long, Vector)`. An `IndexedRowMatrix` can be converted to a `RowMatrix` by dropping its row indices. @@ -391,9 +438,9 @@ val rowMat: RowMatrix = mat.toRowMatrix()
An -[`IndexedRowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix) +[`IndexedRowMatrix`](api/java/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.html) can be created from an `JavaRDD` instance, where -[`IndexedRow`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRow) is a +[`IndexedRow`](api/java/org/apache/spark/mllib/linalg/distributed/IndexedRow.html) is a wrapper over `(long, Vector)`. An `IndexedRowMatrix` can be converted to a `RowMatrix` by dropping its row indices. @@ -427,9 +474,9 @@ dimensions of the matrix are huge and the matrix is very sparse.
A -[`CoordinateMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.CoordinateMatrix) +[`CoordinateMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.CoordinateMatrix) can be created from an `RDD[MatrixEntry]` instance, where -[`MatrixEntry`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.MatrixEntry) is a +[`MatrixEntry`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.MatrixEntry) is a wrapper over `(Long, Long, Double)`. A `CoordinateMatrix` can be converted to a `IndexedRowMatrix` with sparse rows by calling `toIndexedRowMatrix`. In this release, we do not provide other computation for `CoordinateMatrix`. @@ -453,13 +500,13 @@ val indexedRowMatrix = mat.toIndexedRowMatrix()
A -[`CoordinateMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.CoordinateMatrix) +[`CoordinateMatrix`](api/java/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.html) can be created from a `JavaRDD` instance, where -[`MatrixEntry`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.MatrixEntry) is a +[`MatrixEntry`](api/java/org/apache/spark/mllib/linalg/distributed/MatrixEntry.html) is a wrapper over `(long, long, double)`. A `CoordinateMatrix` can be converted to a `IndexedRowMatrix` with sparse rows by calling `toIndexedRowMatrix`. -{% highlight scala %} +{% highlight java %} import org.apache.spark.api.java.JavaRDD; import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix; import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix; @@ -467,7 +514,7 @@ import org.apache.spark.mllib.linalg.distributed.MatrixEntry; JavaRDD entries = ... // a JavaRDD of matrix entries // Create a CoordinateMatrix from a JavaRDD. -CoordinateMatrix mat = new CoordinateMatrix(entries); +CoordinateMatrix mat = new CoordinateMatrix(entries.rdd()); // Get its size. long m = mat.numRows(); diff --git a/docs/mllib-clustering.md b/docs/mllib-clustering.md index 276868fa8490d..429cdf8d40cec 100644 --- a/docs/mllib-clustering.md +++ b/docs/mllib-clustering.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Clustering +title: Clustering - MLlib +displayTitle: MLlib - Clustering --- * Table of contents @@ -40,7 +41,7 @@ a given dataset, the algorithm returns the best clustering result). Following code snippets can be executed in `spark-shell`. In the following example after loading and parsing data, we use the -[`KMeans`](api/mllib/index.html#org.apache.spark.mllib.clustering.KMeans) object to cluster the data +[`KMeans`](api/scala/index.html#org.apache.spark.mllib.clustering.KMeans) object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing *k*. In fact the optimal *k* is usually one where there is an "elbow" in the WSSSE graph. diff --git a/docs/mllib-collaborative-filtering.md b/docs/mllib-collaborative-filtering.md index f486c56e55907..d51002f015670 100644 --- a/docs/mllib-collaborative-filtering.md +++ b/docs/mllib-collaborative-filtering.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Collaborative Filtering +title: Collaborative Filtering - MLlib +displayTitle: MLlib - Collaborative Filtering --- * Table of contents @@ -48,7 +49,7 @@ user for an item.
In the following example we load rating data. Each row consists of a user, a product and a rating. -We use the default [ALS.train()](api/mllib/index.html#org.apache.spark.mllib.recommendation.ALS$) +We use the default [ALS.train()](api/scala/index.html#org.apache.spark.mllib.recommendation.ALS$) method which assumes ratings are explicit. We evaluate the recommendation model by measuring the Mean Squared Error of rating prediction. @@ -58,9 +59,9 @@ import org.apache.spark.mllib.recommendation.Rating // Load and parse the data val data = sc.textFile("mllib/data/als/test.data") -val ratings = data.map(_.split(',') match { - case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble) -}) +val ratings = data.map(_.split(',') match { case Array(user, item, rate) => + Rating(user.toInt, item.toInt, rate.toDouble) + }) // Build the recommendation model using ALS val rank = 10 @@ -68,15 +69,19 @@ val numIterations = 20 val model = ALS.train(ratings, rank, numIterations, 0.01) // Evaluate the model on rating data -val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)} -val predictions = model.predict(usersProducts).map{ - case Rating(user, product, rate) => ((user, product), rate) +val usersProducts = ratings.map { case Rating(user, product, rate) => + (user, product) } -val ratesAndPreds = ratings.map{ - case Rating(user, product, rate) => ((user, product), rate) +val predictions = + model.predict(usersProducts).map { case Rating(user, product, rate) => + ((user, product), rate) + } +val ratesAndPreds = ratings.map { case Rating(user, product, rate) => + ((user, product), rate) }.join(predictions) -val MSE = ratesAndPreds.map{ - case ((user, product), (r1, r2)) => math.pow((r1- r2), 2) +val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) => + val err = (r1 - r2) + err * err }.mean() println("Mean Squared Error = " + MSE) {% endhighlight %} diff --git a/docs/mllib-decision-tree.md b/docs/mllib-decision-tree.md index acf0feff42a8d..3002a66a4fdb3 100644 --- a/docs/mllib-decision-tree.md +++ b/docs/mllib-decision-tree.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Decision Tree +title: Decision Tree - MLlib +displayTitle: MLlib - Decision Tree --- * Table of contents diff --git a/docs/mllib-dimensionality-reduction.md b/docs/mllib-dimensionality-reduction.md index ab24663cfe258..e3608075fbb13 100644 --- a/docs/mllib-dimensionality-reduction.md +++ b/docs/mllib-dimensionality-reduction.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Dimensionality Reduction +title: Dimensionality Reduction - MLlib +displayTitle: MLlib - Dimensionality Reduction --- * Table of contents diff --git a/docs/mllib-guide.md b/docs/mllib-guide.md index 842ca5c8c6d8a..640ca83085387 100644 --- a/docs/mllib-guide.md +++ b/docs/mllib-guide.md @@ -27,8 +27,9 @@ filtering, dimensionality reduction, as well as underlying optimization primitiv * stochastic gradient descent * limited-memory BFGS (L-BFGS) -MLlib is currently a *beta* component under active development. -The APIs may change in the future releases, and we will provide migration guide between releases. +MLlib is a new component under active development. +The APIs marked `Experimental`/`DeveloperApi` may change in future releases, +and we will provide migration guide between releases. ## Dependencies @@ -61,9 +62,9 @@ take advantage of sparsity in both storage and computation.
We used to represent a feature vector by `Array[Double]`, which is replaced by -[`Vector`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector) in v1.0. Algorithms that used +[`Vector`](api/scala/index.html#org.apache.spark.mllib.linalg.Vector) in v1.0. Algorithms that used to accept `RDD[Array[Double]]` now take -`RDD[Vector]`. [`LabeledPoint`](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint) +`RDD[Vector]`. [`LabeledPoint`](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint) is now a wrapper of `(Double, Vector)` instead of `(Double, Array[Double])`. Converting `Array[Double]` to `Vector` is straightforward: @@ -74,7 +75,7 @@ val array: Array[Double] = ... // a double array val vector: Vector = Vectors.dense(array) // a dense vector {% endhighlight %} -[`Vectors`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vectors$) provides factory methods to create sparse vectors. +[`Vectors`](api/scala/index.html#org.apache.spark.mllib.linalg.Vectors$) provides factory methods to create sparse vectors. *Note*. Scala imports `scala.collection.immutable.Vector` by default, so you have to import `org.apache.spark.mllib.linalg.Vector` explicitly to use MLlib's `Vector`. @@ -83,9 +84,9 @@ val vector: Vector = Vectors.dense(array) // a dense vector
We used to represent a feature vector by `double[]`, which is replaced by -[`Vector`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector) in v1.0. Algorithms that used +[`Vector`](api/scala/index.html#org.apache.spark.mllib.linalg.Vector) in v1.0. Algorithms that used to accept `RDD` now take -`RDD`. [`LabeledPoint`](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint) +`RDD`. [`LabeledPoint`](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint) is now a wrapper of `(double, Vector)` instead of `(double, double[])`. Converting `double[]` to `Vector` is straightforward: @@ -97,7 +98,7 @@ double[] array = ... // a double array Vector vector = Vectors.dense(array); // a dense vector {% endhighlight %} -[`Vectors`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vectors$) provides factory methods to +[`Vectors`](api/scala/index.html#org.apache.spark.mllib.linalg.Vectors$) provides factory methods to create sparse vectors.
@@ -106,7 +107,7 @@ create sparse vectors. We used to represent a labeled feature vector in a NumPy array, where the first entry corresponds to the label and the rest are features. This representation is replaced by class -[`LabeledPoint`](api/pyspark/pyspark.mllib.regression.LabeledPoint-class.html), which takes both +[`LabeledPoint`](api/python/pyspark.mllib.regression.LabeledPoint-class.html), which takes both dense and sparse feature vectors. {% highlight python %} diff --git a/docs/mllib-linear-methods.md b/docs/mllib-linear-methods.md index eff617d8641e2..4dfbebbcd04b7 100644 --- a/docs/mllib-linear-methods.md +++ b/docs/mllib-linear-methods.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Linear Methods +title: Linear Methods - MLlib +displayTitle: MLlib - Linear Methods --- * Table of contents @@ -233,7 +234,7 @@ val modelL1 = svmAlg.run(training) {% endhighlight %} Similarly, you can use replace `SVMWithSGD` by -[`LogisticRegressionWithSGD`](api/mllib/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD). +[`LogisticRegressionWithSGD`](api/scala/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD).
@@ -328,8 +329,8 @@ println("training Mean Squared Error = " + MSE) {% endhighlight %} Similarly you can use -[`RidgeRegressionWithSGD`](api/mllib/index.html#org.apache.spark.mllib.regression.RidgeRegressionWithSGD) -and [`LassoWithSGD`](api/mllib/index.html#org.apache.spark.mllib.regression.LassoWithSGD). +[`RidgeRegressionWithSGD`](api/scala/index.html#org.apache.spark.mllib.regression.RidgeRegressionWithSGD) +and [`LassoWithSGD`](api/scala/index.html#org.apache.spark.mllib.regression.LassoWithSGD).
@@ -380,11 +381,11 @@ all three possible regularizations (none, L1 or L2). Algorithms are all implemented in Scala: -* [SVMWithSGD](api/mllib/index.html#org.apache.spark.mllib.classification.SVMWithSGD) -* [LogisticRegressionWithSGD](api/mllib/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD) -* [LinearRegressionWithSGD](api/mllib/index.html#org.apache.spark.mllib.regression.LinearRegressionWithSGD) -* [RidgeRegressionWithSGD](api/mllib/index.html#org.apache.spark.mllib.regression.RidgeRegressionWithSGD) -* [LassoWithSGD](api/mllib/index.html#org.apache.spark.mllib.regression.LassoWithSGD) +* [SVMWithSGD](api/scala/index.html#org.apache.spark.mllib.classification.SVMWithSGD) +* [LogisticRegressionWithSGD](api/scala/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD) +* [LinearRegressionWithSGD](api/scala/index.html#org.apache.spark.mllib.regression.LinearRegressionWithSGD) +* [RidgeRegressionWithSGD](api/scala/index.html#org.apache.spark.mllib.regression.RidgeRegressionWithSGD) +* [LassoWithSGD](api/scala/index.html#org.apache.spark.mllib.regression.LassoWithSGD) Python calls the Scala implementation via -[PythonMLLibAPI](api/mllib/index.html#org.apache.spark.mllib.api.python.PythonMLLibAPI). +[PythonMLLibAPI](api/scala/index.html#org.apache.spark.mllib.api.python.PythonMLLibAPI). diff --git a/docs/mllib-naive-bayes.md b/docs/mllib-naive-bayes.md index c47508b7daa2d..4b3a7cab32118 100644 --- a/docs/mllib-naive-bayes.md +++ b/docs/mllib-naive-bayes.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Naive Bayes +title: Naive Bayes - MLlib +displayTitle: MLlib - Naive Bayes --- Naive Bayes is a simple multiclass classification algorithm with the assumption of independence @@ -27,11 +28,11 @@ sparsity. Since the training data is only used once, it is not necessary to cach
-[NaiveBayes](api/mllib/index.html#org.apache.spark.mllib.classification.NaiveBayes$) implements +[NaiveBayes](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayes$) implements multinomial naive Bayes. It takes an RDD of -[LabeledPoint](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint) and an optional +[LabeledPoint](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint) and an optional smoothing parameter `lambda` as input, and output a -[NaiveBayesModel](api/mllib/index.html#org.apache.spark.mllib.classification.NaiveBayesModel), which +[NaiveBayesModel](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayesModel), which can be used for evaluation and prediction. {% highlight scala %} @@ -59,11 +60,11 @@ val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / test
-[NaiveBayes](api/mllib/index.html#org.apache.spark.mllib.classification.NaiveBayes$) implements +[NaiveBayes](api/java/org/apache/spark/mllib/classification/NaiveBayes.html) implements multinomial naive Bayes. It takes a Scala RDD of -[LabeledPoint](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint) and an +[LabeledPoint](api/java/org/apache/spark/mllib/regression/LabeledPoint.html) and an optionally smoothing parameter `lambda` as input, and output a -[NaiveBayesModel](api/mllib/index.html#org.apache.spark.mllib.classification.NaiveBayesModel), which +[NaiveBayesModel](api/java/org/apache/spark/mllib/classification/NaiveBayesModel.html), which can be used for evaluation and prediction. {% highlight java %} @@ -102,11 +103,11 @@ double accuracy = 1.0 * predictionAndLabel.filter(new Function -[NaiveBayes](api/pyspark/pyspark.mllib.classification.NaiveBayes-class.html) implements multinomial +[NaiveBayes](api/python/pyspark.mllib.classification.NaiveBayes-class.html) implements multinomial naive Bayes. It takes an RDD of -[LabeledPoint](api/pyspark/pyspark.mllib.regression.LabeledPoint-class.html) and an optionally +[LabeledPoint](api/python/pyspark.mllib.regression.LabeledPoint-class.html) and an optionally smoothing parameter `lambda` as input, and output a -[NaiveBayesModel](api/pyspark/pyspark.mllib.classification.NaiveBayesModel-class.html), which can be +[NaiveBayesModel](api/python/pyspark.mllib.classification.NaiveBayesModel-class.html), which can be used for evaluation and prediction. diff --git a/docs/mllib-optimization.md b/docs/mllib-optimization.md index aa0dec2130593..a22980d03a2f0 100644 --- a/docs/mllib-optimization.md +++ b/docs/mllib-optimization.md @@ -1,6 +1,7 @@ --- layout: global -title: MLlib - Optimization +title: Optimization - MLlib +displayTitle: MLlib - Optimization --- * Table of contents @@ -170,17 +171,17 @@ each iteration, to compute the gradient direction. Available algorithms for gradient descent: -* [GradientDescent.runMiniBatchSGD](api/mllib/index.html#org.apache.spark.mllib.optimization.GradientDescent) +* [GradientDescent.runMiniBatchSGD](api/scala/index.html#org.apache.spark.mllib.optimization.GradientDescent) ### L-BFGS L-BFGS is currently only a low-level optimization primitive in `MLlib`. If you want to use L-BFGS in various ML algorithms such as Linear Regression, and Logistic Regression, you have to pass the gradient of objective function, and updater into optimizer yourself instead of using the training APIs like -[LogisticRegressionWithSGD](api/mllib/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD). +[LogisticRegressionWithSGD](api/scala/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD). See the example below. It will be addressed in the next release. The L1 regularization by using -[L1Updater](api/mllib/index.html#org.apache.spark.mllib.optimization.L1Updater) will not work since the +[L1Updater](api/scala/index.html#org.apache.spark.mllib.optimization.L1Updater) will not work since the soft-thresholding logic in L1Updater is designed for gradient descent. See the developer's note. The L-BFGS method @@ -274,4 +275,4 @@ the actual gradient descent step. However, we're able to take the gradient and loss of objective function of regularization for L-BFGS by ignoring the part of logic only for gradient decent such as adaptive step size stuff. We will refactorize this into regularizer to replace updater to separate the logic between -regularization and step update later. \ No newline at end of file +regularization and step update later. From 7b70a7071894dd90ea1d0091542b3e13e7ef8d3a Mon Sep 17 00:00:00 2001 From: Matei Zaharia Date: Mon, 19 May 2014 15:02:35 -0700 Subject: [PATCH 015/118] [SPARK-1876] Windows fixes to deal with latest distribution layout changes - Look for JARs in the right place - Launch examples the same way as on Unix - Load datanucleus JARs if they exist - Don't attempt to parse local paths as URIs in SparkSubmit, since paths with C:\ are not valid URIs - Also fixed POM exclusion rules for datanucleus (it wasn't properly excluding it, whereas SBT was) Author: Matei Zaharia Closes #819 from mateiz/win-fixes and squashes the following commits: d558f96 [Matei Zaharia] Fix comment 228577b [Matei Zaharia] Review comments d3b71c7 [Matei Zaharia] Properly exclude datanucleus files in Maven assembly 144af84 [Matei Zaharia] Update Windows scripts to match latest binary package layout --- README.md | 7 +-- assembly/pom.xml | 2 +- bin/compute-classpath.cmd | 24 ++++++++- bin/run-example | 23 ++++----- bin/run-example2.cmd | 51 ++++++++++++++----- bin/spark-class2.cmd | 2 + .../org/apache/spark/deploy/SparkSubmit.scala | 2 +- 7 files changed, 81 insertions(+), 30 deletions(-) diff --git a/README.md b/README.md index 9c2e32b90f162..6211a5889a3f5 100644 --- a/README.md +++ b/README.md @@ -9,13 +9,14 @@ You can find the latest Spark documentation, including a programming guide, on the project webpage at . This README file only contains basic setup instructions. - ## Building Spark Spark is built on Scala 2.10. To build Spark and its example programs, run: ./sbt/sbt assembly +(You do not need to do this if you downloaded a pre-built package.) + ## Interactive Scala Shell The easiest way to start using Spark is through the Scala shell: @@ -41,9 +42,9 @@ And run the following command, which should also return 1000: Spark also comes with several sample programs in the `examples` directory. To run one of them, use `./bin/run-example [params]`. For example: - ./bin/run-example org.apache.spark.examples.SparkLR + ./bin/run-example SparkPi -will run the Logistic Regression example locally. +will run the Pi example locally. You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, diff --git a/assembly/pom.xml b/assembly/pom.xml index abd8935339992..963357b9ab167 100644 --- a/assembly/pom.xml +++ b/assembly/pom.xml @@ -96,7 +96,7 @@ *:* - org.datanucleus:* + org/datanucleus/** META-INF/*.SF META-INF/*.DSA META-INF/*.RSA diff --git a/bin/compute-classpath.cmd b/bin/compute-classpath.cmd index 065553eb31939..58710cd1bd548 100644 --- a/bin/compute-classpath.cmd +++ b/bin/compute-classpath.cmd @@ -20,6 +20,13 @@ rem rem This script computes Spark's classpath and prints it to stdout; it's used by both the "run" rem script and the ExecutorRunner in standalone cluster mode. +rem If we're called from spark-class2.cmd, it already set enabledelayedexpansion and setting +rem it here would stop us from affecting its copy of the CLASSPATH variable; otherwise we +rem need to set it here because we use !datanucleus_jars! below. +if "%DONT_PRINT_CLASSPATH%"=="1" goto skip_delayed_expansion +setlocal enabledelayedexpansion +:skip_delayed_expansion + set SCALA_VERSION=2.10 rem Figure out where the Spark framework is installed @@ -31,7 +38,7 @@ if exist "%FWDIR%conf\spark-env.cmd" call "%FWDIR%conf\spark-env.cmd" rem Build up classpath set CLASSPATH=%FWDIR%conf if exist "%FWDIR%RELEASE" ( - for %%d in ("%FWDIR%jars\spark-assembly*.jar") do ( + for %%d in ("%FWDIR%lib\spark-assembly*.jar") do ( set ASSEMBLY_JAR=%%d ) ) else ( @@ -42,6 +49,21 @@ if exist "%FWDIR%RELEASE" ( set CLASSPATH=%CLASSPATH%;%ASSEMBLY_JAR% +rem When Hive support is needed, Datanucleus jars must be included on the classpath. +rem Datanucleus jars do not work if only included in the uber jar as plugin.xml metadata is lost. +rem Both sbt and maven will populate "lib_managed/jars/" with the datanucleus jars when Spark is +rem built with Hive, so look for them there. +if exist "%FWDIR%RELEASE" ( + set datanucleus_dir=%FWDIR%lib +) else ( + set datanucleus_dir=%FWDIR%lib_managed\jars +) +set "datanucleus_jars=" +for %%d in ("%datanucleus_dir%\datanucleus-*.jar") do ( + set datanucleus_jars=!datanucleus_jars!;%%d +) +set CLASSPATH=%CLASSPATH%;%datanucleus_jars% + set SPARK_CLASSES=%FWDIR%core\target\scala-%SCALA_VERSION%\classes set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%repl\target\scala-%SCALA_VERSION%\classes set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%mllib\target\scala-%SCALA_VERSION%\classes diff --git a/bin/run-example b/bin/run-example index 146951ac0ee56..7caab31daef39 100755 --- a/bin/run-example +++ b/bin/run-example @@ -23,6 +23,16 @@ FWDIR="$(cd `dirname $0`/..; pwd)" export SPARK_HOME="$FWDIR" EXAMPLES_DIR="$FWDIR"/examples +if [ -n "$1" ]; then + EXAMPLE_CLASS="$1" + shift +else + echo "Usage: ./bin/run-example [example-args]" + echo " - set MASTER=XX to use a specific master" + echo " - can use abbreviated example class name (e.g. SparkPi, mllib.LinearRegression)" + exit 1 +fi + if [ -f "$FWDIR/RELEASE" ]; then export SPARK_EXAMPLES_JAR=`ls "$FWDIR"/lib/spark-examples-*hadoop*.jar` elif [ -e "$EXAMPLES_DIR"/target/scala-$SCALA_VERSION/spark-examples-*hadoop*.jar ]; then @@ -37,17 +47,6 @@ fi EXAMPLE_MASTER=${MASTER:-"local[*]"} -if [ -n "$1" ]; then - EXAMPLE_CLASS="$1" - shift -else - echo "usage: ./bin/run-example [example-args]" - echo " - set MASTER=XX to use a specific master" - echo " - can use abbreviated example class name (e.g. SparkPi, mllib.MovieLensALS)" - echo - exit -1 -fi - if [[ ! $EXAMPLE_CLASS == org.apache.spark.examples* ]]; then EXAMPLE_CLASS="org.apache.spark.examples.$EXAMPLE_CLASS" fi @@ -55,5 +54,5 @@ fi ./bin/spark-submit \ --master $EXAMPLE_MASTER \ --class $EXAMPLE_CLASS \ - $SPARK_EXAMPLES_JAR \ + "$SPARK_EXAMPLES_JAR" \ "$@" diff --git a/bin/run-example2.cmd b/bin/run-example2.cmd index 40abb9af74246..eadedd7fa61ff 100644 --- a/bin/run-example2.cmd +++ b/bin/run-example2.cmd @@ -30,7 +30,9 @@ if exist "%FWDIR%conf\spark-env.cmd" call "%FWDIR%conf\spark-env.cmd" rem Test that an argument was given if not "x%1"=="x" goto arg_given - echo Usage: run-example ^ [^] + echo Usage: run-example ^ [example-args] + echo - set MASTER=XX to use a specific master + echo - can use abbreviated example class name (e.g. SparkPi, mllib.LinearRegression) goto exit :arg_given @@ -38,8 +40,14 @@ set EXAMPLES_DIR=%FWDIR%examples rem Figure out the JAR file that our examples were packaged into. set SPARK_EXAMPLES_JAR= -for %%d in ("%EXAMPLES_DIR%\target\scala-%SCALA_VERSION%\spark-examples*assembly*.jar") do ( - set SPARK_EXAMPLES_JAR=%%d +if exist "%FWDIR%RELEASE" ( + for %%d in ("%FWDIR%lib\spark-examples*.jar") do ( + set SPARK_EXAMPLES_JAR=%%d + ) +) else ( + for %%d in ("%EXAMPLES_DIR%\target\scala-%SCALA_VERSION%\spark-examples*.jar") do ( + set SPARK_EXAMPLES_JAR=%%d + ) ) if "x%SPARK_EXAMPLES_JAR%"=="x" ( echo Failed to find Spark examples assembly JAR. @@ -47,15 +55,34 @@ if "x%SPARK_EXAMPLES_JAR%"=="x" ( goto exit ) -rem Compute Spark classpath using external script -set DONT_PRINT_CLASSPATH=1 -call "%FWDIR%bin\compute-classpath.cmd" -set DONT_PRINT_CLASSPATH=0 -set CLASSPATH=%SPARK_EXAMPLES_JAR%;%CLASSPATH% +rem Set master from MASTER environment variable if given +if "x%MASTER%"=="x" ( + set EXAMPLE_MASTER=local[*] +) else ( + set EXAMPLE_MASTER=%MASTER% +) + +rem If the EXAMPLE_CLASS does not start with org.apache.spark.examples, add that +set EXAMPLE_CLASS=%1 +set PREFIX=%EXAMPLE_CLASS:~0,25% +if not %PREFIX%==org.apache.spark.examples ( + set EXAMPLE_CLASS=org.apache.spark.examples.%EXAMPLE_CLASS% +) + +rem Get the tail of the argument list, to skip the first one. This is surprisingly +rem complicated on Windows. +set "ARGS=" +:top +shift +if "%~1" neq "" ( + set ARGS=%ARGS% "%~1" + goto :top +) +if defined ARGS set ARGS=%ARGS:~1% -rem Figure out where java is. -set RUNNER=java -if not "x%JAVA_HOME%"=="x" set RUNNER=%JAVA_HOME%\bin\java +call "%FWDIR%bin\spark-submit.cmd" ^ + --master %EXAMPLE_MASTER% ^ + --class %EXAMPLE_CLASS% ^ + "%SPARK_EXAMPLES_JAR%" %ARGS% -"%RUNNER%" -cp "%CLASSPATH%" %JAVA_OPTS% %* :exit diff --git a/bin/spark-class2.cmd b/bin/spark-class2.cmd index 4302c1b6b7ff4..266edd9fa9835 100755 --- a/bin/spark-class2.cmd +++ b/bin/spark-class2.cmd @@ -17,6 +17,8 @@ rem See the License for the specific language governing permissions and rem limitations under the License. rem +setlocal enabledelayedexpansion + set SCALA_VERSION=2.10 rem Figure out where the Spark framework is installed diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala index a99b2176e2b5e..c54331c00fab8 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala @@ -299,7 +299,7 @@ object SparkSubmit { } private def addJarToClasspath(localJar: String, loader: ExecutorURLClassLoader) { - val localJarFile = new File(new URI(localJar).getPath) + val localJarFile = new File(localJar) if (!localJarFile.exists()) { printWarning(s"Jar $localJar does not exist, skipping.") } From 1811ba8ccb580979aa2e12019e6a82805f09ab53 Mon Sep 17 00:00:00 2001 From: zsxwing Date: Mon, 19 May 2014 16:41:31 -0700 Subject: [PATCH 016/118] SPARK-1878: Fix the incorrect initialization order JIRA: https://issues.apache.org/jira/browse/SPARK-1878 Author: zsxwing Closes #822 from zsxwing/SPARK-1878 and squashes the following commits: 4a47e27 [zsxwing] SPARK-1878: Fix the incorrect initialization order --- .../spark/streaming/api/java/JavaStreamingContext.scala | 6 +++--- .../test/java/org/apache/spark/streaming/JavaAPISuite.java | 4 ++++ 2 files changed, 7 insertions(+), 3 deletions(-) diff --git a/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala b/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala index 75a3e9334e6d5..18605cac7006c 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala @@ -142,12 +142,12 @@ class JavaStreamingContext(val ssc: StreamingContext) { */ def this(path: String, hadoopConf: Configuration) = this(new StreamingContext(path, hadoopConf)) - @deprecated("use sparkContext", "0.9.0") - val sc: JavaSparkContext = sparkContext - /** The underlying SparkContext */ val sparkContext = new JavaSparkContext(ssc.sc) + @deprecated("use sparkContext", "0.9.0") + val sc: JavaSparkContext = sparkContext + /** * Create an input stream from network source hostname:port. Data is received using * a TCP socket and the receive bytes is interpreted as UTF8 encoded \n delimited diff --git a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java index ce58cb12a4564..4efeb8dfbe1ad 100644 --- a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java +++ b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java @@ -55,6 +55,10 @@ public void equalIterable(Iterable a, Iterable b) { equalIterator(a.iterator(), b.iterator()); } + @Test + public void testInitialization() { + Assert.assertNotNull(ssc.sc()); + } @SuppressWarnings("unchecked") @Test From 5af99d7617ba3b9fbfdb345ef9571b7dd41f45a1 Mon Sep 17 00:00:00 2001 From: Matei Zaharia Date: Mon, 19 May 2014 18:42:28 -0700 Subject: [PATCH 017/118] SPARK-1879. Increase MaxPermSize since some of our builds have many classes See https://issues.apache.org/jira/browse/SPARK-1879 -- builds with Hadoop2 and Hive ran out of PermGen space in spark-shell, when those things added up with the Scala compiler. Note that users can still override it by setting their own Java options with this change. Their options will come later in the command string than the -XX:MaxPermSize=128m. Author: Matei Zaharia Closes #823 from mateiz/spark-1879 and squashes the following commits: 6bc0ee8 [Matei Zaharia] Increase MaxPermSize to 128m since some of our builds have lots of classes --- bin/spark-class | 4 ++-- bin/spark-class2.cmd | 4 ++-- .../scala/org/apache/spark/deploy/worker/CommandUtils.scala | 4 +++- 3 files changed, 7 insertions(+), 5 deletions(-) diff --git a/bin/spark-class b/bin/spark-class index 6480ccb58d6aa..2e57295fd0234 100755 --- a/bin/spark-class +++ b/bin/spark-class @@ -99,14 +99,14 @@ else fi # Set JAVA_OPTS to be able to load native libraries and to set heap size -JAVA_OPTS="$OUR_JAVA_OPTS" +JAVA_OPTS="-XX:MaxPermSize=128m $OUR_JAVA_OPTS" JAVA_OPTS="$JAVA_OPTS -Xms$OUR_JAVA_MEM -Xmx$OUR_JAVA_MEM" # Load extra JAVA_OPTS from conf/java-opts, if it exists if [ -e "$FWDIR/conf/java-opts" ] ; then JAVA_OPTS="$JAVA_OPTS `cat $FWDIR/conf/java-opts`" fi export JAVA_OPTS -# Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in ExecutorRunner.scala! +# Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in CommandUtils.scala! if [ ! -f "$FWDIR/RELEASE" ]; then # Exit if the user hasn't compiled Spark diff --git a/bin/spark-class2.cmd b/bin/spark-class2.cmd index 266edd9fa9835..e420eb409e529 100755 --- a/bin/spark-class2.cmd +++ b/bin/spark-class2.cmd @@ -77,8 +77,8 @@ rem All drivers use SPARK_JAVA_OPTS + SPARK_DRIVER_MEMORY. The repl also uses SP ) rem Set JAVA_OPTS to be able to load native libraries and to set heap size -set JAVA_OPTS=%OUR_JAVA_OPTS% -Djava.library.path=%SPARK_LIBRARY_PATH% -Xms%OUR_JAVA_MEM% -Xmx%OUR_JAVA_MEM% -rem Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in ExecutorRunner.scala! +set JAVA_OPTS=-XX:MaxPermSize=128m %OUR_JAVA_OPTS% -Djava.library.path=%SPARK_LIBRARY_PATH% -Xms%OUR_JAVA_MEM% -Xmx%OUR_JAVA_MEM% +rem Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in CommandUtils.scala! rem Test whether the user has built Spark if exist "%FWDIR%RELEASE" goto skip_build_test diff --git a/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala b/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala index c7f0f244ea2fc..4af5bc3afad6c 100644 --- a/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala +++ b/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala @@ -65,6 +65,8 @@ object CommandUtils extends Logging { Seq() } + val permGenOpt = Seq("-XX:MaxPermSize=128m") + // Figure out our classpath with the external compute-classpath script val ext = if (System.getProperty("os.name").startsWith("Windows")) ".cmd" else ".sh" val classPath = Utils.executeAndGetOutput( @@ -73,7 +75,7 @@ object CommandUtils extends Logging { val userClassPath = command.classPathEntries ++ Seq(classPath) Seq("-cp", userClassPath.filterNot(_.isEmpty).mkString(File.pathSeparator)) ++ - libraryOpts ++ extraOpts ++ workerLocalOpts ++ memoryOpts + permGenOpt ++ libraryOpts ++ extraOpts ++ workerLocalOpts ++ memoryOpts } /** Spawn a thread that will redirect a given stream to a file */ From 6a2c5c610c259f62cb12d8cfc18bf59cdb334bb2 Mon Sep 17 00:00:00 2001 From: witgo Date: Mon, 19 May 2014 19:40:29 -0700 Subject: [PATCH 018/118] [SPARK-1875]NoClassDefFoundError: StringUtils when building with hadoop 1.x and hive Author: witgo Closes #824 from witgo/SPARK-1875_commons-lang-2.6 and squashes the following commits: ef7231d [witgo] review commit ead3c3b [witgo] SPARK-1875:NoClassDefFoundError: StringUtils when building against Hadoop 1 --- project/SparkBuild.scala | 3 +-- sql/hive/pom.xml | 8 -------- 2 files changed, 1 insertion(+), 10 deletions(-) diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 29dcd8678b476..b9d92340ff75b 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -318,7 +318,6 @@ object SparkBuild extends Build { val excludeFastutil = ExclusionRule(organization = "it.unimi.dsi") val excludeJruby = ExclusionRule(organization = "org.jruby") val excludeThrift = ExclusionRule(organization = "org.apache.thrift") - val excludeCommonsLang = ExclusionRule(organization = "commons-lang") val excludeServletApi = ExclusionRule(organization = "javax.servlet", artifact = "servlet-api") def sparkPreviousArtifact(id: String, organization: String = "org.apache.spark", @@ -493,7 +492,7 @@ object SparkBuild extends Build { javaOptions += "-XX:MaxPermSize=1g", libraryDependencies ++= Seq( "org.spark-project.hive" % "hive-metastore" % hiveVersion, - "org.spark-project.hive" % "hive-exec" % hiveVersion excludeAll(excludeCommonsLang, excludeCommonsLogging), + "org.spark-project.hive" % "hive-exec" % hiveVersion excludeAll(excludeCommonsLogging), "org.spark-project.hive" % "hive-serde" % hiveVersion ), // Multiple queries rely on the TestHive singleton. See comments there for more details. diff --git a/sql/hive/pom.xml b/sql/hive/pom.xml index 4d0b2fa1452a2..9254b70e64a08 100644 --- a/sql/hive/pom.xml +++ b/sql/hive/pom.xml @@ -57,10 +57,6 @@ commons-logging commons-logging - - commons-lang - commons-lang - @@ -80,10 +76,6 @@ commons-logging commons-logging-api - - commons-lang - commons-lang - From b0ce22e071da4cc62ec5e29abf7b1299b8e4a6b0 Mon Sep 17 00:00:00 2001 From: Aaron Davidson Date: Mon, 19 May 2014 20:55:26 -0700 Subject: [PATCH 019/118] SPARK-1689: Spark application should die when removed by Master scheduler.error() will mask the error if there are active tasks. Being removed is a cataclysmic event for Spark applications, and should probably be treated as such. Author: Aaron Davidson Closes #832 from aarondav/i-love-u and squashes the following commits: 9f1200f [Aaron Davidson] SPARK-1689: Spark application should die when removed by Master --- .../spark/scheduler/cluster/SparkDeploySchedulerBackend.scala | 2 ++ 1 file changed, 2 insertions(+) diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala index 9768670855f80..9c07b3f7b695a 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala @@ -88,6 +88,8 @@ private[spark] class SparkDeploySchedulerBackend( if (!stopping) { logError("Application has been killed. Reason: " + reason) scheduler.error(reason) + // Ensure the application terminates, as we can no longer run jobs. + sc.stop() } } From bcb9dce6f444a977c714117811bce0c54b417650 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Mon, 19 May 2014 21:29:33 -0700 Subject: [PATCH 020/118] [SPARK-1874][MLLIB] Clean up MLlib sample data 1. Added synthetic datasets for `MovieLensALS`, `LinearRegression`, `BinaryClassification`. 2. Embedded instructions in the help message of those example apps. Per discussion with Matei on the JIRA page, new example data is under `data/mllib`. Author: Xiangrui Meng Closes #833 from mengxr/mllib-sample-data and squashes the following commits: 59f0a18 [Xiangrui Meng] add sample binary classification data 3c2f92f [Xiangrui Meng] add linear regression data 050f1ca [Xiangrui Meng] add a sample dataset for MovieLensALS example --- .../sample_binary_classification_data.txt | 100 ++ data/mllib/sample_linear_regression_data.txt | 501 ++++++ data/mllib/sample_movielens_data.txt | 1501 +++++++++++++++++ .../examples/mllib/BinaryClassification.scala | 12 +- .../examples/mllib/LinearRegression.scala | 11 +- .../spark/examples/mllib/MovieLensALS.scala | 15 + 6 files changed, 2138 insertions(+), 2 deletions(-) create mode 100644 data/mllib/sample_binary_classification_data.txt create mode 100755 data/mllib/sample_linear_regression_data.txt create mode 100644 data/mllib/sample_movielens_data.txt diff --git a/data/mllib/sample_binary_classification_data.txt b/data/mllib/sample_binary_classification_data.txt new file mode 100644 index 0000000000000..861c70cde7fd2 --- /dev/null +++ b/data/mllib/sample_binary_classification_data.txt @@ -0,0 +1,100 @@ +0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84 216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252 242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253 267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48 291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253 302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253 330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253 358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195 400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252 430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135 469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225 498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253 541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146 571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85 596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196 605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233 631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37 +1 159:124 160:253 161:255 162:63 186:96 187:244 188:251 189:253 190:62 214:127 215:251 216:251 217:253 218:62 241:68 242:236 243:251 244:211 245:31 246:8 268:60 269:228 270:251 271:251 272:94 296:155 297:253 298:253 299:189 323:20 324:253 325:251 326:235 327:66 350:32 351:205 352:253 353:251 354:126 378:104 379:251 380:253 381:184 382:15 405:80 406:240 407:251 408:193 409:23 432:32 433:253 434:253 435:253 436:159 460:151 461:251 462:251 463:251 464:39 487:48 488:221 489:251 490:251 491:172 515:234 516:251 517:251 518:196 519:12 543:253 544:251 545:251 546:89 570:159 571:255 572:253 573:253 574:31 597:48 598:228 599:253 600:247 601:140 602:8 625:64 626:251 627:253 628:220 653:64 654:251 655:253 656:220 681:24 682:193 683:253 684:220 +1 125:145 126:255 127:211 128:31 152:32 153:237 154:253 155:252 156:71 180:11 181:175 182:253 183:252 184:71 209:144 210:253 211:252 212:71 236:16 237:191 238:253 239:252 240:71 264:26 265:221 266:253 267:252 268:124 269:31 293:125 294:253 295:252 296:252 297:108 322:253 323:252 324:252 325:108 350:255 351:253 352:253 353:108 378:253 379:252 380:252 381:108 406:253 407:252 408:252 409:108 434:253 435:252 436:252 437:108 462:255 463:253 464:253 465:170 490:253 491:252 492:252 493:252 494:42 518:149 519:252 520:252 521:252 522:144 546:109 547:252 548:252 549:252 550:144 575:218 576:253 577:253 578:255 579:35 603:175 604:252 605:252 606:253 607:35 631:73 632:252 633:252 634:253 635:35 659:31 660:211 661:252 662:253 663:35 +1 153:5 154:63 155:197 181:20 182:254 183:230 184:24 209:20 210:254 211:254 212:48 237:20 238:254 239:255 240:48 265:20 266:254 267:254 268:57 293:20 294:254 295:254 296:108 321:16 322:239 323:254 324:143 350:178 351:254 352:143 378:178 379:254 380:143 406:178 407:254 408:162 434:178 435:254 436:240 462:113 463:254 464:240 490:83 491:254 492:245 493:31 518:79 519:254 520:246 521:38 547:214 548:254 549:150 575:144 576:241 577:8 603:144 604:240 605:2 631:144 632:254 633:82 659:230 660:247 661:40 687:168 688:209 689:31 +1 152:1 153:168 154:242 155:28 180:10 181:228 182:254 183:100 209:190 210:254 211:122 237:83 238:254 239:162 265:29 266:254 267:248 268:25 293:29 294:255 295:254 296:103 321:29 322:254 323:254 324:109 349:29 350:254 351:254 352:109 377:29 378:254 379:254 380:109 405:29 406:255 407:254 408:109 433:29 434:254 435:254 436:109 461:29 462:254 463:254 464:63 489:29 490:254 491:254 492:28 517:29 518:254 519:254 520:28 545:29 546:254 547:254 548:35 573:29 574:254 575:254 576:109 601:6 602:212 603:254 604:109 630:203 631:254 632:178 658:155 659:254 660:190 686:32 687:199 688:104 +0 130:64 131:253 132:255 133:63 157:96 158:205 159:251 160:253 161:205 162:111 163:4 184:96 185:189 186:251 187:251 188:253 189:251 190:251 191:31 209:16 210:64 211:223 212:244 213:251 214:251 215:211 216:213 217:251 218:251 219:31 236:80 237:181 238:251 239:253 240:251 241:251 242:251 243:94 244:96 245:251 246:251 247:31 263:92 264:253 265:253 266:253 267:255 268:253 269:253 270:253 271:95 272:96 273:253 274:253 275:31 290:92 291:236 292:251 293:243 294:220 295:233 296:251 297:251 298:243 299:82 300:96 301:251 302:251 303:31 317:80 318:253 319:251 320:251 321:188 323:96 324:251 325:251 326:109 328:96 329:251 330:251 331:31 344:96 345:240 346:253 347:243 348:188 349:42 351:96 352:204 353:109 354:4 356:12 357:197 358:251 359:31 372:221 373:251 374:253 375:121 379:36 380:23 385:190 386:251 387:31 399:48 400:234 401:253 413:191 414:253 415:31 426:44 427:221 428:251 429:251 440:12 441:197 442:251 443:31 454:190 455:251 456:251 457:251 468:96 469:251 470:251 471:31 482:190 483:251 484:251 485:113 495:40 496:234 497:251 498:219 499:23 510:190 511:251 512:251 513:94 522:40 523:217 524:253 525:231 526:47 538:191 539:253 540:253 541:253 548:12 549:174 550:253 551:253 552:219 553:39 566:67 567:236 568:251 569:251 570:191 571:190 572:111 573:72 574:190 575:191 576:197 577:251 578:243 579:121 580:39 595:63 596:236 597:251 598:253 599:251 600:251 601:251 602:251 603:253 604:251 605:188 606:94 624:27 625:129 626:253 627:251 628:251 629:251 630:251 631:229 632:168 633:15 654:95 655:212 656:251 657:211 658:94 659:59 +1 159:121 160:254 161:136 186:13 187:230 188:253 189:248 190:99 213:4 214:118 215:253 216:253 217:225 218:42 241:61 242:253 243:253 244:253 245:74 268:32 269:206 270:253 271:253 272:186 273:9 296:211 297:253 298:253 299:239 300:69 324:254 325:253 326:253 327:133 351:142 352:255 353:253 354:186 355:8 378:149 379:229 380:254 381:207 382:21 405:54 406:229 407:253 408:254 409:105 433:152 434:254 435:254 436:213 437:26 460:112 461:251 462:253 463:253 464:26 487:29 488:212 489:253 490:250 491:149 514:36 515:214 516:253 517:253 518:137 542:75 543:253 544:253 545:253 546:59 570:93 571:253 572:253 573:189 574:17 598:224 599:253 600:253 601:84 625:43 626:235 627:253 628:126 629:1 653:99 654:248 655:253 656:119 682:225 683:235 684:49 +1 100:166 101:222 102:55 128:197 129:254 130:218 131:5 155:29 156:249 157:254 158:254 159:9 183:45 184:254 185:254 186:174 187:2 210:4 211:164 212:254 213:254 214:85 238:146 239:254 240:254 241:254 242:85 265:101 266:245 267:254 268:254 269:254 270:85 292:97 293:248 294:254 295:204 296:254 297:254 298:85 315:12 316:59 317:98 318:151 319:237 320:254 321:254 322:109 323:35 324:254 325:254 326:85 343:41 344:216 345:254 346:254 347:239 348:153 349:37 350:4 351:32 352:254 353:254 354:85 372:7 373:44 374:44 375:30 379:32 380:254 381:254 382:96 407:19 408:230 409:254 410:174 436:197 437:254 438:110 464:197 465:254 466:85 492:197 493:253 494:63 515:37 516:54 517:54 518:45 519:26 520:84 521:221 522:84 523:21 524:31 525:162 526:78 540:6 541:41 542:141 543:244 544:254 545:254 546:248 547:236 548:254 549:254 550:254 551:233 552:239 553:254 554:138 567:23 568:167 569:254 570:254 571:254 572:254 573:229 574:228 575:185 576:138 577:138 578:138 579:138 580:138 581:138 582:44 595:113 596:254 597:254 598:254 599:179 600:64 601:5 623:32 624:209 625:183 626:97 +0 155:53 156:255 157:253 158:253 159:253 160:124 183:180 184:253 185:251 186:251 187:251 188:251 189:145 190:62 209:32 210:217 211:241 212:253 213:251 214:251 215:251 216:251 217:253 218:107 237:37 238:251 239:251 240:253 241:251 242:251 243:251 244:251 245:253 246:107 265:166 266:251 267:251 268:253 269:251 270:96 271:148 272:251 273:253 274:107 291:73 292:253 293:253 294:253 295:253 296:130 299:110 300:253 301:255 302:108 319:73 320:251 321:251 322:251 323:251 327:109 328:251 329:253 330:107 347:202 348:251 349:251 350:251 351:225 354:6 355:129 356:251 357:253 358:107 375:150 376:251 377:251 378:251 379:71 382:115 383:251 384:251 385:253 386:107 403:253 404:251 405:251 406:173 407:20 410:217 411:251 412:251 413:253 414:107 430:182 431:255 432:253 433:216 438:218 439:253 440:253 441:182 457:63 458:221 459:253 460:251 461:215 465:84 466:236 467:251 468:251 469:77 485:109 486:251 487:253 488:251 489:215 492:11 493:160 494:251 495:251 496:96 513:109 514:251 515:253 516:251 517:137 520:150 521:251 522:251 523:251 524:71 541:109 542:251 543:253 544:251 545:35 547:130 548:253 549:251 550:251 551:173 552:20 569:110 570:253 571:255 572:253 573:98 574:150 575:253 576:255 577:253 578:164 597:109 598:251 599:253 600:251 601:251 602:251 603:251 604:253 605:251 606:35 625:93 626:241 627:253 628:251 629:251 630:251 631:251 632:216 633:112 634:5 654:103 655:253 656:251 657:251 658:251 659:251 683:124 684:251 685:225 686:71 687:71 +0 128:73 129:253 130:227 131:73 132:21 156:73 157:251 158:251 159:251 160:174 182:16 183:166 184:228 185:251 186:251 187:251 188:122 210:62 211:220 212:253 213:251 214:251 215:251 216:251 217:79 238:79 239:231 240:253 241:251 242:251 243:251 244:251 245:232 246:77 264:145 265:253 266:253 267:253 268:255 269:253 270:253 271:253 272:253 273:255 274:108 292:144 293:251 294:251 295:251 296:253 297:168 298:107 299:169 300:251 301:253 302:189 303:20 318:27 319:89 320:236 321:251 322:235 323:215 324:164 325:15 326:6 327:129 328:251 329:253 330:251 331:35 345:47 346:211 347:253 348:251 349:251 350:142 354:37 355:251 356:251 357:253 358:251 359:35 373:109 374:251 375:253 376:251 377:251 378:142 382:11 383:148 384:251 385:253 386:251 387:164 400:11 401:150 402:253 403:255 404:211 405:25 410:11 411:150 412:253 413:255 414:211 415:25 428:140 429:251 430:251 431:253 432:107 438:37 439:251 440:251 441:211 442:46 456:190 457:251 458:251 459:253 460:128 461:5 466:37 467:251 468:251 469:51 484:115 485:251 486:251 487:253 488:188 489:20 492:32 493:109 494:129 495:251 496:173 497:103 512:217 513:251 514:251 515:201 516:30 520:73 521:251 522:251 523:251 524:71 540:166 541:253 542:253 543:255 544:149 545:73 546:150 547:253 548:255 549:253 550:253 551:143 568:140 569:251 570:251 571:253 572:251 573:251 574:251 575:251 576:253 577:251 578:230 579:61 596:190 597:251 598:251 599:253 600:251 601:251 602:251 603:251 604:242 605:215 606:55 624:21 625:189 626:251 627:253 628:251 629:251 630:251 631:173 632:103 653:31 654:200 655:253 656:251 657:96 658:71 659:20 +1 155:178 156:255 157:105 182:6 183:188 184:253 185:216 186:14 210:14 211:202 212:253 213:253 214:23 238:12 239:199 240:253 241:128 242:6 266:42 267:253 268:253 269:158 294:42 295:253 296:253 297:158 322:155 323:253 324:253 325:158 350:160 351:253 352:253 353:147 378:160 379:253 380:253 381:41 405:17 406:225 407:253 408:235 409:31 433:24 434:253 435:253 436:176 461:24 462:253 463:253 464:176 489:24 490:253 491:253 492:176 517:24 518:253 519:253 520:176 545:24 546:253 547:253 548:162 573:46 574:253 575:253 576:59 601:142 602:253 603:253 604:59 629:142 630:253 631:253 632:59 657:142 658:253 659:202 660:8 685:87 686:253 687:139 +0 154:46 155:105 156:254 157:254 158:254 159:254 160:255 161:239 162:41 180:37 181:118 182:222 183:254 184:253 185:253 186:253 187:253 188:253 189:253 190:211 191:54 207:14 208:200 209:253 210:253 211:254 212:253 213:253 214:253 215:253 216:253 217:253 218:253 219:116 233:16 234:160 235:236 236:253 237:253 238:253 239:254 240:253 241:253 242:246 243:229 244:253 245:253 246:253 247:116 261:99 262:253 263:253 264:253 265:253 266:253 267:254 268:253 269:253 270:213 271:99 272:253 273:253 274:253 275:116 288:25 289:194 290:253 291:253 292:253 293:253 294:131 295:97 296:169 297:253 298:93 299:99 300:253 301:253 302:253 303:116 316:206 317:253 318:253 319:251 320:233 321:127 322:9 324:18 325:38 326:3 327:15 328:171 329:253 330:253 331:116 343:55 344:240 345:253 346:253 347:233 355:31 356:186 357:253 358:253 359:116 371:176 372:253 373:253 374:253 375:127 383:99 384:253 385:253 386:253 387:116 399:176 400:253 401:253 402:131 403:9 411:99 412:253 413:253 414:253 415:116 426:119 427:254 428:254 429:232 430:75 440:158 441:254 442:254 443:117 454:118 455:253 456:253 457:154 468:156 469:253 470:253 471:116 482:118 483:253 484:253 485:154 496:156 497:253 498:253 499:116 509:46 510:222 511:253 512:253 513:154 522:7 523:116 524:246 525:253 526:180 527:9 538:118 539:253 540:253 541:154 550:116 551:253 552:253 553:253 554:174 566:118 567:253 568:253 569:154 577:110 578:246 579:253 580:253 581:240 582:67 594:118 595:253 596:253 597:238 598:215 599:49 600:20 601:20 602:20 603:66 604:215 605:241 606:253 607:245 608:233 609:64 622:82 623:229 624:253 625:253 626:253 627:253 628:253 629:253 630:253 631:254 632:253 633:253 634:240 635:107 651:176 652:253 653:253 654:253 655:253 656:253 657:253 658:253 659:254 660:253 661:253 662:108 679:40 680:239 681:253 682:253 683:253 684:253 685:253 686:253 687:254 688:161 689:57 690:4 +0 152:56 153:105 154:220 155:254 156:63 178:18 179:166 180:233 181:253 182:253 183:253 184:236 185:209 186:209 187:209 188:77 189:18 206:84 207:253 208:253 209:253 210:253 211:253 212:254 213:253 214:253 215:253 216:253 217:172 218:8 233:57 234:238 235:253 236:253 237:253 238:253 239:253 240:254 241:253 242:253 243:253 244:253 245:253 246:119 260:14 261:238 262:253 263:253 264:253 265:253 266:253 267:253 268:179 269:196 270:253 271:253 272:253 273:253 274:238 275:12 288:33 289:253 290:253 291:253 292:253 293:253 294:248 295:134 297:18 298:83 299:237 300:253 301:253 302:253 303:14 316:164 317:253 318:253 319:253 320:253 321:253 322:128 327:57 328:119 329:214 330:253 331:94 343:57 344:248 345:253 346:253 347:253 348:126 349:14 350:4 357:179 358:253 359:248 360:56 371:175 372:253 373:253 374:240 375:190 376:28 385:179 386:253 387:253 388:173 399:209 400:253 401:253 402:178 413:92 414:253 415:253 416:208 427:211 428:254 429:254 430:179 442:135 443:255 444:209 455:209 456:253 457:253 458:90 470:134 471:253 472:208 483:209 484:253 485:253 486:178 497:2 498:142 499:253 500:208 511:209 512:253 513:253 514:214 515:35 525:30 526:253 527:253 528:208 539:165 540:253 541:253 542:253 543:215 544:36 553:163 554:253 555:253 556:164 567:18 568:172 569:253 570:253 571:253 572:214 573:127 574:7 580:72 581:232 582:253 583:171 584:17 596:8 597:182 598:253 599:253 600:253 601:253 602:162 603:56 607:64 608:240 609:253 610:253 611:14 625:7 626:173 627:253 628:253 629:253 630:253 631:245 632:241 633:239 634:239 635:246 636:253 637:225 638:14 639:1 654:18 655:59 656:138 657:224 658:253 659:253 660:254 661:253 662:253 663:253 664:240 665:96 685:37 686:104 687:192 688:255 689:253 690:253 691:182 692:73 +1 130:7 131:176 132:254 133:224 158:51 159:253 160:253 161:223 185:4 186:170 187:253 188:253 189:214 213:131 214:253 215:253 216:217 217:39 241:209 242:253 243:253 244:134 268:75 269:240 270:253 271:239 272:26 296:184 297:253 298:245 299:63 323:142 324:255 325:253 326:185 350:62 351:229 352:254 353:242 354:73 377:54 378:229 379:253 380:254 381:105 405:152 406:254 407:254 408:213 409:26 432:32 433:243 434:253 435:253 436:115 459:2 460:142 461:253 462:253 463:155 487:30 488:253 489:253 490:232 491:55 515:75 516:253 517:253 518:164 542:72 543:232 544:253 545:189 546:17 570:224 571:253 572:253 573:163 597:43 598:235 599:253 600:253 601:195 602:21 625:28 626:231 627:253 628:253 629:184 630:14 654:225 655:253 656:253 657:75 +0 155:21 156:176 157:253 158:253 159:124 182:105 183:176 184:251 185:251 186:251 187:251 188:105 208:58 209:217 210:241 211:253 212:251 213:251 214:251 215:251 216:243 217:113 218:5 235:63 236:231 237:251 238:251 239:253 240:251 241:251 242:251 243:251 244:253 245:251 246:113 263:144 264:251 265:251 266:251 267:253 268:251 269:251 270:251 271:251 272:253 273:251 274:215 290:125 291:253 292:253 293:253 294:253 295:255 296:253 297:253 298:253 299:253 300:255 301:253 302:227 303:42 318:253 319:251 320:251 321:251 322:251 323:253 324:251 325:251 326:251 327:251 328:253 329:251 330:251 331:142 345:27 346:253 347:251 348:251 349:235 350:241 351:253 352:251 353:246 354:137 355:35 356:98 357:251 358:251 359:236 360:61 372:47 373:211 374:253 375:251 376:235 377:82 378:103 379:253 380:251 381:137 384:73 385:251 386:251 387:251 388:71 399:27 400:211 401:251 402:253 403:251 404:86 407:72 408:71 409:10 412:73 413:251 414:251 415:173 416:20 427:89 428:253 429:253 430:255 431:253 432:35 440:73 441:253 442:253 443:253 444:72 454:84 455:236 456:251 457:251 458:253 459:251 460:138 468:73 469:251 470:251 471:251 472:71 481:63 482:236 483:251 484:251 485:251 486:227 487:251 488:246 489:138 490:11 494:16 495:37 496:228 497:251 498:246 499:137 500:10 509:73 510:251 511:251 512:251 513:173 514:42 515:142 516:142 517:142 518:41 522:109 523:251 524:253 525:251 526:137 537:73 538:251 539:251 540:173 541:20 549:27 550:211 551:251 552:253 553:147 554:10 565:73 566:253 567:253 568:143 575:21 576:176 577:253 578:253 579:253 593:73 594:251 595:251 596:205 597:144 603:176 604:251 605:251 606:188 607:107 621:62 622:236 623:251 624:251 625:251 626:218 627:217 628:217 629:217 630:217 631:253 632:230 633:189 634:20 650:83 651:158 652:251 653:251 654:253 655:251 656:251 657:251 658:251 659:253 660:107 679:37 680:251 681:251 682:253 683:251 684:251 685:251 686:122 687:72 688:30 +1 151:68 152:45 153:131 154:131 155:131 156:101 157:68 158:92 159:44 187:19 188:170 211:29 212:112 213:89 215:40 216:222 239:120 240:254 241:251 242:127 243:40 244:222 267:197 268:254 269:254 270:91 271:40 272:222 294:64 295:247 296:254 297:236 298:50 299:40 300:107 322:184 323:254 324:254 325:91 327:6 328:14 350:203 351:254 352:254 353:71 377:23 378:218 379:254 380:254 381:71 405:113 406:254 407:255 408:239 409:53 433:210 434:254 435:254 436:195 460:62 461:242 462:254 463:241 464:88 468:28 488:86 489:254 490:254 491:189 495:28 496:104 516:106 517:254 518:254 519:168 523:40 524:91 544:216 545:254 546:245 547:51 551:35 552:80 572:216 573:254 574:102 599:55 600:239 601:254 602:52 627:166 628:254 629:210 630:23 655:223 656:252 657:104 683:223 684:169 +0 125:29 126:170 127:255 128:255 129:141 151:29 152:198 153:255 154:255 155:255 156:226 157:255 158:86 178:141 179:255 180:255 181:170 182:29 184:86 185:255 186:255 187:141 204:29 205:226 206:255 207:198 208:57 213:226 214:255 215:255 216:226 217:114 231:29 232:255 233:255 234:114 241:141 242:170 243:114 244:255 245:255 246:141 259:226 260:255 261:170 269:29 270:57 273:141 274:255 275:226 286:57 287:255 288:170 302:114 303:255 304:198 314:226 315:255 331:170 332:255 333:57 342:255 343:226 360:255 361:170 370:255 371:170 388:114 389:198 398:255 399:226 416:86 417:255 426:198 427:255 444:86 445:255 454:114 455:255 456:57 472:86 473:255 482:29 483:255 484:226 500:141 501:255 511:170 512:255 513:170 528:226 529:198 539:29 540:226 541:255 542:170 555:29 556:255 557:114 568:29 569:226 570:255 571:141 582:57 583:226 584:226 598:141 599:255 600:255 601:170 602:86 607:29 608:86 609:226 610:255 611:226 612:29 627:86 628:198 629:255 630:255 631:255 632:255 633:255 634:255 635:255 636:255 637:255 638:141 639:29 657:29 658:114 659:170 660:170 661:170 662:170 663:170 664:86 +0 153:203 154:254 155:252 156:252 157:252 158:214 159:51 160:20 180:62 181:221 182:252 183:250 184:250 185:250 186:252 187:250 188:160 189:20 207:62 208:211 209:250 210:252 211:250 212:250 213:250 214:252 215:250 216:250 217:49 234:41 235:221 236:250 237:250 238:252 239:250 240:250 241:250 242:252 243:250 244:128 245:10 262:254 263:252 264:252 265:252 266:254 267:252 268:252 269:252 270:254 271:252 272:252 273:90 290:150 291:190 292:250 293:250 294:252 295:250 296:250 297:169 298:171 299:250 300:250 301:250 302:82 318:31 319:191 320:250 321:250 322:252 323:189 324:100 325:20 326:172 327:250 328:250 329:250 330:80 346:213 347:250 348:250 349:250 350:212 351:29 354:252 355:250 356:250 357:250 374:92 375:252 376:252 377:252 382:51 383:252 384:252 385:252 386:203 401:82 402:252 403:250 404:250 405:169 410:132 411:250 412:250 413:250 414:121 428:92 429:231 430:252 431:250 432:159 433:20 438:252 439:250 440:250 441:250 456:30 457:211 458:252 459:250 460:221 461:40 466:90 467:250 468:250 469:250 470:163 484:31 485:213 486:254 487:232 488:80 494:92 495:252 496:252 497:212 498:163 512:151 513:250 514:252 515:149 522:252 523:250 524:250 525:49 540:60 541:221 542:252 543:210 544:60 550:252 551:250 552:250 553:49 569:202 570:252 571:250 572:221 573:40 576:123 577:202 578:252 579:250 580:250 581:49 596:123 597:243 598:255 599:252 600:252 601:252 602:254 603:252 604:252 605:252 606:254 607:252 608:100 625:121 626:171 627:250 628:250 629:250 630:252 631:250 632:250 633:250 634:252 635:250 636:100 654:20 655:160 656:250 657:250 658:252 659:250 660:250 661:250 662:252 663:189 664:40 683:20 684:170 685:250 686:252 687:250 688:128 689:49 690:49 691:29 +1 98:64 99:191 100:70 125:68 126:243 127:253 128:249 129:63 152:30 153:223 154:253 155:253 156:247 157:41 179:73 180:238 181:253 182:253 183:253 184:242 206:73 207:236 208:253 209:253 210:253 211:253 212:242 234:182 235:253 236:253 237:191 238:247 239:253 240:149 262:141 263:253 264:143 265:86 266:249 267:253 268:122 290:9 291:36 292:7 293:14 294:233 295:253 296:122 322:230 323:253 324:122 350:230 351:253 352:122 378:231 379:255 380:123 406:230 407:253 408:52 433:61 434:245 435:253 461:98 462:253 463:253 468:35 469:12 489:98 490:253 491:253 494:9 495:142 496:233 497:146 517:190 518:253 519:253 520:128 521:7 522:99 523:253 524:253 525:180 544:29 545:230 546:253 547:253 548:252 549:210 550:253 551:253 552:253 553:140 571:28 572:207 573:253 574:253 575:253 576:254 577:253 578:253 579:235 580:70 581:9 599:126 600:253 601:253 602:253 603:253 604:254 605:253 606:168 607:19 627:79 628:253 629:253 630:201 631:190 632:132 633:63 634:5 +1 125:26 126:240 127:72 153:25 154:238 155:208 182:209 183:226 184:14 210:209 211:254 212:43 238:175 239:254 240:128 266:63 267:254 268:204 294:107 295:254 296:204 322:88 323:254 324:204 350:55 351:254 352:204 378:126 379:254 380:204 406:126 407:254 408:189 434:169 435:254 436:121 462:209 463:254 464:193 490:209 491:254 492:111 517:22 518:235 519:254 520:37 545:137 546:254 547:227 548:16 573:205 574:255 575:185 601:205 602:254 603:125 629:205 630:254 631:125 657:111 658:212 659:43 +0 155:62 156:91 157:213 158:255 159:228 160:91 161:12 182:70 183:230 184:253 185:253 186:253 187:253 188:253 189:152 190:7 210:246 211:253 212:253 213:253 214:253 215:253 216:253 217:253 218:106 237:21 238:247 239:253 240:253 241:253 242:253 243:253 244:253 245:208 246:24 265:156 266:253 267:253 268:253 269:253 270:253 271:253 272:253 273:195 292:88 293:238 294:253 295:253 296:253 297:221 298:253 299:253 300:253 301:195 320:230 321:253 322:253 323:253 324:198 325:40 326:177 327:253 328:253 329:195 346:56 347:156 348:251 349:253 350:189 351:182 352:15 354:86 355:240 356:253 357:210 358:28 374:213 375:253 376:253 377:156 378:3 383:205 384:253 385:253 386:106 401:121 402:252 403:253 404:135 405:3 411:46 412:253 413:253 414:106 428:28 429:212 430:253 431:248 432:23 439:42 440:253 441:253 442:106 456:197 457:253 458:234 459:70 467:42 468:253 469:253 470:106 483:11 484:202 485:253 486:187 495:58 496:253 497:210 498:27 511:107 512:253 513:253 514:40 522:53 523:227 524:253 525:195 539:107 540:253 541:253 542:40 549:47 550:227 551:253 552:231 553:58 567:107 568:253 569:253 570:40 575:5 576:131 577:222 578:253 579:231 580:59 595:14 596:204 597:253 598:226 599:222 600:73 601:58 602:58 603:170 604:253 605:253 606:227 607:58 624:197 625:253 626:253 627:253 628:253 629:253 630:253 631:253 632:253 633:238 634:58 652:33 653:179 654:241 655:253 656:253 657:253 658:253 659:250 660:116 661:14 682:75 683:179 684:253 685:151 686:89 687:86 +1 157:42 158:228 159:253 160:253 185:144 186:251 187:251 188:251 212:89 213:236 214:251 215:235 216:215 239:79 240:253 241:251 242:251 243:142 267:180 268:253 269:251 270:251 271:142 294:32 295:202 296:255 297:253 298:216 322:109 323:251 324:253 325:251 326:112 349:6 350:129 351:251 352:253 353:127 354:5 377:37 378:251 379:251 380:253 381:107 405:166 406:251 407:251 408:201 409:30 432:42 433:228 434:253 435:253 460:144 461:251 462:251 463:147 487:63 488:236 489:251 490:251 491:71 515:150 516:251 517:251 518:204 519:41 543:253 544:251 545:251 546:142 571:255 572:253 573:164 598:105 599:253 600:251 601:35 626:180 627:253 628:251 629:35 654:180 655:253 656:251 657:35 682:180 683:253 684:251 685:35 +1 128:62 129:254 130:213 156:102 157:253 158:252 159:102 160:20 184:102 185:254 186:253 187:254 188:50 212:102 213:253 214:252 215:253 216:50 240:102 241:254 242:253 243:254 244:50 268:142 269:253 270:252 271:253 272:50 295:51 296:253 297:254 298:253 299:224 300:20 323:132 324:252 325:253 326:252 327:162 351:173 352:253 353:254 354:253 355:102 378:82 379:253 380:252 381:253 382:252 383:61 406:203 407:254 408:253 409:254 410:233 433:41 434:243 435:253 436:252 437:253 438:111 461:132 462:253 463:254 464:253 465:203 488:41 489:253 490:252 491:253 492:252 493:40 515:11 516:213 517:254 518:253 519:254 520:151 543:92 544:252 545:253 546:252 547:192 548:50 570:21 571:214 572:253 573:255 574:253 575:41 598:142 599:253 600:252 601:253 602:171 625:113 626:253 627:255 628:253 629:203 630:40 653:30 654:131 655:233 656:111 +0 154:28 155:195 156:254 157:254 158:254 159:254 160:254 161:255 162:61 181:6 182:191 183:253 184:253 185:253 186:253 187:253 188:253 189:253 190:60 208:26 209:190 210:253 211:253 212:253 213:253 214:240 215:191 216:242 217:253 218:60 235:15 236:187 237:253 238:253 239:253 240:253 241:253 242:200 244:211 245:253 246:60 262:22 263:66 264:253 265:253 266:253 267:253 268:241 269:209 270:44 271:23 272:218 273:253 274:60 290:124 291:253 292:253 293:253 294:253 295:253 296:182 299:131 300:253 301:253 302:60 318:38 319:217 320:253 321:253 322:244 323:111 324:37 327:131 328:253 329:253 330:60 346:124 347:253 348:253 349:253 350:165 354:22 355:182 356:253 357:253 358:60 374:124 375:253 376:253 377:240 378:45 382:53 383:253 384:253 385:249 386:58 401:16 402:168 403:253 404:216 405:45 410:53 411:253 412:253 413:138 429:159 430:253 431:253 432:147 438:53 439:253 440:253 441:138 456:136 457:252 458:253 459:227 460:5 466:53 467:253 468:243 469:101 484:140 485:253 486:253 487:124 494:156 495:253 496:218 511:13 512:164 513:253 514:142 515:5 521:32 522:233 523:253 524:218 539:62 540:253 541:253 542:130 548:37 549:203 550:253 551:253 552:127 567:62 568:253 569:253 570:147 571:36 572:36 573:36 574:36 575:151 576:222 577:253 578:245 579:127 580:8 595:34 596:202 597:253 598:253 599:253 600:253 601:253 602:253 603:253 604:253 605:253 606:200 624:140 625:253 626:253 627:253 628:253 629:253 630:253 631:253 632:248 633:235 634:65 652:87 653:173 654:253 655:253 656:253 657:253 658:253 659:253 660:182 681:14 682:78 683:96 684:253 685:253 686:253 687:137 688:56 +0 123:8 124:76 125:202 126:254 127:255 128:163 129:37 130:2 150:13 151:182 152:253 153:253 154:253 155:253 156:253 157:253 158:23 177:15 178:179 179:253 180:253 181:212 182:91 183:218 184:253 185:253 186:179 187:109 205:105 206:253 207:253 208:160 209:35 210:156 211:253 212:253 213:253 214:253 215:250 216:113 232:19 233:212 234:253 235:253 236:88 237:121 238:253 239:233 240:128 241:91 242:245 243:253 244:248 245:114 260:104 261:253 262:253 263:110 264:2 265:142 266:253 267:90 270:26 271:199 272:253 273:248 274:63 287:1 288:173 289:253 290:253 291:29 293:84 294:228 295:39 299:72 300:251 301:253 302:215 303:29 315:36 316:253 317:253 318:203 319:13 328:82 329:253 330:253 331:170 343:36 344:253 345:253 346:164 356:11 357:198 358:253 359:184 360:6 371:36 372:253 373:253 374:82 385:138 386:253 387:253 388:35 399:128 400:253 401:253 402:47 413:48 414:253 415:253 416:35 427:154 428:253 429:253 430:47 441:48 442:253 443:253 444:35 455:102 456:253 457:253 458:99 469:48 470:253 471:253 472:35 483:36 484:253 485:253 486:164 496:16 497:208 498:253 499:211 500:17 511:32 512:244 513:253 514:175 515:4 524:44 525:253 526:253 527:156 540:171 541:253 542:253 543:29 551:30 552:217 553:253 554:188 555:19 568:171 569:253 570:253 571:59 578:60 579:217 580:253 581:253 582:70 596:78 597:253 598:253 599:231 600:48 604:26 605:128 606:249 607:253 608:244 609:94 610:15 624:8 625:151 626:253 627:253 628:234 629:101 630:121 631:219 632:229 633:253 634:253 635:201 636:80 653:38 654:232 655:253 656:253 657:253 658:253 659:253 660:253 661:253 662:201 663:66 +0 127:68 128:254 129:255 130:254 131:107 153:11 154:176 155:230 156:253 157:253 158:253 159:212 180:28 181:197 182:253 183:253 184:253 185:253 186:253 187:229 188:107 189:14 208:194 209:253 210:253 211:253 212:253 213:253 214:253 215:253 216:253 217:53 235:69 236:241 237:253 238:253 239:253 240:253 241:241 242:186 243:253 244:253 245:195 262:10 263:161 264:253 265:253 266:253 267:246 268:40 269:57 270:231 271:253 272:253 273:195 290:140 291:253 292:253 293:253 294:253 295:154 297:25 298:253 299:253 300:253 301:195 318:213 319:253 320:253 321:253 322:135 323:8 325:3 326:128 327:253 328:253 329:195 345:77 346:238 347:253 348:253 349:253 350:7 354:116 355:253 356:253 357:195 372:11 373:165 374:253 375:253 376:231 377:70 378:1 382:78 383:237 384:253 385:195 400:33 401:253 402:253 403:253 404:182 411:200 412:253 413:195 428:98 429:253 430:253 431:253 432:24 439:42 440:253 441:195 456:197 457:253 458:253 459:253 460:24 467:163 468:253 469:195 484:197 485:253 486:253 487:189 488:13 494:53 495:227 496:253 497:121 512:197 513:253 514:253 515:114 521:21 522:227 523:253 524:231 525:27 540:197 541:253 542:253 543:114 547:5 548:131 549:143 550:253 551:231 552:59 568:197 569:253 570:253 571:236 572:73 573:58 574:217 575:223 576:253 577:253 578:253 579:174 596:197 597:253 598:253 599:253 600:253 601:253 602:253 603:253 604:253 605:253 606:253 607:48 624:149 625:253 626:253 627:253 628:253 629:253 630:253 631:253 632:253 633:182 634:15 635:3 652:12 653:168 654:253 655:253 656:253 657:253 658:253 659:248 660:89 661:23 +1 157:85 158:255 159:103 160:1 185:205 186:253 187:253 188:30 213:205 214:253 215:253 216:30 240:44 241:233 242:253 243:244 244:27 268:135 269:253 270:253 271:100 296:153 297:253 298:240 299:76 323:12 324:208 325:253 326:166 351:69 352:253 353:253 354:142 378:14 379:110 380:253 381:235 382:33 406:63 407:223 408:235 409:130 434:186 435:253 436:235 437:37 461:17 462:145 463:253 464:231 465:35 489:69 490:220 491:231 492:123 516:18 517:205 518:253 519:176 520:27 543:17 544:125 545:253 546:185 547:39 571:71 572:214 573:231 574:41 599:167 600:253 601:225 602:33 626:72 627:205 628:207 629:14 653:30 654:249 655:233 656:49 681:32 682:253 683:89 +1 126:94 127:132 154:250 155:250 156:4 182:250 183:254 184:95 210:250 211:254 212:95 238:250 239:254 240:95 266:250 267:254 268:95 294:250 295:254 296:95 322:250 323:254 324:95 350:250 351:254 352:95 378:250 379:254 380:95 405:77 406:254 407:250 408:19 433:96 434:254 435:249 461:53 462:253 463:252 464:43 490:250 491:251 492:32 517:85 518:254 519:249 545:96 546:254 547:249 573:83 574:254 575:250 576:14 602:250 603:254 604:95 630:250 631:255 632:95 658:132 659:254 660:95 +1 124:32 125:253 126:31 152:32 153:251 154:149 180:32 181:251 182:188 208:32 209:251 210:188 236:32 237:251 238:228 239:59 264:32 265:253 266:253 267:95 292:28 293:236 294:251 295:114 321:127 322:251 323:251 349:127 350:251 351:251 377:48 378:232 379:251 406:223 407:253 408:159 434:221 435:251 436:158 462:142 463:251 464:158 490:64 491:251 492:242 493:55 518:64 519:251 520:253 521:161 546:64 547:253 548:255 549:221 574:16 575:181 576:253 577:220 603:79 604:253 605:236 606:63 632:213 633:251 634:126 660:96 661:251 662:126 +1 129:39 130:254 131:255 132:254 133:140 157:136 158:253 159:253 160:228 161:67 184:6 185:227 186:253 187:253 188:58 211:29 212:188 213:253 214:253 215:253 216:17 239:95 240:253 241:253 242:253 243:157 244:8 266:3 267:107 268:253 269:253 270:245 271:77 294:29 295:253 296:253 297:240 298:100 322:141 323:253 324:253 325:215 349:129 350:248 351:253 352:253 353:215 377:151 378:253 379:253 380:253 381:144 405:151 406:253 407:253 408:253 409:27 431:3 432:102 433:242 434:253 435:253 436:110 437:3 459:97 460:253 461:253 462:253 463:214 464:55 487:207 488:253 489:253 490:253 491:158 515:67 516:253 517:253 518:253 519:158 543:207 544:253 545:253 546:240 547:88 571:207 572:253 573:253 574:224 598:32 599:217 600:253 601:253 602:224 626:141 627:253 628:253 629:253 630:133 654:36 655:219 656:253 657:140 658:10 +0 123:59 124:55 149:71 150:192 151:254 152:250 153:147 154:17 176:123 177:247 178:253 179:254 180:253 181:253 182:196 183:79 184:176 185:175 186:175 187:124 188:48 203:87 204:247 205:247 206:176 207:95 208:102 209:117 210:243 211:237 212:192 213:232 214:253 215:253 216:245 217:152 218:6 230:23 231:229 232:253 233:138 238:219 239:58 241:95 242:118 243:80 244:230 245:254 246:196 247:30 258:120 259:254 260:205 261:8 266:114 272:38 273:255 274:254 275:155 276:5 286:156 287:253 288:92 301:61 302:235 303:253 304:102 314:224 315:253 316:78 330:117 331:253 332:196 333:18 342:254 343:253 344:78 358:9 359:211 360:253 361:73 370:254 371:253 372:78 387:175 388:253 389:155 398:194 399:254 400:101 415:79 416:254 417:155 426:112 427:253 428:211 429:9 443:73 444:251 445:200 454:41 455:241 456:253 457:87 471:25 472:240 473:253 483:147 484:253 485:227 486:47 499:94 500:253 501:200 511:5 512:193 513:253 514:230 515:76 527:175 528:253 529:155 540:31 541:219 542:254 543:255 544:126 545:18 553:14 554:149 555:254 556:244 557:45 569:21 570:158 571:254 572:253 573:226 574:162 575:118 576:96 577:20 578:20 579:73 580:118 581:224 582:253 583:247 584:85 598:30 599:155 600:253 601:253 602:253 603:253 604:254 605:253 606:253 607:253 608:253 609:254 610:247 611:84 627:5 628:27 629:117 630:206 631:244 632:229 633:213 634:213 635:213 636:176 637:117 638:32 659:45 660:23 +1 128:58 129:139 156:247 157:247 158:25 183:121 184:253 185:156 186:3 211:133 212:253 213:145 238:11 239:227 240:253 241:145 266:7 267:189 268:253 269:145 294:35 295:252 296:253 297:145 322:146 323:252 324:253 325:131 350:146 351:252 352:253 353:13 378:146 379:252 380:253 381:13 406:147 407:253 408:255 409:13 434:146 435:252 436:253 437:13 462:146 463:252 464:253 465:13 490:146 491:252 492:253 493:13 517:22 518:230 519:252 520:221 521:9 545:22 546:230 547:252 548:133 574:146 575:252 576:133 602:146 603:252 604:120 630:146 631:252 658:146 659:252 +1 129:28 130:247 131:255 132:165 156:47 157:221 158:252 159:252 160:164 184:177 185:252 186:252 187:252 188:164 212:177 213:252 214:252 215:223 216:78 240:177 241:252 242:252 243:197 267:114 268:236 269:252 270:235 271:42 294:5 295:148 296:252 297:252 298:230 321:14 322:135 323:252 324:252 325:252 326:230 349:78 350:252 351:252 352:252 353:252 354:162 377:78 378:252 379:252 380:252 381:252 382:9 405:78 406:252 407:252 408:252 409:252 410:9 432:32 433:200 434:252 435:252 436:252 437:105 438:3 459:10 460:218 461:252 462:252 463:252 464:105 465:8 487:225 488:252 489:252 490:252 491:240 492:69 514:44 515:237 516:252 517:252 518:228 519:85 541:59 542:218 543:252 544:252 545:225 546:93 568:65 569:208 570:252 571:252 572:252 573:175 596:133 597:252 598:252 599:252 600:225 601:68 624:133 625:252 626:252 627:244 628:54 652:133 653:252 654:252 655:48 +0 156:13 157:6 181:10 182:77 183:145 184:253 185:190 186:67 207:11 208:77 209:193 210:252 211:252 212:253 213:252 214:238 215:157 216:71 217:26 233:10 234:78 235:193 236:252 237:252 238:252 239:252 240:253 241:252 242:252 243:252 244:252 245:228 246:128 247:49 248:5 259:6 260:78 261:194 262:252 263:252 264:252 265:252 266:252 267:252 268:253 269:217 270:192 271:232 272:252 273:252 274:252 275:252 276:135 277:3 286:4 287:147 288:252 289:252 290:252 291:252 292:252 293:252 294:252 295:252 296:175 297:26 299:40 300:145 301:235 302:252 303:252 304:252 305:104 314:208 315:252 316:252 317:252 318:252 319:252 320:252 321:133 322:48 323:48 329:71 330:236 331:252 332:252 333:230 342:253 343:185 344:170 345:252 346:252 347:252 348:173 349:22 358:102 359:252 360:252 361:252 370:24 371:141 372:243 373:252 374:252 375:186 376:5 386:8 387:220 388:252 389:252 398:70 399:247 400:252 401:252 402:165 403:37 414:81 415:251 416:252 417:194 426:255 427:253 428:253 429:251 430:69 441:39 442:231 443:253 444:253 445:127 454:253 455:252 456:249 457:127 468:6 469:147 470:252 471:252 472:190 473:5 482:253 483:252 484:216 495:7 496:145 497:252 498:252 499:252 500:69 510:253 511:252 512:223 513:16 522:25 523:185 524:252 525:252 526:252 527:107 528:8 538:167 539:252 540:252 541:181 542:18 549:105 550:191 551:252 552:252 553:235 554:151 555:10 566:37 567:221 568:252 569:252 570:210 571:193 572:96 573:73 574:130 575:188 576:194 577:227 578:252 579:252 580:235 581:128 595:97 596:220 597:252 598:252 599:252 600:252 601:252 602:252 603:252 604:253 605:252 606:252 607:236 608:70 624:40 625:174 626:252 627:252 628:252 629:252 630:252 631:252 632:253 633:197 634:138 635:29 653:5 654:23 655:116 656:143 657:143 658:143 659:143 660:24 661:10 +0 127:28 128:164 129:254 130:233 131:148 132:11 154:3 155:164 156:254 157:234 158:225 159:254 160:204 182:91 183:254 184:235 185:48 186:32 187:166 188:251 189:92 208:33 209:111 210:214 211:205 212:49 215:24 216:216 217:210 235:34 236:217 237:254 238:254 239:211 244:87 245:237 246:43 262:34 263:216 264:254 265:254 266:252 267:243 268:61 272:38 273:248 274:182 290:171 291:254 292:184 293:205 294:175 295:36 301:171 302:227 317:28 318:234 319:190 320:13 321:193 322:157 329:124 330:238 331:26 345:140 346:254 347:131 349:129 350:157 357:124 358:254 359:95 373:201 374:238 375:56 377:70 378:103 385:124 386:254 387:148 400:62 401:255 402:210 413:150 414:254 415:122 428:86 429:254 430:201 431:15 440:28 441:237 442:246 443:44 456:128 457:254 458:143 468:34 469:243 470:227 484:62 485:254 486:210 496:58 497:249 498:179 512:30 513:240 514:210 524:207 525:254 526:64 541:216 542:231 543:34 551:129 552:248 553:170 554:9 569:131 570:254 571:170 577:17 578:129 579:248 580:225 581:24 597:50 598:245 599:245 600:184 601:106 602:106 603:106 604:133 605:231 606:254 607:244 608:53 626:67 627:249 628:254 629:254 630:254 631:254 632:254 633:251 634:193 635:40 655:38 656:157 657:248 658:166 659:166 660:139 661:57 +0 129:105 130:255 131:219 132:67 133:67 134:52 156:20 157:181 158:253 159:253 160:253 161:253 162:226 163:69 182:4 183:129 184:206 185:253 186:253 187:253 188:253 189:253 190:253 191:130 209:9 210:141 211:253 212:253 213:253 214:253 215:253 216:253 217:253 218:253 219:166 220:20 237:134 238:253 239:253 240:253 241:253 242:253 243:253 244:253 245:253 246:253 247:253 248:65 262:2 263:83 264:207 265:246 266:253 267:253 268:253 269:253 270:253 271:249 272:234 273:247 274:253 275:253 276:65 290:83 291:253 292:253 293:253 294:253 295:253 296:189 297:253 298:253 299:205 301:179 302:253 303:253 304:65 317:85 318:234 319:253 320:253 321:253 322:253 323:157 324:26 325:164 326:151 327:83 329:179 330:253 331:253 332:65 344:65 345:237 346:253 347:253 348:253 349:67 350:36 351:14 353:15 354:12 357:179 358:253 359:253 360:65 371:4 372:141 373:253 374:253 375:221 376:158 377:23 385:179 386:253 387:253 388:65 399:129 400:253 401:253 402:241 403:62 412:72 413:226 414:253 415:175 416:24 426:119 427:247 428:253 429:253 430:206 439:8 440:134 441:253 442:253 443:130 454:132 455:253 456:253 457:194 458:27 467:125 468:253 469:253 470:253 471:130 481:45 482:213 483:253 484:253 485:112 493:70 494:170 495:247 496:253 497:253 498:89 499:43 509:67 510:253 511:253 512:196 513:55 514:9 520:8 521:131 522:253 523:253 524:253 525:86 526:1 537:67 538:253 539:253 540:253 541:253 542:129 546:43 547:114 548:134 549:253 550:253 551:231 552:139 553:41 565:20 566:167 567:253 568:253 569:253 570:247 571:179 572:179 573:179 574:206 575:253 576:253 577:253 578:253 579:72 594:103 595:240 596:253 597:253 598:253 599:253 600:253 601:253 602:253 603:253 604:244 605:119 606:8 607:1 623:107 624:253 625:253 626:253 627:253 628:253 629:253 630:253 631:175 632:111 651:3 652:121 653:253 654:253 655:253 656:253 657:253 658:182 659:24 +0 125:22 126:183 127:252 128:254 129:252 130:252 131:252 132:76 151:85 152:85 153:168 154:250 155:250 156:252 157:250 158:250 159:250 160:250 161:71 163:43 164:85 165:14 178:107 179:252 180:250 181:250 182:250 183:250 184:252 185:250 186:250 187:250 188:250 189:210 191:127 192:250 193:146 205:114 206:237 207:252 208:250 209:250 210:250 211:250 212:252 213:250 214:250 215:250 216:250 217:210 219:127 220:250 221:250 232:107 233:237 234:250 235:252 236:250 237:250 238:250 239:74 240:41 241:41 242:41 243:41 244:217 245:34 247:127 248:250 249:250 259:15 260:148 261:252 262:252 263:254 264:238 265:105 275:128 276:252 277:252 286:15 287:140 288:250 289:250 290:250 291:167 292:111 303:127 304:250 305:250 314:43 315:250 316:250 317:250 318:250 331:127 332:250 333:250 342:183 343:250 344:250 345:250 346:110 358:57 359:210 360:250 361:250 370:252 371:250 372:250 373:110 374:7 386:85 387:250 388:250 389:250 398:254 399:252 400:252 401:83 414:86 415:252 416:252 417:217 426:252 427:250 428:250 429:138 430:14 441:15 442:140 443:250 444:250 445:41 454:252 455:250 456:250 457:250 458:41 469:43 470:250 471:250 472:250 473:41 482:252 483:250 484:250 485:250 486:181 497:183 498:250 499:250 500:250 501:41 510:76 511:250 512:250 513:250 514:250 524:177 525:252 526:250 527:250 528:110 529:7 538:36 539:224 540:252 541:252 542:252 543:219 544:43 545:43 546:43 547:7 549:15 550:43 551:183 552:252 553:255 554:252 555:126 567:85 568:250 569:250 570:250 571:252 572:250 573:250 574:250 575:111 576:86 577:140 578:250 579:250 580:250 581:252 582:222 583:83 595:42 596:188 597:250 598:250 599:252 600:250 601:250 602:250 603:250 604:252 605:250 606:250 607:250 608:250 609:126 610:83 624:127 625:250 626:250 627:252 628:250 629:250 630:250 631:250 632:252 633:250 634:250 635:137 636:83 652:21 653:41 654:217 655:252 656:250 657:250 658:250 659:250 660:217 661:41 662:41 663:14 +1 155:114 156:206 157:25 183:238 184:252 185:55 211:222 212:252 213:55 239:113 240:252 241:55 267:113 268:252 269:55 295:255 296:253 297:56 323:253 324:176 325:6 350:32 351:253 352:233 353:43 378:140 379:253 380:195 381:19 406:140 407:253 408:167 433:29 434:253 435:141 461:29 462:252 463:140 489:29 490:252 491:140 517:29 518:252 519:140 545:29 546:252 547:140 573:169 574:253 575:79 601:169 602:252 628:76 629:234 630:141 656:197 657:233 658:37 684:197 685:223 +1 127:73 128:253 129:253 130:63 155:115 156:252 157:252 158:144 183:217 184:252 185:252 186:144 210:63 211:237 212:252 213:252 214:144 238:109 239:252 240:252 241:252 266:109 267:252 268:252 269:252 294:109 295:252 296:252 297:252 322:191 323:252 324:252 325:252 349:145 350:255 351:253 352:253 353:253 376:32 377:237 378:253 379:252 380:252 381:210 404:37 405:252 406:253 407:252 408:252 409:108 432:37 433:252 434:253 435:252 436:252 437:108 460:21 461:207 462:255 463:253 464:253 465:108 489:144 490:253 491:252 492:252 493:108 516:27 517:221 518:253 519:252 520:252 521:108 544:16 545:190 546:253 547:252 548:252 549:108 573:145 574:255 575:253 576:253 577:253 601:144 602:253 603:252 604:252 605:210 629:144 630:253 631:252 632:252 633:108 657:62 658:253 659:252 660:252 661:108 +1 120:85 121:253 122:132 123:9 147:82 148:241 149:251 150:251 151:128 175:175 176:251 177:251 178:251 179:245 180:121 203:13 204:204 205:251 206:251 207:251 208:245 209:107 232:39 233:251 234:251 235:251 236:251 237:167 238:22 260:15 261:155 262:251 263:251 264:251 265:251 266:177 289:15 290:157 291:248 292:251 293:251 294:251 295:165 319:214 320:251 321:251 322:251 323:212 324:78 325:24 347:109 348:251 349:251 350:251 351:253 352:251 353:170 354:10 375:5 376:57 377:162 378:251 379:253 380:251 381:251 382:18 405:106 406:239 407:255 408:253 409:253 410:213 434:105 435:253 436:251 437:251 438:230 439:72 463:253 464:251 465:251 466:251 467:221 468:67 491:72 492:251 493:251 494:251 495:251 496:96 519:36 520:199 521:251 522:251 523:251 524:155 525:15 548:45 549:204 550:251 551:251 552:251 553:157 577:161 578:249 579:251 580:251 581:248 582:147 606:233 607:251 608:251 609:251 610:173 634:233 635:251 636:251 637:251 638:173 662:53 663:131 664:251 665:251 666:173 +1 126:15 127:200 128:255 129:90 154:42 155:254 156:254 157:173 182:42 183:254 184:254 185:199 210:26 211:237 212:254 213:221 214:12 239:213 240:254 241:231 242:17 267:213 268:254 269:199 295:213 296:254 297:199 323:213 324:254 325:96 350:20 351:232 352:254 353:33 378:84 379:254 380:229 381:17 406:168 407:254 408:203 433:8 434:217 435:254 436:187 461:84 462:254 463:254 464:48 489:195 490:254 491:254 492:37 516:20 517:233 518:254 519:212 520:4 544:132 545:254 546:254 547:82 571:9 572:215 573:254 574:254 575:116 576:46 599:55 600:254 601:254 602:254 603:254 604:121 627:113 628:254 629:254 630:254 631:254 632:40 655:12 656:163 657:254 658:185 659:58 660:1 +0 182:32 183:57 184:57 185:57 186:57 187:57 188:57 189:57 208:67 209:185 210:229 211:252 212:252 213:252 214:253 215:252 216:252 217:252 218:185 219:66 234:13 235:188 236:246 237:252 238:253 239:252 240:252 241:252 242:241 243:139 244:177 245:252 246:253 247:246 248:187 249:13 261:26 262:255 263:253 264:244 265:175 266:101 274:126 275:244 276:253 277:153 288:82 289:243 290:253 291:214 292:81 303:169 304:252 305:252 315:19 316:215 317:252 318:206 319:56 331:169 332:252 333:252 343:157 344:252 345:252 346:13 359:169 360:252 361:151 370:41 371:253 372:253 373:128 386:92 387:253 388:206 389:13 398:166 399:252 400:196 401:9 414:216 415:252 416:142 426:253 427:252 428:168 441:89 442:253 443:208 444:13 454:253 455:252 456:68 468:38 469:225 470:253 471:96 482:254 483:253 484:56 495:45 496:229 497:253 498:151 510:253 511:252 512:81 522:70 523:225 524:252 525:227 538:216 539:252 540:168 548:29 549:134 550:253 551:252 552:186 553:31 566:91 567:252 568:243 569:125 573:51 574:114 575:113 576:210 577:252 578:253 579:151 580:19 595:157 596:253 597:253 598:254 599:253 600:253 601:253 602:254 603:253 604:244 605:175 606:51 623:19 624:122 625:196 626:197 627:221 628:196 629:196 630:197 631:121 632:56 655:25 +0 127:42 128:235 129:255 130:84 153:15 154:132 155:208 156:253 157:253 158:171 159:108 180:6 181:177 182:253 183:253 184:253 185:253 186:253 187:242 188:110 208:151 209:253 210:253 211:253 212:253 213:253 214:253 215:253 216:139 235:48 236:208 237:253 238:253 239:253 240:253 241:253 242:253 243:253 244:139 263:85 264:253 265:253 266:253 267:253 268:236 269:156 270:184 271:253 272:148 273:6 290:7 291:141 292:253 293:253 294:253 295:253 296:27 298:170 299:253 300:253 301:74 318:19 319:253 320:253 321:253 322:253 323:253 324:27 326:170 327:253 328:253 329:74 345:16 346:186 347:253 348:253 349:253 350:242 351:105 352:4 354:170 355:253 356:253 357:94 358:1 373:141 374:253 375:253 376:253 377:242 378:100 382:170 383:253 384:253 385:253 386:8 401:141 402:253 403:253 404:253 405:224 410:170 411:253 412:253 413:253 414:8 428:12 429:158 430:253 431:253 432:230 433:51 438:18 439:237 440:253 441:253 442:8 456:76 457:253 458:253 459:218 460:61 467:236 468:253 469:253 470:8 484:76 485:253 486:253 487:168 495:110 496:253 497:132 498:3 512:76 513:253 514:253 515:168 521:20 522:174 523:239 524:147 525:5 539:5 540:155 541:253 542:253 543:168 548:102 549:170 550:253 551:253 552:139 567:3 568:128 569:253 570:253 571:228 572:179 573:179 574:179 575:179 576:245 577:253 578:253 579:219 580:41 596:76 597:253 598:253 599:253 600:253 601:253 602:253 603:253 604:253 605:253 606:253 607:163 624:39 625:199 626:253 627:253 628:253 629:253 630:253 631:253 632:253 633:253 634:170 635:9 653:36 654:219 655:253 656:253 657:253 658:253 659:253 660:224 661:65 662:22 +1 156:202 157:253 158:69 184:253 185:252 186:121 212:253 213:252 214:69 240:253 241:252 242:69 267:106 268:253 269:231 270:37 295:179 296:255 297:196 322:17 323:234 324:253 325:92 350:93 351:252 352:253 353:92 378:93 379:252 380:253 381:92 406:93 407:252 408:232 409:8 434:208 435:253 436:116 462:207 463:252 464:116 490:207 491:252 492:32 517:57 518:244 519:252 545:122 546:252 547:252 573:185 574:253 575:253 601:184 602:252 603:252 629:101 630:252 631:252 657:13 658:173 659:252 660:43 686:9 687:232 688:116 +1 156:73 157:253 158:253 159:253 160:124 184:73 185:251 186:251 187:251 188:251 212:99 213:251 214:251 215:251 216:225 240:253 241:251 242:251 243:251 244:71 266:79 267:180 268:253 269:251 270:251 271:173 272:20 294:110 295:253 296:255 297:253 298:216 322:109 323:251 324:253 325:251 326:215 350:109 351:251 352:253 353:251 354:215 378:109 379:251 380:253 381:251 382:137 406:109 407:251 408:253 409:251 410:35 433:37 434:253 435:253 436:255 437:253 438:35 461:140 462:251 463:251 464:253 465:168 466:15 488:125 489:246 490:251 491:251 492:190 493:15 516:144 517:251 518:251 519:251 520:180 543:53 544:221 545:251 546:251 547:251 548:51 571:125 572:253 573:253 574:253 575:201 598:105 599:253 600:251 601:251 602:188 603:30 626:180 627:253 628:251 629:251 630:142 654:180 655:253 656:251 657:235 658:82 682:180 683:253 684:251 685:215 +1 124:111 125:255 126:48 152:162 153:253 154:237 155:63 180:206 181:253 182:253 183:183 208:87 209:217 210:253 211:205 237:90 238:253 239:238 240:60 265:37 266:225 267:253 268:89 294:206 295:253 296:159 322:206 323:253 324:226 350:206 351:253 352:226 378:206 379:253 380:226 406:206 407:253 408:226 434:206 435:253 436:226 462:206 463:253 464:226 490:206 491:253 492:226 518:206 519:253 520:237 521:45 546:206 547:253 548:253 549:109 574:173 575:253 576:253 577:109 602:69 603:253 604:253 605:109 630:64 631:248 632:253 633:109 659:112 660:253 661:109 +0 99:70 100:255 101:165 102:114 127:122 128:253 129:253 130:253 131:120 155:165 156:253 157:253 158:253 159:234 160:52 183:99 184:253 185:253 186:253 187:253 188:228 189:26 209:60 210:168 211:238 212:202 213:174 214:253 215:253 216:253 217:127 235:91 236:81 237:1 238:215 239:128 240:28 241:12 242:181 243:253 244:253 245:175 246:3 262:18 263:204 264:253 265:77 270:7 271:253 272:253 273:253 274:54 289:54 290:248 291:253 292:253 293:143 298:1 299:127 300:253 301:253 302:188 317:104 318:253 319:253 320:253 321:20 327:81 328:249 329:253 330:191 345:192 346:253 347:253 348:218 349:5 356:203 357:253 358:208 359:21 372:56 373:237 374:253 375:250 376:100 384:104 385:253 386:253 387:75 400:76 401:253 402:253 403:224 412:119 413:253 414:253 415:75 428:80 429:253 430:253 431:103 439:4 440:241 441:253 442:218 443:32 456:213 457:253 458:253 459:103 467:125 468:253 469:253 470:191 484:213 485:253 486:253 487:103 494:3 495:176 496:253 497:253 498:135 512:213 513:253 514:253 515:103 521:9 522:162 523:253 524:253 525:226 526:37 540:179 541:253 542:253 543:135 548:46 549:157 550:253 551:253 552:253 553:63 568:23 569:188 570:253 571:249 572:179 573:179 574:179 575:179 576:233 577:253 578:253 579:233 580:156 581:10 597:51 598:235 599:253 600:253 601:253 602:253 603:253 604:253 605:251 606:232 607:120 626:16 627:124 628:253 629:253 630:253 631:253 632:152 633:104 +1 124:29 125:197 126:255 127:84 152:85 153:251 154:253 155:83 180:86 181:253 182:254 183:253 208:85 209:251 210:253 211:251 236:86 237:253 238:254 239:253 240:169 264:85 265:251 266:253 267:251 268:168 292:86 293:253 294:254 295:253 296:169 320:28 321:196 322:253 323:251 324:168 349:169 350:254 351:253 352:169 377:168 378:253 379:251 380:168 405:169 406:254 407:253 408:169 433:168 434:253 435:251 436:168 462:254 463:253 464:254 465:139 490:253 491:251 492:253 493:251 518:254 519:253 520:254 521:253 522:57 546:253 547:251 548:253 549:251 550:168 574:198 575:253 576:254 577:253 578:114 602:85 603:251 604:253 605:251 630:85 631:253 632:254 633:253 658:28 659:83 660:196 661:83 +1 159:31 160:210 161:253 162:163 187:198 188:252 189:252 190:162 213:10 214:86 215:242 216:252 217:252 218:66 241:164 242:252 243:252 244:252 245:188 246:8 268:53 269:242 270:252 271:252 272:225 273:14 296:78 297:252 298:252 299:252 300:204 323:56 324:231 325:252 326:252 327:212 328:35 351:157 352:252 353:252 354:252 355:37 377:8 378:132 379:253 380:252 381:252 382:230 383:24 405:45 406:252 407:253 408:252 409:154 410:55 427:7 428:55 433:107 434:253 435:255 436:228 437:53 454:15 455:24 456:23 460:110 461:242 462:252 463:228 464:59 482:57 483:83 487:88 488:247 489:252 490:252 491:140 514:15 515:189 516:252 517:252 518:252 542:74 543:252 544:252 545:238 546:90 570:178 571:252 572:252 573:189 597:40 598:217 599:252 600:252 601:59 625:75 626:252 627:252 628:252 629:85 630:61 653:62 654:239 655:252 656:156 657:14 682:178 683:252 684:14 +1 131:159 132:255 133:122 158:167 159:228 160:253 161:121 185:64 186:236 187:251 188:205 189:110 212:48 213:158 214:251 215:251 216:178 217:39 240:190 241:251 242:251 243:251 267:96 268:253 269:253 270:253 271:153 295:194 296:251 297:251 298:211 299:74 322:80 323:174 324:251 325:251 326:140 327:47 349:16 350:181 351:253 352:251 353:219 354:23 377:64 378:251 379:253 380:251 381:204 382:19 405:223 406:253 407:255 408:233 409:48 431:20 432:174 433:244 434:251 435:253 436:109 437:31 459:96 460:189 461:251 462:251 463:126 464:31 486:24 487:106 488:251 489:235 490:188 491:100 514:96 515:251 516:251 517:228 518:59 542:255 543:253 544:253 545:213 546:36 569:100 570:253 571:251 572:251 573:85 574:23 596:32 597:127 598:253 599:235 600:126 601:15 624:104 625:251 626:253 627:240 628:79 652:83 653:193 654:253 655:220 +0 153:92 154:191 155:178 156:253 157:242 158:141 159:104 160:29 180:26 181:253 182:252 183:252 184:252 185:253 186:252 187:252 188:252 189:108 190:19 206:57 207:123 208:222 209:253 210:252 211:252 212:252 213:168 214:224 215:252 216:252 217:253 218:84 233:176 234:243 235:252 236:252 237:253 238:252 239:252 240:252 242:19 243:153 244:252 245:253 246:209 247:25 259:10 260:128 261:255 262:253 263:244 264:225 265:114 266:194 267:253 268:178 272:163 273:254 274:253 275:168 287:85 288:252 289:253 290:189 291:56 294:19 295:133 296:9 300:38 301:253 302:252 303:168 314:19 315:191 316:252 317:194 318:19 329:253 330:252 331:234 332:22 342:107 343:252 344:252 345:13 357:253 358:252 359:252 360:128 370:169 371:253 372:241 385:141 386:253 387:253 388:140 397:19 398:225 399:252 400:139 413:66 414:252 415:252 416:139 425:29 426:252 427:252 428:52 441:29 442:252 443:252 444:139 453:29 454:252 455:252 456:28 469:29 470:252 471:252 472:40 481:141 482:253 483:253 484:91 497:154 498:253 499:168 509:66 510:252 511:252 512:165 525:253 526:252 527:168 537:19 538:224 539:252 540:252 552:126 553:253 554:252 555:80 566:169 567:252 568:252 569:214 570:38 579:126 580:249 581:253 582:151 583:6 594:26 595:223 596:253 597:254 598:253 599:128 600:29 604:13 605:41 606:216 607:253 608:253 609:226 610:38 623:122 624:252 625:253 626:252 627:252 628:252 629:169 630:169 631:169 632:206 633:253 634:252 635:252 636:202 637:38 651:19 652:56 653:168 654:224 655:252 656:252 657:253 658:252 659:252 660:252 661:253 662:233 663:130 664:6 682:94 683:139 684:190 685:153 686:252 687:164 688:139 689:28 690:22 +1 128:53 129:250 130:255 131:25 156:167 157:253 158:253 159:25 182:3 183:123 184:247 185:253 186:253 187:25 210:9 211:253 212:253 213:253 214:253 215:25 238:9 239:253 240:253 241:253 242:253 243:25 266:9 267:253 268:253 269:253 270:180 271:13 294:9 295:253 296:253 297:253 298:104 322:9 323:253 324:253 325:253 326:104 350:15 351:253 352:253 353:253 354:104 378:184 379:253 380:253 381:228 382:68 406:184 407:253 408:253 409:182 433:103 434:251 435:253 436:253 437:12 461:106 462:253 463:253 464:253 465:8 488:24 489:238 490:253 491:253 492:253 493:8 516:27 517:253 518:253 519:253 520:253 521:8 544:27 545:253 546:253 547:253 548:253 549:8 572:27 573:253 574:253 575:253 576:177 577:4 600:160 601:253 602:253 603:253 604:87 628:202 629:253 630:253 631:219 632:54 656:81 657:253 658:247 659:51 +0 122:63 123:176 124:253 125:253 126:159 127:113 128:63 150:140 151:253 152:252 153:252 154:252 155:252 156:241 157:100 158:66 177:54 178:227 179:253 180:252 181:252 182:252 183:252 184:253 185:252 186:239 187:181 188:57 204:38 205:224 206:252 207:253 208:226 209:246 210:252 211:252 212:253 213:252 214:252 215:252 216:252 217:108 218:3 232:57 233:252 234:252 235:253 236:27 237:88 238:112 239:112 240:112 241:112 242:142 243:252 244:252 245:253 246:152 247:31 260:198 261:253 262:253 263:79 270:32 271:153 272:253 273:255 274:253 275:196 287:76 288:246 289:252 290:127 299:3 300:106 301:253 302:252 303:214 304:28 315:194 316:252 317:252 318:112 329:143 330:252 331:252 332:193 343:225 344:252 345:217 346:37 357:38 358:234 359:252 360:223 370:63 371:240 372:252 373:84 386:146 387:252 388:223 398:114 399:253 400:228 401:47 414:147 415:253 416:253 417:112 426:159 427:252 428:195 442:225 443:252 444:252 445:112 454:253 455:252 456:195 470:225 471:252 472:230 473:25 482:159 483:252 484:202 485:10 497:92 498:243 499:252 500:208 510:113 511:252 512:252 513:161 524:79 525:253 526:252 527:220 528:37 538:114 539:253 540:253 541:253 542:174 543:63 550:26 551:128 552:253 553:255 554:253 555:133 566:12 567:228 568:252 569:252 570:252 571:241 572:100 573:85 574:76 576:85 577:131 578:231 579:252 580:252 581:253 582:129 583:6 595:97 596:208 597:252 598:252 599:253 600:252 601:252 602:246 603:197 604:253 605:252 606:252 607:252 608:220 609:133 610:6 624:19 625:99 626:239 627:253 628:252 629:252 630:252 631:252 632:253 633:252 634:245 635:223 636:99 654:63 655:112 656:112 657:221 658:252 659:252 660:253 661:127 662:87 +0 153:12 154:136 155:254 156:255 157:195 158:115 159:3 180:6 181:175 182:253 183:196 184:160 185:252 186:253 187:15 208:130 209:253 210:234 211:4 213:27 214:205 215:232 216:40 235:54 236:246 237:253 238:68 242:24 243:243 244:106 262:3 263:134 264:235 265:99 266:4 271:132 272:247 273:77 290:56 291:253 292:62 299:23 300:233 301:129 318:179 319:183 320:4 328:182 329:220 345:21 346:232 347:59 356:95 357:232 358:21 373:128 374:183 385:228 386:85 401:187 402:124 413:228 414:186 429:187 430:124 441:228 442:104 457:187 458:124 469:169 470:184 485:187 486:124 497:203 498:150 513:187 514:124 524:10 525:220 526:39 541:187 542:155 552:111 553:201 569:129 570:228 571:7 579:12 580:181 581:76 598:234 599:166 600:9 606:24 607:209 608:106 626:139 627:250 628:167 629:11 630:2 631:11 632:11 633:129 634:227 635:90 636:11 655:95 656:247 657:253 658:178 659:253 660:253 661:244 662:86 684:47 685:175 686:253 687:232 688:149 689:40 +1 128:255 129:253 130:57 156:253 157:251 158:225 159:56 183:169 184:254 185:253 186:254 187:84 211:168 212:253 213:251 214:253 215:83 238:85 239:253 240:254 241:253 242:169 266:85 267:251 268:253 269:251 270:56 294:141 295:253 296:254 297:253 322:253 323:251 324:253 325:251 350:254 351:253 352:254 353:253 378:253 379:251 380:253 381:251 406:254 407:253 408:254 409:196 433:114 434:253 435:251 436:253 437:83 461:169 462:254 463:253 464:226 465:56 489:168 490:253 491:251 492:168 516:85 517:253 518:254 519:253 544:85 545:251 546:253 547:251 572:254 573:253 574:254 575:253 600:253 601:251 602:253 603:251 628:254 629:253 630:254 631:253 656:139 657:251 658:253 659:138 +0 151:23 152:167 153:208 154:254 155:255 156:129 157:19 179:151 180:253 181:253 182:253 183:253 184:253 185:209 186:26 207:181 208:253 209:253 210:253 211:227 212:181 213:253 214:207 215:22 235:227 236:253 237:253 238:253 239:92 240:38 241:226 242:253 243:129 244:2 263:193 264:253 265:253 266:248 267:62 269:50 270:253 271:253 272:45 291:170 292:253 293:253 294:135 297:12 298:208 299:253 300:119 318:16 319:232 320:253 321:253 322:21 326:60 327:253 328:185 346:164 347:253 348:253 349:224 350:14 354:14 355:217 356:247 357:62 373:3 374:193 375:253 376:250 377:64 383:199 384:253 385:179 401:67 402:253 403:253 404:205 411:98 412:253 413:188 429:151 430:253 431:245 432:43 439:63 440:250 441:188 457:151 458:253 459:243 468:244 469:222 470:22 485:151 486:253 487:217 496:244 497:253 498:115 512:3 513:195 514:253 515:134 524:156 525:253 526:150 541:140 542:253 543:134 552:239 553:253 554:139 569:44 570:253 571:134 579:53 580:246 581:237 582:32 597:8 598:200 599:229 600:40 606:25 607:225 608:253 609:188 626:120 627:250 628:230 629:58 630:17 632:12 633:42 634:213 635:253 636:238 637:84 655:151 656:253 657:253 658:217 659:179 660:206 661:253 662:253 663:196 664:118 683:18 684:58 685:145 686:152 687:253 688:214 689:145 690:74 691:7 +1 130:24 131:150 132:233 133:38 156:14 157:89 158:253 159:254 160:254 161:71 183:78 184:203 185:254 186:254 187:254 188:232 189:77 190:54 191:8 209:12 210:155 211:240 212:254 213:223 214:76 215:254 216:254 217:254 218:254 219:68 235:3 236:101 237:216 238:254 239:227 240:122 241:26 242:110 243:254 244:254 245:254 246:184 247:100 262:46 263:222 264:254 265:254 266:179 267:48 270:181 271:254 272:254 273:146 274:6 288:2 289:145 290:248 291:254 292:182 293:111 294:4 297:3 298:250 299:254 300:206 301:3 315:6 316:144 317:254 318:254 319:171 325:125 326:254 327:252 328:80 342:6 343:142 344:254 345:179 346:95 347:4 352:61 353:246 354:254 355:150 370:64 371:254 372:177 373:14 380:124 381:254 382:246 383:32 398:108 399:97 400:15 407:24 408:226 409:254 410:116 435:177 436:255 437:254 438:5 463:196 464:254 465:99 466:1 490:3 491:199 492:254 493:79 518:129 519:254 520:254 521:23 546:178 547:254 548:192 549:8 550:3 551:43 573:11 574:198 575:254 576:128 577:66 578:130 579:225 595:137 596:202 597:106 598:84 599:84 600:84 601:112 602:254 603:254 604:254 605:254 606:212 607:151 623:172 624:254 625:254 626:254 627:254 628:254 629:254 630:254 631:254 632:254 633:162 634:75 651:12 652:106 653:177 654:254 655:254 656:254 657:235 658:135 659:100 660:17 661:2 +0 125:120 126:253 127:253 128:63 151:38 152:131 153:246 154:252 155:252 156:203 157:15 179:222 180:252 181:252 182:252 183:252 184:166 185:38 205:4 206:107 207:253 208:252 209:252 210:252 211:252 212:253 213:224 214:137 215:26 233:107 234:252 235:253 236:252 237:220 238:128 239:252 240:253 241:252 242:252 243:239 244:140 261:170 262:253 263:255 264:168 267:79 268:192 269:253 270:253 271:253 272:253 273:255 274:90 288:51 289:243 290:252 291:215 292:33 296:12 297:74 298:233 299:252 300:252 301:253 302:195 303:19 316:166 317:252 318:252 319:31 326:43 327:149 328:195 329:253 330:252 331:177 332:19 343:57 344:234 345:252 346:252 357:237 358:252 359:252 360:180 361:13 371:85 372:252 373:252 374:173 385:50 386:237 387:252 388:252 389:112 399:226 400:253 401:240 402:63 414:163 415:253 416:253 417:112 426:38 427:234 428:252 429:176 442:85 443:252 444:252 445:158 454:113 455:252 456:252 457:84 470:19 471:209 472:252 473:252 482:207 483:252 484:252 485:84 498:10 499:203 500:252 501:236 510:253 511:252 512:252 513:84 526:85 527:252 528:252 529:112 538:114 539:253 540:253 541:146 553:51 554:159 555:253 556:240 557:63 566:75 567:243 568:252 569:249 570:146 579:57 580:85 581:238 582:252 583:252 584:99 595:116 596:252 597:252 598:252 599:198 600:197 601:165 602:57 603:57 604:57 605:182 606:197 607:234 608:252 609:253 610:233 611:164 612:19 623:28 624:84 625:180 626:252 627:253 628:252 629:252 630:252 631:252 632:253 633:252 634:252 635:252 636:252 637:225 638:71 653:13 654:112 655:253 656:252 657:252 658:252 659:252 660:253 661:252 662:252 663:157 664:112 +1 127:155 128:253 129:126 155:253 156:251 157:141 158:4 183:253 184:251 185:251 186:31 211:253 212:251 213:251 214:31 239:253 240:251 241:251 242:31 267:255 268:253 269:253 270:31 293:8 294:131 295:253 296:251 297:235 298:27 321:64 322:251 323:253 324:251 325:126 349:64 350:251 351:253 352:251 353:126 377:64 378:251 379:253 380:251 381:126 405:64 406:253 407:255 408:221 433:182 434:251 435:253 436:200 460:64 461:236 462:251 463:253 464:62 487:8 488:158 489:251 490:251 491:169 492:8 515:32 516:251 517:251 518:251 519:158 543:32 544:253 545:253 546:253 547:159 571:32 572:251 573:251 574:251 575:39 599:32 600:251 601:251 602:251 627:32 628:251 629:251 630:251 631:100 655:32 656:251 657:251 658:251 +0 101:88 102:127 103:5 126:19 127:58 128:20 129:14 130:217 131:19 152:7 153:146 154:247 155:253 156:235 157:27 158:84 159:81 180:126 181:253 182:164 183:19 184:15 187:156 188:9 208:214 209:222 210:34 215:234 216:58 235:59 236:254 237:116 243:235 244:58 263:141 264:251 265:72 271:151 272:140 291:224 292:233 299:136 300:223 319:254 320:218 327:136 328:253 347:254 348:135 355:136 356:253 374:23 375:255 376:114 383:137 384:231 402:98 403:254 404:122 411:136 412:155 430:98 431:254 432:106 439:166 440:155 458:98 459:254 460:128 467:234 468:193 486:98 487:254 488:135 494:61 495:248 496:118 515:255 516:238 517:18 521:13 522:224 523:254 524:58 543:201 544:253 545:128 546:2 548:5 549:150 550:253 551:167 552:9 571:18 572:226 573:253 574:49 575:31 576:156 577:253 578:228 579:13 600:147 601:253 602:243 603:241 604:254 605:227 606:43 628:5 629:126 630:245 631:253 632:231 633:46 +0 127:37 128:141 129:156 130:156 131:194 132:194 133:47 153:11 154:132 155:239 156:253 157:253 158:253 159:253 160:254 161:181 180:25 181:172 182:253 183:235 184:167 185:78 186:93 187:174 188:254 189:247 190:54 207:26 208:210 209:253 210:237 211:90 216:201 217:253 218:78 235:192 236:253 237:237 238:58 244:156 245:253 246:78 262:141 263:254 264:235 265:53 269:19 270:5 272:156 273:254 274:78 289:46 290:254 291:253 292:92 296:17 297:226 298:217 299:49 300:148 301:253 302:78 317:165 318:254 319:239 320:24 324:20 325:253 326:253 327:58 328:18 329:115 330:24 344:37 345:248 346:254 347:91 352:2 353:117 354:250 355:163 356:91 372:77 373:253 374:254 375:39 382:196 383:253 384:173 400:159 401:254 402:218 403:15 410:77 411:254 412:255 413:61 428:234 429:253 430:113 438:21 439:226 440:254 441:135 455:25 456:240 457:253 458:68 467:195 468:254 469:135 483:79 484:253 485:253 495:195 496:254 497:135 511:79 512:253 513:253 514:76 523:195 524:254 525:99 540:212 541:254 542:209 543:9 550:10 551:209 552:196 553:15 568:54 569:253 570:254 571:137 572:36 576:2 577:20 578:168 579:253 580:60 596:28 597:235 598:254 599:253 600:199 601:124 602:79 603:79 604:167 605:253 606:253 607:185 608:30 625:15 626:117 627:217 628:253 629:253 630:253 631:254 632:253 633:240 634:109 635:12 655:27 656:126 657:208 658:253 659:193 660:147 661:40 +0 154:32 155:134 156:218 157:254 158:254 159:254 160:217 161:84 176:44 177:208 178:215 179:156 180:35 181:119 182:236 183:246 184:136 185:91 186:69 187:151 188:249 189:246 190:78 203:44 204:230 205:254 206:254 207:254 208:254 209:254 210:196 211:48 216:60 217:224 218:210 219:24 231:118 232:254 233:202 234:19 235:201 236:254 237:181 238:9 245:35 246:233 247:168 259:193 260:223 261:34 263:59 264:163 265:236 266:15 274:140 275:205 276:8 286:60 287:254 288:176 293:38 302:54 303:237 304:80 314:59 315:254 316:93 331:131 332:200 342:59 343:240 344:24 359:79 360:214 370:59 371:234 387:67 388:248 389:54 398:59 399:234 416:235 417:58 426:60 427:235 443:79 444:255 445:59 454:59 455:251 456:66 471:79 472:250 473:54 482:59 483:254 484:108 499:146 500:214 510:5 511:203 512:187 513:3 526:4 527:188 528:199 539:118 540:254 541:57 554:96 555:254 556:117 567:16 568:237 569:224 570:14 581:14 582:187 583:206 584:8 596:88 597:252 598:186 599:16 608:16 609:187 610:252 611:125 625:100 626:254 627:237 628:94 629:24 635:13 636:214 637:254 638:166 653:3 654:57 655:215 656:248 657:241 658:235 659:197 660:137 661:137 662:137 663:231 664:238 665:155 666:25 684:57 685:155 686:246 687:254 688:254 689:254 690:254 691:147 692:36 +1 124:102 125:252 126:252 127:41 152:102 153:250 154:250 155:202 180:102 181:250 182:250 183:232 184:91 208:102 209:250 210:250 211:212 212:29 236:102 237:252 238:252 239:254 240:150 264:102 265:250 266:250 267:252 268:149 292:102 293:250 294:250 295:252 296:149 320:102 321:250 322:250 323:252 324:231 325:80 349:152 350:252 351:254 352:252 353:100 377:151 378:250 379:252 380:250 381:100 405:151 406:250 407:252 408:250 409:100 433:151 434:250 435:252 436:250 437:100 461:123 462:243 463:254 464:252 465:100 490:202 491:252 492:250 493:100 518:80 519:252 520:250 521:190 522:30 547:252 548:250 549:250 550:49 575:255 576:252 577:252 578:252 579:214 580:31 603:171 604:250 605:250 606:250 607:252 608:190 609:40 631:20 632:160 633:250 634:250 635:252 636:250 637:100 660:20 661:170 662:250 663:212 664:49 665:20 +0 124:20 125:121 126:197 127:253 128:64 151:23 152:200 153:252 154:252 155:252 156:184 157:6 178:25 179:197 180:252 181:252 182:252 183:252 184:253 185:228 186:107 187:15 205:26 206:196 207:252 208:252 209:252 210:252 211:252 212:253 213:252 214:252 215:219 216:178 217:21 233:186 234:252 235:238 236:94 237:67 238:224 239:217 240:53 241:109 242:245 243:252 244:252 245:213 246:63 260:98 261:242 262:252 263:101 266:39 267:31 270:109 271:128 272:241 273:252 274:207 275:97 287:17 288:230 289:252 290:241 291:56 300:109 301:252 302:252 303:229 304:17 314:13 315:192 316:252 317:243 318:96 328:25 329:127 330:252 331:252 332:120 342:121 343:252 344:252 345:165 357:125 358:252 359:252 360:246 361:70 370:190 371:252 372:252 373:39 385:26 386:210 387:252 388:252 389:119 398:255 399:253 400:159 414:22 415:209 416:253 417:183 426:253 427:252 428:103 443:34 444:252 445:252 454:253 455:252 456:26 471:27 472:252 473:252 482:253 483:252 484:168 485:13 499:70 500:252 501:209 510:147 511:252 512:252 513:75 526:68 527:233 528:252 529:119 538:121 539:252 540:252 541:189 542:40 552:15 553:82 554:231 555:252 556:214 557:31 566:38 567:135 568:248 569:252 570:231 571:145 572:41 573:41 574:41 575:41 576:20 577:24 578:37 579:83 580:194 581:252 582:252 583:212 584:33 596:83 597:213 598:252 599:252 600:252 601:252 602:252 603:252 604:204 605:213 606:243 607:252 608:252 609:252 610:212 611:34 625:34 626:140 627:238 628:248 629:252 630:252 631:252 632:253 633:252 634:252 635:241 636:238 637:238 638:75 656:82 657:119 658:119 659:119 660:120 661:119 662:119 663:19 +1 127:20 128:254 129:255 130:37 155:19 156:253 157:253 158:134 183:19 184:253 185:253 186:246 187:125 211:76 212:253 213:253 214:253 215:158 239:207 240:253 241:253 242:253 243:158 267:207 268:253 269:253 270:253 271:158 294:48 295:223 296:253 297:253 298:243 299:106 322:141 323:253 324:253 325:253 326:113 349:65 350:237 351:253 352:253 353:253 354:36 377:76 378:253 379:253 380:253 381:253 382:36 405:76 406:253 407:253 408:253 409:253 410:36 433:76 434:253 435:253 436:253 437:118 438:4 460:4 461:148 462:253 463:253 464:253 465:103 488:10 489:253 490:253 491:253 492:253 493:103 516:10 517:253 518:253 519:253 520:173 521:7 544:10 545:253 546:253 547:253 548:168 572:143 573:253 574:253 575:239 576:49 600:198 601:253 602:253 603:234 615:140 628:198 629:253 630:253 631:234 656:198 657:253 658:253 659:234 +0 235:40 236:37 238:7 239:77 240:137 241:136 242:136 243:136 244:136 245:40 246:6 261:16 262:135 263:254 264:233 266:152 267:215 268:96 269:140 270:155 271:118 272:230 273:254 274:158 275:68 288:19 289:164 290:254 291:114 294:235 295:140 301:99 302:230 303:254 304:186 305:14 315:70 316:226 317:242 318:121 322:104 323:195 324:38 330:33 331:179 332:253 333:140 342:41 343:241 344:198 345:43 359:24 360:209 361:223 370:164 371:250 372:66 388:136 389:253 398:254 399:158 416:136 417:215 426:255 427:76 442:5 443:127 444:246 445:133 454:254 455:122 469:5 470:150 471:247 472:91 473:9 482:254 483:165 495:13 496:79 497:194 498:216 499:84 510:111 511:251 512:87 519:16 520:25 521:40 522:107 523:186 524:213 525:117 526:25 538:14 539:185 540:235 541:142 542:23 546:91 547:157 548:231 549:207 550:126 551:49 569:143 570:195 571:255 572:254 573:254 574:244 575:157 576:76 599:39 600:39 601:39 602:33 +1 128:166 129:255 130:187 131:6 156:165 157:253 158:253 159:13 183:15 184:191 185:253 186:253 187:13 211:49 212:253 213:253 214:253 215:13 239:141 240:253 241:253 242:169 243:4 266:4 267:189 268:253 269:249 270:53 294:69 295:253 296:253 297:246 322:69 323:253 324:253 325:246 350:118 351:253 352:253 353:124 378:206 379:253 380:231 381:21 405:66 406:241 407:253 408:199 433:105 434:253 435:253 436:89 460:3 461:228 462:253 463:252 464:86 488:111 489:253 490:253 491:205 516:166 517:253 518:253 519:75 543:43 544:249 545:253 546:193 547:9 570:4 571:160 572:253 573:253 574:184 598:37 599:253 600:253 601:253 602:88 626:140 627:253 628:253 629:186 630:18 654:14 655:253 656:253 657:27 +1 128:117 129:128 155:2 156:199 157:127 183:81 184:254 185:87 211:116 212:254 213:48 239:175 240:234 241:18 266:5 267:230 268:168 294:80 295:255 296:142 322:80 323:255 324:142 350:80 351:251 352:57 378:129 379:239 406:164 407:209 433:28 434:245 435:159 461:64 462:254 463:144 489:84 490:254 491:80 517:143 518:254 519:30 544:3 545:225 546:200 572:48 573:254 574:174 600:48 601:254 602:174 628:93 629:254 630:129 656:53 657:234 658:41 +1 129:159 130:142 156:11 157:220 158:141 184:78 185:254 186:141 212:111 213:254 214:109 240:196 241:221 242:15 267:26 268:221 269:159 295:63 296:254 297:159 323:178 324:254 325:93 350:7 351:191 352:254 353:97 378:42 379:255 380:254 381:41 406:42 407:254 408:195 409:10 434:141 435:255 436:78 461:11 462:202 463:254 464:59 489:86 490:254 491:254 492:59 517:142 518:254 519:248 520:52 545:142 546:254 547:195 573:142 574:254 575:164 601:142 602:254 603:77 629:142 630:254 631:131 657:77 658:172 659:5 +0 124:66 125:254 126:254 127:58 128:60 129:59 130:59 131:50 151:73 152:233 153:253 154:253 155:148 156:254 157:253 158:253 159:232 160:73 179:156 180:253 181:253 182:253 183:117 184:255 185:253 186:253 187:253 188:223 189:176 190:162 205:37 206:116 207:246 208:253 209:180 210:18 211:4 212:18 213:109 214:241 215:253 216:253 217:253 218:236 219:28 233:235 234:253 235:253 236:245 237:107 242:109 243:170 244:253 245:253 246:253 247:174 261:235 262:253 263:253 264:233 271:15 272:156 273:253 274:253 275:223 276:72 287:10 288:156 289:250 290:253 291:253 292:67 300:99 301:253 302:253 303:253 304:127 305:5 315:118 316:253 317:253 318:253 319:204 320:26 328:68 329:223 330:253 331:253 332:253 333:57 342:32 343:191 344:253 345:253 346:253 347:97 357:156 358:253 359:253 360:253 361:57 370:59 371:253 372:253 373:253 374:253 375:97 385:36 386:224 387:253 388:253 389:57 398:60 399:254 400:255 401:254 402:156 413:37 414:226 415:254 416:254 417:58 426:59 427:253 428:253 429:253 430:154 441:156 442:253 443:253 444:253 445:57 454:59 455:253 456:253 457:253 458:154 469:156 470:253 471:253 472:253 473:57 482:59 483:253 484:253 485:253 486:246 487:90 496:16 497:171 498:253 499:253 500:231 501:49 510:59 511:253 512:253 513:253 514:253 515:156 516:91 524:99 525:253 526:253 527:222 528:71 538:59 539:253 540:253 541:253 542:253 543:253 544:245 545:109 551:145 552:194 553:253 554:253 555:174 566:9 567:38 568:174 569:251 570:253 571:253 572:253 573:241 574:215 575:215 576:217 577:215 578:215 579:250 580:253 581:253 582:221 583:26 597:235 598:253 599:253 600:253 601:253 602:253 603:253 604:254 605:253 606:253 607:253 608:253 609:204 610:26 625:108 626:116 627:200 628:253 629:253 630:253 631:253 632:254 633:253 634:253 635:253 636:199 637:44 655:36 656:57 657:118 658:253 659:253 660:58 661:57 662:57 663:57 664:35 +1 129:101 130:222 131:84 157:225 158:252 159:84 184:89 185:246 186:208 187:19 212:128 213:252 214:195 239:79 240:253 241:252 242:195 267:141 268:255 269:253 270:133 294:26 295:240 296:253 297:252 298:55 322:60 323:252 324:253 325:154 326:12 349:7 350:178 351:252 352:253 353:27 377:57 378:252 379:252 380:253 381:27 405:57 406:253 407:253 408:204 409:15 433:104 434:252 435:252 436:94 460:19 461:209 462:252 463:252 488:101 489:252 490:252 491:157 516:225 517:252 518:252 519:112 544:226 545:253 546:240 547:63 572:225 573:252 574:223 600:225 601:252 602:223 628:225 629:252 630:242 631:75 656:146 657:252 658:236 659:50 +0 124:41 125:254 126:254 127:157 128:34 129:34 130:218 131:255 132:206 133:34 134:18 151:53 152:238 153:252 154:252 155:252 156:252 157:252 158:252 159:252 160:252 161:252 162:162 163:26 178:66 179:220 180:252 181:252 182:252 183:209 184:153 185:223 186:252 187:252 188:252 189:252 190:252 191:98 206:166 207:252 208:252 209:252 210:252 211:141 213:85 214:230 215:252 216:252 217:252 218:252 219:98 234:166 235:252 236:252 237:252 238:252 239:141 242:73 243:102 244:252 245:252 246:252 247:98 262:166 263:252 264:252 265:252 266:191 267:30 271:5 272:97 273:252 274:252 275:220 276:51 289:123 290:245 291:252 292:252 293:202 294:14 300:56 301:252 302:252 303:252 304:65 316:18 317:154 318:252 319:252 320:241 328:56 329:252 330:252 331:252 332:65 343:21 344:146 345:252 346:252 347:252 348:241 356:56 357:252 358:252 359:252 360:65 371:67 372:252 373:252 374:252 375:252 376:241 384:56 385:252 386:252 387:252 388:65 399:67 400:252 401:252 402:252 403:252 404:116 412:56 413:252 414:252 415:252 416:65 427:67 428:252 429:252 430:252 431:252 432:20 440:56 441:252 442:252 443:252 444:65 455:67 456:252 457:252 458:252 459:87 460:4 468:56 469:252 470:252 471:124 472:11 483:67 484:252 485:252 486:252 487:54 494:19 495:236 496:245 497:252 498:252 499:98 511:67 512:252 513:252 514:252 515:97 516:5 521:39 522:219 523:252 524:252 525:252 526:252 527:98 539:67 540:252 541:252 542:252 543:252 544:102 545:89 546:89 547:89 548:89 549:203 550:252 551:252 552:252 553:252 554:209 555:64 567:67 568:252 569:252 570:252 571:252 572:252 573:252 574:252 575:252 576:252 577:252 578:252 579:252 580:226 581:130 582:68 595:67 596:252 597:252 598:252 599:252 600:252 601:252 602:252 603:252 604:252 605:252 606:252 607:239 608:77 623:17 624:65 625:163 626:252 627:252 628:252 629:252 630:252 631:252 632:252 633:252 634:96 635:59 653:17 654:176 655:252 656:252 657:252 658:252 659:155 660:32 661:32 662:6 +0 96:56 97:247 98:121 124:24 125:242 126:245 127:122 153:231 154:253 155:253 156:104 157:12 181:90 182:253 183:253 184:254 185:221 186:120 187:120 188:85 206:67 207:75 208:36 209:11 210:56 211:222 212:254 213:253 214:253 215:253 216:245 217:207 218:36 233:86 234:245 235:249 236:105 239:44 240:224 241:230 242:253 243:253 244:253 245:253 246:214 247:10 260:8 261:191 262:253 263:143 269:29 270:119 271:119 272:158 273:253 274:253 275:94 288:15 289:253 290:226 291:48 300:4 301:183 302:253 303:248 304:56 316:42 317:253 318:178 329:179 330:253 331:184 332:14 344:164 345:253 346:178 357:179 358:253 359:163 371:61 372:254 373:254 374:179 384:76 385:254 386:254 387:164 399:60 400:253 401:253 402:178 411:29 412:206 413:253 414:253 415:40 427:60 428:253 429:253 430:178 439:120 440:253 441:253 442:245 443:13 455:60 456:253 457:253 458:178 467:120 468:253 469:239 470:63 483:60 484:253 485:253 486:178 494:14 495:238 496:253 497:179 511:18 512:190 513:253 514:231 515:70 521:43 522:184 523:253 524:253 525:74 540:86 541:253 542:253 543:239 544:134 545:8 548:56 549:163 550:253 551:253 552:213 553:35 568:16 569:253 570:253 571:253 572:253 573:240 574:239 575:239 576:247 577:253 578:253 579:210 580:27 596:4 597:59 598:204 599:253 600:253 601:253 602:253 603:253 604:254 605:253 606:250 607:110 626:31 627:122 628:253 629:253 630:253 631:253 632:255 633:217 634:98 +0 125:19 126:164 127:253 128:255 129:253 130:118 131:59 132:36 153:78 154:251 155:251 156:253 157:251 158:251 159:251 160:199 161:45 180:14 181:198 182:251 183:251 184:253 185:251 186:251 187:251 188:251 189:204 190:26 208:5 209:117 210:251 211:251 212:243 213:212 214:239 215:251 216:251 217:251 218:218 236:95 237:251 238:251 239:251 240:120 242:175 243:251 244:251 245:251 246:231 263:97 264:237 265:251 266:251 267:251 270:67 271:240 272:251 273:251 274:243 275:108 290:8 291:163 292:251 293:251 294:240 295:81 299:68 300:251 301:251 302:251 303:179 304:9 317:13 318:145 319:251 320:251 321:226 322:80 327:39 328:251 329:251 330:251 331:251 332:115 345:144 346:251 347:251 348:251 349:173 355:18 356:167 357:251 358:251 359:251 360:115 373:233 374:251 375:251 376:251 377:173 384:98 385:251 386:251 387:251 388:115 400:176 401:253 402:253 403:216 404:179 412:99 413:253 414:253 415:253 416:116 427:55 428:210 429:251 430:251 431:96 440:98 441:251 442:251 443:214 444:62 455:117 456:251 457:251 458:251 459:96 467:28 468:204 469:251 470:237 471:53 482:55 483:241 484:251 485:251 486:160 487:7 494:28 495:222 496:251 497:251 498:231 510:59 511:251 512:251 513:251 514:153 520:23 521:98 522:204 523:251 524:251 525:251 526:156 538:59 539:251 540:251 541:251 542:153 546:85 547:155 548:179 549:251 550:251 551:251 552:251 553:154 554:15 566:59 567:251 568:251 569:251 570:236 571:214 572:214 573:214 574:234 575:251 576:253 577:251 578:251 579:248 580:156 581:15 594:41 595:209 596:251 597:251 598:251 599:251 600:251 601:251 602:251 603:251 604:253 605:251 606:196 607:146 623:54 624:115 625:241 626:251 627:251 628:251 629:251 630:251 631:251 632:253 633:187 634:35 653:83 654:251 655:251 656:251 657:251 658:251 659:101 660:57 661:31 +1 129:232 130:255 131:107 156:58 157:244 158:253 159:106 184:95 185:253 186:253 187:106 212:95 213:253 214:253 215:106 240:95 241:253 242:249 243:69 268:144 269:253 270:192 295:97 296:233 297:253 298:66 323:195 324:253 325:253 326:5 350:38 351:232 352:253 353:182 354:2 377:10 378:160 379:253 380:231 381:53 405:42 406:253 407:253 408:158 433:141 434:253 435:253 436:115 460:75 461:245 462:253 463:183 464:4 487:1 488:147 489:253 490:251 491:58 515:20 516:253 517:253 518:180 543:202 544:253 545:226 546:27 571:243 572:253 573:212 598:85 599:251 600:253 601:173 626:209 627:253 628:244 629:57 654:169 655:253 656:174 +1 127:63 128:128 129:2 155:63 156:254 157:123 183:63 184:254 185:179 211:63 212:254 213:179 239:63 240:254 241:179 267:142 268:254 269:179 295:187 296:254 297:158 323:187 324:254 325:55 350:68 351:235 352:254 353:55 378:181 379:254 380:254 381:55 406:181 407:254 408:202 409:14 434:181 435:254 436:186 462:181 463:254 464:146 490:181 491:254 492:62 518:181 519:254 520:62 546:181 547:254 548:62 574:181 575:255 576:62 602:181 603:254 604:241 605:52 630:181 631:254 632:222 633:30 658:181 659:224 660:34 +1 130:131 131:255 132:184 133:15 157:99 158:247 159:253 160:182 161:15 185:124 186:253 187:253 188:253 189:38 212:9 213:171 214:253 215:253 216:140 217:1 240:47 241:253 242:253 243:251 244:117 267:43 268:219 269:253 270:253 271:153 295:78 296:253 297:253 298:253 299:84 323:97 324:253 325:253 326:244 327:74 350:69 351:243 352:253 353:253 354:183 377:10 378:168 379:253 380:253 381:215 382:34 405:31 406:253 407:253 408:253 409:129 433:107 434:253 435:253 436:242 437:67 460:24 461:204 462:253 463:253 464:187 488:95 489:253 490:253 491:201 492:25 516:239 517:253 518:253 519:176 543:119 544:251 545:253 546:253 547:138 570:30 571:212 572:253 573:252 574:165 575:8 598:193 599:253 600:253 601:222 626:193 627:253 628:253 629:189 654:193 655:253 656:201 657:27 +0 125:57 126:255 127:253 128:198 129:85 153:168 154:253 155:251 156:253 157:251 158:169 159:56 180:86 181:253 182:254 183:253 184:254 185:253 186:254 187:253 188:57 208:197 209:251 210:253 211:251 212:253 213:251 214:253 215:251 216:225 217:56 235:169 236:255 237:253 238:226 239:56 241:114 242:254 243:253 244:254 245:84 262:57 263:224 264:253 265:251 266:56 270:139 271:251 272:253 273:83 290:141 291:253 292:255 293:84 298:57 299:225 300:254 301:196 318:253 319:251 320:253 321:83 327:168 328:253 329:83 345:169 346:254 347:253 348:169 355:169 356:254 357:253 358:169 373:168 374:253 375:251 376:56 383:168 384:253 385:251 386:56 401:169 402:254 403:84 412:254 413:253 429:168 430:253 431:83 440:253 441:251 456:29 457:197 458:254 459:84 467:169 468:254 469:196 484:85 485:251 486:253 487:83 494:57 495:224 496:253 497:83 512:57 513:225 514:254 515:139 521:57 522:141 523:253 524:254 525:84 541:168 542:253 543:251 544:169 545:56 547:114 548:169 549:224 550:253 551:251 552:253 553:83 569:169 570:254 571:253 572:254 573:253 574:254 575:253 576:254 577:253 578:254 579:253 580:226 581:56 597:56 598:253 599:251 600:253 601:251 602:253 603:251 604:253 605:251 606:253 607:251 608:56 626:169 627:225 628:254 629:253 630:254 631:253 632:254 633:253 634:226 635:56 655:56 656:253 657:251 658:253 659:251 660:84 661:83 662:56 +0 127:12 128:105 129:224 130:255 131:247 132:22 155:131 156:254 157:254 158:243 159:252 160:76 182:131 183:225 184:254 185:224 186:48 187:136 208:13 209:109 210:252 211:254 212:254 213:254 214:197 215:76 235:9 236:181 237:254 238:254 239:240 240:229 241:237 242:254 243:252 244:152 245:21 262:9 263:143 264:254 265:254 266:226 267:36 269:22 270:138 271:254 272:254 273:188 289:13 290:181 291:254 292:254 293:250 294:64 298:2 299:53 300:236 301:252 302:131 317:102 318:254 319:254 320:254 321:111 328:56 329:243 330:251 331:42 344:30 345:186 346:254 347:254 348:206 349:29 357:199 358:254 359:91 372:92 373:254 374:254 375:237 376:13 385:134 386:254 387:91 400:133 401:254 402:254 403:126 413:134 414:250 415:17 428:187 429:254 430:237 431:23 441:200 442:183 456:187 457:254 458:213 467:2 468:134 469:252 470:101 484:183 485:254 486:133 495:14 496:254 497:234 498:34 512:92 513:254 514:161 522:84 523:204 524:254 525:56 540:92 541:254 542:229 549:85 550:252 551:252 552:188 553:11 568:56 569:252 570:229 575:3 576:53 577:235 578:253 579:166 597:224 598:245 599:130 600:68 601:68 602:134 603:214 604:254 605:254 606:159 625:141 626:254 627:254 628:254 629:254 630:254 631:254 632:233 633:95 634:3 653:14 654:152 655:254 656:254 657:254 658:186 659:157 660:53 +1 130:226 131:247 132:55 157:99 158:248 159:254 160:230 161:30 185:125 186:254 187:254 188:254 189:38 213:125 214:254 215:254 216:212 217:24 240:18 241:223 242:254 243:252 244:118 268:24 269:254 270:254 271:239 295:27 296:195 297:254 298:254 299:93 323:78 324:254 325:254 326:246 327:74 351:158 352:254 353:254 354:185 378:41 379:239 380:254 381:254 382:43 405:22 406:218 407:254 408:254 409:167 410:9 433:32 434:254 435:254 436:254 437:130 460:24 461:187 462:254 463:254 464:234 465:16 488:189 489:254 490:254 491:254 492:128 515:64 516:247 517:254 518:255 519:219 520:42 543:139 544:254 545:254 546:222 547:40 570:30 571:213 572:254 573:235 574:45 598:194 599:254 600:254 601:223 626:194 627:254 628:254 629:190 654:194 655:254 656:202 657:27 +1 130:166 131:253 132:124 133:53 158:140 159:251 160:251 161:180 185:125 186:246 187:251 188:251 189:51 212:32 213:190 214:251 215:251 216:251 217:103 240:21 241:174 242:251 243:251 244:251 268:73 269:176 270:253 271:253 272:201 296:149 297:251 298:251 299:251 300:71 323:27 324:228 325:251 326:251 327:157 328:10 351:180 352:253 353:251 354:251 355:142 377:27 378:180 379:231 380:253 381:251 382:96 383:41 405:89 406:253 407:253 408:255 409:211 410:25 433:217 434:251 435:251 436:253 437:107 460:21 461:221 462:251 463:251 464:242 465:92 487:32 488:190 489:251 490:251 491:251 492:103 515:202 516:251 517:251 518:251 519:122 542:53 543:255 544:253 545:253 546:221 547:51 570:180 571:253 572:251 573:251 574:142 598:180 599:253 600:251 601:251 602:142 626:180 627:253 628:251 629:157 630:82 654:180 655:253 656:147 657:10 +1 129:17 130:206 131:229 132:44 157:2 158:125 159:254 160:123 185:95 186:254 187:254 188:123 212:78 213:240 214:254 215:254 216:123 240:100 241:254 242:254 243:254 244:123 267:2 268:129 269:254 270:254 271:220 272:20 295:9 296:254 297:254 298:254 299:123 322:22 323:179 324:254 325:254 326:254 327:49 350:83 351:254 352:254 353:254 354:183 355:19 378:136 379:254 380:254 381:254 382:139 404:3 405:111 406:252 407:254 408:254 409:232 410:45 432:67 433:254 434:254 435:254 436:216 437:40 459:14 460:192 461:254 462:254 463:254 464:140 486:23 487:192 488:254 489:254 490:254 491:246 514:77 515:254 516:254 517:255 518:241 519:100 541:65 542:235 543:254 544:254 545:254 546:172 568:30 569:238 570:254 571:254 572:254 573:219 574:26 596:34 597:254 598:254 599:254 600:216 601:41 624:34 625:254 626:254 627:254 628:188 652:12 653:170 654:254 655:254 656:82 +1 130:218 131:253 132:124 157:84 158:236 159:251 160:251 184:63 185:236 186:251 187:251 188:122 212:73 213:251 214:251 215:251 216:173 240:202 241:251 242:251 243:251 244:71 267:53 268:255 269:253 270:253 271:253 272:72 295:180 296:253 297:251 298:251 299:188 300:30 323:180 324:253 325:251 326:251 327:142 350:47 351:211 352:253 353:251 354:235 355:82 377:27 378:211 379:251 380:253 381:251 382:215 405:89 406:253 407:253 408:255 409:253 410:164 433:217 434:251 435:251 436:253 437:168 438:15 460:21 461:221 462:251 463:251 464:253 465:107 487:32 488:190 489:251 490:251 491:251 492:221 493:61 515:73 516:251 517:251 518:251 519:251 520:180 543:255 544:253 545:253 546:253 547:201 570:105 571:253 572:251 573:251 574:251 575:71 598:180 599:253 600:251 601:246 602:137 603:10 626:180 627:253 628:251 629:215 654:180 655:253 656:251 657:86 +1 124:102 125:180 126:1 152:140 153:254 154:130 180:140 181:254 182:204 208:140 209:254 210:204 236:72 237:254 238:204 264:25 265:231 266:250 267:135 292:11 293:211 294:254 295:222 321:101 322:254 323:250 324:15 349:96 350:254 351:254 352:95 377:2 378:251 379:254 380:95 405:2 406:251 407:254 408:95 433:96 434:254 435:254 436:95 461:53 462:253 463:254 464:139 490:250 491:254 492:235 493:27 518:201 519:254 520:254 521:128 546:80 547:254 548:254 549:139 574:65 575:254 576:254 577:139 602:150 603:254 604:254 605:139 630:229 631:254 632:254 633:43 658:52 659:196 660:168 661:9 +0 128:87 129:208 130:249 155:27 156:212 157:254 158:195 182:118 183:225 184:254 185:254 186:232 187:147 188:46 209:115 210:248 211:254 212:254 213:254 214:254 215:254 216:230 217:148 218:12 236:18 237:250 238:254 239:245 240:226 241:254 242:254 243:254 244:254 245:254 246:148 263:92 264:205 265:254 266:250 267:101 268:20 269:194 270:254 271:254 272:254 273:254 274:229 275:53 291:152 292:254 293:254 294:94 297:14 298:124 299:187 300:254 301:254 302:254 303:213 318:95 319:252 320:254 321:206 322:15 327:3 328:6 329:51 330:231 331:254 332:94 345:50 346:246 347:254 348:254 349:20 358:200 359:254 360:96 372:21 373:184 374:254 375:254 376:147 377:2 386:200 387:254 388:96 400:177 401:254 402:254 403:218 404:33 413:16 414:211 415:254 416:96 427:11 428:219 429:254 430:251 431:92 441:84 442:254 443:232 444:44 455:101 456:254 457:254 458:141 469:162 470:254 471:231 472:42 483:235 484:254 485:227 486:42 496:51 497:238 498:254 499:213 511:235 512:254 513:199 524:160 525:254 526:229 527:52 539:235 540:254 541:199 549:10 550:84 551:150 552:253 553:254 554:147 567:235 568:254 569:213 570:20 575:17 576:63 577:158 578:254 579:254 580:254 581:155 582:12 595:122 596:248 597:254 598:204 599:98 600:42 601:177 602:180 603:200 604:254 605:254 606:253 607:213 608:82 609:10 624:203 625:254 626:254 627:254 628:254 629:254 630:254 631:254 632:251 633:219 634:94 652:35 653:221 654:254 655:254 656:254 657:254 658:254 659:217 660:95 +1 126:134 127:230 154:133 155:231 156:10 182:133 183:253 184:96 210:133 211:253 212:96 238:133 239:253 240:183 266:133 267:253 268:217 294:133 295:253 296:217 322:133 323:253 324:217 350:133 351:253 352:217 378:133 379:253 380:217 406:134 407:254 408:218 434:133 435:253 436:159 462:133 463:253 464:199 490:156 491:253 492:96 518:254 519:247 520:73 546:254 547:248 548:74 573:99 574:254 575:245 576:64 600:89 601:230 602:254 603:125 627:140 628:251 629:253 630:243 631:10 655:114 656:242 657:195 658:69 +1 125:29 126:85 127:255 128:139 153:197 154:251 155:253 156:251 181:254 182:253 183:254 184:253 209:253 210:251 211:253 212:251 237:254 238:253 239:254 240:253 265:253 266:251 267:253 268:138 293:254 294:253 295:254 296:196 321:253 322:251 323:253 324:196 349:254 350:253 351:254 352:84 377:253 378:251 379:253 380:196 405:254 406:253 407:254 408:253 433:253 434:251 435:253 436:251 461:254 462:253 463:254 464:253 489:253 490:251 491:253 492:251 517:254 518:253 519:254 520:253 545:253 546:251 547:253 548:251 573:254 574:253 575:254 576:253 601:253 602:251 603:253 604:251 629:57 630:225 631:254 632:253 658:56 659:253 660:251 +1 125:149 126:255 127:254 128:58 153:215 154:253 155:183 156:2 180:41 181:232 182:253 183:181 208:92 209:253 210:253 211:181 236:92 237:253 238:253 239:181 264:92 265:253 266:253 267:181 292:92 293:253 294:253 295:181 320:92 321:253 322:253 323:181 348:92 349:253 350:253 351:181 376:92 377:253 378:253 379:181 404:92 405:253 406:253 407:181 432:92 433:253 434:253 435:181 460:92 461:253 462:253 463:181 488:31 489:228 490:253 491:181 517:198 518:253 519:228 520:54 545:33 546:226 547:253 548:195 549:7 574:199 575:253 576:253 577:75 602:34 603:218 604:253 605:228 606:117 607:14 608:12 631:33 632:219 633:253 634:253 635:253 636:211 660:32 661:123 662:149 663:230 664:41 +1 130:79 131:203 132:141 157:51 158:240 159:240 160:140 185:88 186:252 187:252 188:140 213:197 214:252 215:252 216:140 241:197 242:252 243:252 244:140 268:147 269:253 270:253 271:253 295:38 296:234 297:252 298:242 299:89 323:113 324:252 325:252 326:223 350:16 351:207 352:252 353:252 354:129 377:16 378:203 379:253 380:252 381:220 382:37 405:29 406:253 407:255 408:253 409:56 432:19 433:181 434:252 435:253 436:176 437:6 460:166 461:252 462:252 463:228 464:52 487:10 488:203 489:252 490:252 491:126 514:63 515:178 516:252 517:252 518:173 542:114 543:253 544:253 545:225 570:238 571:252 572:252 573:99 596:7 597:135 598:253 599:252 600:176 601:19 624:29 625:252 626:253 627:252 628:55 652:13 653:189 654:253 655:204 656:25 +1 126:94 127:254 128:75 154:166 155:253 156:231 182:208 183:253 184:147 210:208 211:253 212:116 238:208 239:253 240:168 266:146 267:254 268:222 294:166 295:253 296:116 322:208 323:253 324:116 350:166 351:253 352:158 378:145 379:253 380:231 406:209 407:254 408:169 434:187 435:253 436:168 462:93 463:253 464:116 490:93 491:253 492:116 518:93 519:253 520:116 546:94 547:254 548:179 549:11 574:93 575:253 576:246 577:101 602:145 603:253 604:255 605:92 630:93 631:253 632:246 633:59 658:93 659:253 660:74 +0 127:46 128:105 129:254 130:254 131:224 132:59 133:59 134:9 155:196 156:254 157:253 158:253 159:253 160:253 161:253 162:128 182:96 183:235 184:254 185:253 186:253 187:253 188:253 189:253 190:247 191:122 208:4 209:101 210:244 211:253 212:254 213:234 214:241 215:253 216:253 217:253 218:253 219:186 220:18 236:96 237:253 238:253 239:253 240:232 241:83 242:109 243:170 244:253 245:253 246:253 247:253 248:116 264:215 265:253 266:253 267:253 268:196 271:40 272:253 273:253 274:253 275:253 276:116 290:8 291:141 292:247 293:253 294:253 295:237 296:29 299:6 300:38 301:171 302:253 303:253 304:116 317:13 318:146 319:253 320:253 321:253 322:253 323:57 329:156 330:253 331:253 332:116 345:40 346:253 347:253 348:253 349:253 350:178 351:27 357:156 358:253 359:253 360:116 372:136 373:204 374:253 375:253 376:253 377:192 378:27 385:156 386:253 387:253 388:116 399:28 400:195 401:254 402:254 403:254 404:250 405:135 412:99 413:255 414:254 415:254 416:117 427:118 428:253 429:253 430:253 431:253 432:142 439:19 440:170 441:253 442:253 443:216 444:62 454:42 455:212 456:253 457:253 458:253 459:253 460:38 466:124 467:188 468:253 469:253 470:253 471:174 482:59 483:253 484:253 485:253 486:237 487:93 488:3 491:31 492:40 493:130 494:247 495:253 496:253 497:253 498:204 499:13 510:59 511:253 512:253 513:253 514:154 518:54 519:218 520:254 521:253 522:253 523:253 524:253 525:253 526:38 538:59 539:253 540:253 541:253 542:215 543:156 544:156 545:156 546:209 547:253 548:255 549:253 550:253 551:253 552:192 553:97 554:15 566:55 567:242 568:253 569:253 570:253 571:253 572:253 573:253 574:253 575:253 576:254 577:253 578:253 579:204 580:23 595:118 596:253 597:253 598:253 599:253 600:253 601:253 602:253 603:253 604:254 605:216 606:174 607:13 623:54 624:116 625:243 626:253 627:253 628:253 629:253 630:253 631:146 632:117 633:62 653:53 654:132 655:253 656:253 657:192 658:57 659:13 +1 125:42 126:232 127:254 128:58 153:86 154:253 155:253 156:58 181:86 182:253 183:253 184:58 209:206 210:253 211:253 212:58 237:215 238:253 239:253 240:58 265:215 266:253 267:253 268:58 293:215 294:253 295:253 296:58 321:215 322:253 323:253 324:58 349:215 350:253 351:253 352:58 377:215 378:253 379:253 380:58 405:215 406:253 407:253 408:58 433:188 434:253 435:253 436:85 461:86 462:253 463:253 464:200 465:12 489:29 490:223 491:253 492:253 493:151 518:209 519:253 520:253 521:194 546:128 547:253 548:253 549:200 550:8 574:32 575:213 576:253 577:253 578:152 579:6 603:32 604:221 605:253 606:253 607:153 608:5 632:90 633:215 634:253 635:253 636:151 661:59 662:253 663:253 664:84 +1 156:60 157:229 158:38 184:187 185:254 186:78 211:121 212:252 213:254 214:78 239:197 240:254 241:206 242:6 267:197 268:254 269:202 294:27 295:218 296:233 297:62 322:117 323:254 324:195 350:203 351:254 352:195 377:64 378:244 379:254 380:195 405:79 406:254 407:255 408:161 433:79 434:254 435:254 436:65 461:79 462:254 463:241 464:52 489:79 490:254 491:189 517:79 518:254 519:189 545:79 546:254 547:189 573:79 574:254 575:189 601:79 602:254 603:194 604:5 629:35 630:219 631:254 632:72 658:34 659:223 660:195 687:129 688:195 +1 101:11 102:150 103:72 129:37 130:251 131:71 157:63 158:251 159:71 185:217 186:251 187:71 213:217 214:251 215:71 240:145 241:253 242:253 243:72 267:42 268:206 269:251 270:251 271:71 295:99 296:251 297:251 298:251 299:71 323:253 324:251 325:251 326:251 327:71 350:130 351:253 352:251 353:251 354:251 355:71 377:110 378:253 379:255 380:253 381:253 382:253 383:72 405:109 406:251 407:253 408:251 409:251 410:188 411:30 433:109 434:251 435:253 436:251 437:246 438:123 460:16 461:170 462:251 463:253 464:251 465:215 488:37 489:251 490:251 491:253 492:251 493:86 516:218 517:253 518:253 519:255 520:253 521:35 543:84 544:236 545:251 546:251 547:253 548:168 549:15 571:144 572:251 573:251 574:251 575:190 576:15 599:144 600:251 601:251 602:251 603:180 626:53 627:221 628:251 629:251 630:251 631:180 +0 127:45 128:254 129:254 130:254 131:148 132:24 133:9 154:43 155:254 156:252 157:252 158:252 159:252 160:252 161:121 162:13 181:58 182:237 183:254 184:252 185:252 186:252 187:252 188:252 189:252 190:68 208:69 209:224 210:252 211:254 212:252 213:252 214:252 215:252 216:252 217:252 218:135 219:17 235:75 236:216 237:252 238:252 239:254 240:231 241:168 242:252 243:252 244:252 245:252 246:252 247:45 262:77 263:212 264:252 265:252 266:252 267:242 268:93 269:32 270:114 271:177 272:252 273:252 274:252 275:158 276:12 289:75 290:212 291:252 292:252 293:252 294:252 295:231 299:116 300:252 301:252 302:252 303:252 304:21 316:69 317:216 318:252 319:252 320:252 321:252 322:252 323:62 327:116 328:252 329:252 330:252 331:252 332:21 344:93 345:252 346:252 347:252 348:252 349:252 350:62 355:21 356:158 357:252 358:252 359:252 360:21 371:64 372:239 373:252 374:252 375:252 376:252 377:252 378:21 384:139 385:252 386:252 387:252 388:21 398:5 399:87 400:254 401:254 402:254 403:254 404:237 405:41 411:11 412:150 413:254 414:254 415:254 416:22 425:5 426:85 427:252 428:252 429:252 430:252 431:222 432:55 439:116 440:252 441:252 442:252 443:214 444:18 453:24 454:252 455:252 456:252 457:252 458:252 459:91 466:26 467:153 468:252 469:252 470:252 471:45 481:24 482:252 483:252 484:252 485:252 486:252 487:91 492:18 493:93 494:151 495:252 496:252 497:252 498:184 499:28 509:24 510:252 511:252 512:252 513:252 514:252 515:164 516:116 517:116 518:116 519:117 520:141 521:252 522:252 523:252 524:252 525:252 526:68 537:24 538:252 539:252 540:252 541:252 542:252 543:252 544:252 545:252 546:252 547:254 548:252 549:252 550:252 551:252 552:252 553:163 554:31 565:9 566:121 567:252 568:252 569:252 570:252 571:252 572:252 573:252 574:252 575:254 576:252 577:252 578:252 579:178 580:91 581:33 594:13 595:119 596:252 597:252 598:252 599:252 600:252 601:252 602:252 603:254 604:252 605:252 606:184 607:37 623:13 624:121 625:252 626:252 627:252 628:252 629:252 630:252 631:254 632:214 633:45 634:28 652:8 653:21 654:21 655:169 656:252 657:252 658:41 659:22 660:18 +0 125:218 126:253 127:253 128:255 129:149 130:62 151:42 152:144 153:236 154:251 155:251 156:253 157:251 158:236 159:144 160:144 179:99 180:251 181:251 182:251 183:225 184:253 185:251 186:251 187:251 188:251 189:166 190:16 206:79 207:253 208:251 209:251 210:204 211:41 212:143 213:205 214:251 215:251 216:251 217:253 218:169 219:15 233:79 234:231 235:253 236:251 237:225 238:41 241:41 242:226 243:251 244:251 245:253 246:251 247:164 260:37 261:253 262:253 263:255 264:253 265:35 271:79 272:232 273:255 274:253 275:227 276:42 288:140 289:251 290:251 291:253 292:168 293:15 300:77 301:253 302:251 303:251 304:142 315:21 316:221 317:251 318:251 319:164 320:15 329:227 330:251 331:251 332:236 333:61 342:32 343:190 344:251 345:251 346:251 357:73 358:251 359:251 360:251 361:71 370:73 371:251 372:251 373:251 374:251 385:73 386:251 387:251 388:251 389:71 398:73 399:253 400:253 401:253 402:201 413:73 414:253 415:253 416:253 417:72 426:176 427:251 428:251 429:251 430:71 441:73 442:251 443:251 444:251 445:71 454:253 455:251 456:251 457:157 458:10 469:73 470:251 471:251 472:251 473:71 482:253 483:251 484:251 485:142 497:150 498:251 499:251 500:204 501:41 510:124 511:251 512:251 513:220 514:180 524:130 525:253 526:251 527:225 528:41 538:73 539:253 540:253 541:253 542:253 543:73 544:73 545:10 549:42 550:73 551:150 552:253 553:255 554:253 555:216 566:31 567:189 568:251 569:251 570:251 571:253 572:251 573:159 574:144 575:144 576:145 577:206 578:251 579:251 580:251 581:253 582:168 583:92 595:20 596:195 597:251 598:251 599:253 600:251 601:251 602:251 603:251 604:253 605:251 606:251 607:251 608:225 609:164 610:15 624:21 625:142 626:220 627:253 628:251 629:251 630:251 631:251 632:253 633:251 634:251 635:204 636:41 654:51 655:72 656:174 657:251 658:251 659:251 660:253 661:147 662:71 663:41 +0 127:60 128:96 129:96 130:48 153:16 154:171 155:228 156:253 157:251 158:220 159:51 160:32 181:127 182:251 183:251 184:253 185:251 186:251 187:251 188:251 189:80 207:24 208:182 209:236 210:251 211:211 212:189 213:236 214:251 215:251 216:251 217:242 218:193 234:100 235:194 236:251 237:251 238:211 239:35 241:71 242:173 243:251 244:251 245:253 246:240 247:158 248:19 261:64 262:253 263:255 264:253 265:205 266:19 271:40 272:218 273:255 274:253 275:253 276:91 288:16 289:186 290:251 291:253 292:247 293:110 300:39 301:233 302:251 303:251 304:188 315:16 316:189 317:251 318:251 319:205 320:110 329:48 330:220 331:251 332:220 333:48 343:72 344:251 345:251 346:251 347:158 358:51 359:251 360:251 361:232 371:190 372:251 373:251 374:251 375:59 386:32 387:251 388:251 389:251 398:96 399:253 400:253 401:253 402:95 414:32 415:253 416:253 417:193 426:214 427:251 428:251 429:204 430:23 442:52 443:251 444:251 445:94 454:253 455:251 456:251 457:109 469:48 470:221 471:251 472:219 473:47 482:253 483:251 484:251 485:70 497:234 498:251 499:251 500:188 510:253 511:251 512:251 513:188 523:40 524:158 525:253 526:251 527:172 528:70 539:191 540:253 541:253 542:253 543:96 544:24 549:12 550:174 551:253 552:253 553:255 554:221 567:71 568:251 569:251 570:251 571:253 572:205 573:190 574:190 575:190 576:191 577:197 578:251 579:251 580:231 581:221 582:93 595:16 596:126 597:236 598:251 599:253 600:251 601:251 602:251 603:251 604:253 605:251 606:251 607:140 608:47 625:67 626:188 627:189 628:188 629:188 630:188 631:188 632:189 633:188 634:109 635:4 +0 126:32 127:202 128:255 129:253 130:253 131:175 132:21 152:84 153:144 154:190 155:251 156:253 157:251 158:251 159:251 160:174 176:6 177:37 178:166 179:218 180:236 181:251 182:251 183:251 184:253 185:251 186:251 187:251 188:251 189:156 204:115 205:251 206:251 207:253 208:251 209:251 210:251 211:251 212:253 213:251 214:251 215:251 216:251 217:180 231:105 232:241 233:251 234:251 235:253 236:251 237:251 238:251 239:122 240:72 241:71 242:71 243:148 244:251 245:180 258:73 259:253 260:253 261:253 262:253 263:202 264:253 265:253 266:143 286:31 287:189 288:251 289:251 290:251 291:31 292:189 293:251 294:142 314:63 315:236 316:251 317:251 318:96 320:124 321:246 322:142 330:21 331:166 332:21 342:73 343:251 344:251 345:251 346:71 349:217 350:142 357:32 358:190 359:251 360:142 370:73 371:251 372:251 373:251 374:71 377:217 378:142 385:73 386:251 387:251 388:142 398:73 399:253 400:253 401:253 402:72 405:156 406:103 413:73 414:253 415:253 416:253 417:72 426:73 427:251 428:251 429:251 430:174 441:73 442:251 443:251 444:251 445:71 454:73 455:251 456:251 457:251 458:251 469:73 470:251 471:251 472:251 473:71 482:42 483:205 484:251 485:251 486:251 487:79 497:73 498:251 499:251 500:251 501:71 511:41 512:226 513:251 514:251 515:232 516:77 525:73 526:251 527:251 528:251 529:71 540:166 541:253 542:253 543:255 544:253 545:227 546:73 547:21 553:125 554:253 555:253 556:143 568:16 569:169 570:251 571:253 572:251 573:251 574:251 575:174 576:105 579:63 580:144 581:253 582:251 583:251 584:142 597:15 598:35 599:253 600:251 601:251 602:251 603:251 604:243 605:217 606:217 607:231 608:251 609:253 610:251 611:220 612:20 627:143 628:142 629:236 630:251 631:251 632:253 633:251 634:251 635:251 636:251 637:253 638:251 639:137 657:61 658:71 659:200 660:253 661:251 662:251 663:251 664:251 665:201 666:71 667:10 +1 130:218 131:170 132:108 157:32 158:227 159:252 160:232 185:129 186:252 187:252 188:252 212:1 213:253 214:252 215:252 216:168 240:144 241:253 242:252 243:236 244:62 268:144 269:253 270:252 271:215 296:144 297:253 298:252 299:112 323:21 324:206 325:253 326:252 327:71 351:99 352:253 353:255 354:119 378:63 379:242 380:252 381:253 382:35 406:94 407:252 408:252 409:154 410:10 433:145 434:237 435:252 436:252 461:255 462:253 463:253 464:108 487:11 488:155 489:253 490:252 491:179 492:15 514:11 515:150 516:252 517:253 518:200 519:20 542:73 543:252 544:252 545:253 546:97 569:47 570:233 571:253 572:253 596:1 597:149 598:252 599:252 600:252 624:1 625:252 626:252 627:246 628:132 652:1 653:169 654:252 655:132 +1 130:116 131:255 132:123 157:29 158:213 159:253 160:122 185:189 186:253 187:253 188:122 213:189 214:253 215:253 216:122 241:189 242:253 243:253 244:122 267:2 268:114 269:243 270:253 271:186 272:19 295:100 296:253 297:253 298:253 299:48 323:172 324:253 325:253 326:253 327:48 351:172 352:253 353:253 354:182 355:19 378:133 379:251 380:253 381:175 382:4 405:107 406:251 407:253 408:253 409:65 432:26 433:194 434:253 435:253 436:214 437:40 459:105 460:205 461:253 462:253 463:125 464:40 487:139 488:253 489:253 490:253 491:81 514:41 515:231 516:253 517:253 518:159 519:16 541:65 542:155 543:253 544:253 545:172 546:4 569:124 570:253 571:253 572:253 573:98 597:124 598:253 599:253 600:214 601:41 624:22 625:207 626:253 627:253 628:139 653:124 654:253 655:162 656:9 diff --git a/data/mllib/sample_linear_regression_data.txt b/data/mllib/sample_linear_regression_data.txt new file mode 100755 index 0000000000000..9aaaa4297548b --- /dev/null +++ b/data/mllib/sample_linear_regression_data.txt @@ -0,0 +1,501 @@ +-9.490009878824548 1:0.4551273600657362 2:0.36644694351969087 3:-0.38256108933468047 4:-0.4458430198517267 5:0.33109790358914726 6:0.8067445293443565 7:-0.2624341731773887 8:-0.44850386111659524 9:-0.07269284838169332 10:0.5658035575800715 +0.2577820163584905 1:0.8386555657374337 2:-0.1270180511534269 3:0.499812362510895 4:-0.22686625128130267 5:-0.6452430441812433 6:0.18869982177936828 7:-0.5804648622673358 8:0.651931743775642 9:-0.6555641246242951 10:0.17485476357259122 +-4.438869807456516 1:0.5025608135349202 2:0.14208069682973434 3:0.16004976900412138 4:0.505019897181302 5:-0.9371635223468384 6:-0.2841601610457427 7:0.6355938616712786 8:-0.1646249064941625 9:0.9480713629917628 10:0.42681251564645817 +-19.782762789614537 1:-0.0388509668871313 2:-0.4166870051763918 3:0.8997202693189332 4:0.6409836467726933 5:0.273289095712564 6:-0.26175701211620517 7:-0.2794902492677298 8:-0.1306778297187794 9:-0.08536581111046115 10:-0.05462315824828923 +-7.966593841555266 1:-0.06195495876886281 2:0.6546448480299902 3:-0.6979368909424835 4:0.6677324708883314 5:-0.07938725467767771 6:-0.43885601665437957 7:-0.608071585153688 8:-0.6414531182501653 9:0.7313735926547045 10:-0.026818676347611925 +-7.896274316726144 1:-0.15805658673794265 2:0.26573958270655806 3:0.3997172901343442 4:-0.3693430998846541 5:0.14324061105995334 6:-0.25797542063247825 7:0.7436291919296774 8:0.6114618853239959 9:0.2324273700703574 10:-0.25128128782199144 +-8.464803554195287 1:0.39449745853945895 2:0.817229160415142 3:-0.6077058562362969 4:0.6182496334554788 5:0.2558665508269453 6:-0.07320145794330979 7:-0.38884168866510227 8:0.07981886851873865 9:0.27022202891277614 10:-0.7474843534024693 +2.1214592666251364 1:-0.005346215048158909 2:-0.9453716674280683 3:-0.9270309666195007 4:-0.032312290091389695 5:0.31010676221964206 6:-0.20846743965751569 7:0.8803449313707621 8:-0.23077831216541722 9:0.29246395759528565 10:0.5409312755478819 +1.0720117616524107 1:0.7880855916368177 2:0.19767407429003536 3:0.9520689432368168 4:-0.845829774129496 5:0.5502413918543512 6:-0.44235539500246457 7:0.7984106594591154 8:-0.2523277127589152 9:-0.1373808897290778 10:-0.3353514432305029 +-13.772441561702871 1:-0.3697050572653644 2:-0.11452811582755928 3:-0.807098168238352 4:0.4903066124307711 5:-0.6582805242342049 6:0.6107814398427647 7:-0.7204208094262783 8:-0.8141063661170889 9:-0.9459402662357332 10:0.09666938346350307 +-5.082010756207233 1:-0.43560342773870375 2:0.9349906440170221 3:0.8090021580031235 4:-0.3121157071110545 5:-0.9718883630945336 6:0.6191882496201251 7:0.0429886073795116 8:0.670311110015402 9:0.16692329718223786 10:0.37649213869502973 +7.887786536531237 1:0.11276440263810383 2:-0.7684997525607482 3:0.1770172737885798 4:0.7902845707138706 5:0.2529503304079441 6:-0.23483801763662826 7:0.8072501895004851 8:0.6673992021927047 9:-0.4796127376677324 10:0.9244724404994455 +14.323146365332388 1:-0.2049276879687938 2:0.1470694373531216 3:-0.48366999792166787 4:0.643491115907358 5:0.3183669486383729 6:0.22821350958477082 7:-0.023605251086149304 8:-0.2770587742156372 9:0.47596326458377436 10:0.7107229819632654 +-20.057482615789212 1:-0.3205057828114841 2:0.51605972926996 3:0.45215640988181516 4:0.01712446974606241 5:0.5508198371849293 6:-0.2478254241316491 7:0.7256483175955235 8:0.39418662792516 9:-0.6797384914236382 10:0.6001217520150142 +-0.8995693247765151 1:0.4508991072414843 2:0.589749448443134 3:0.6464818311502738 4:0.7005669004769028 5:0.9699584106930381 6:-0.7417466269908464 7:0.22818964839784495 8:0.08574936236270037 9:-0.6945765138377225 10:0.06915201979238828 +-19.16829262296376 1:0.09798746565879424 2:-0.34288007110901964 3:0.440249350802451 4:-0.22440768392359534 5:-0.9695067570891225 6:-0.7942032659310758 7:-0.792286205517398 8:-0.6535487038528798 9:0.7952676470618951 10:-0.1622831617066689 +5.601801561245534 1:0.6949189734965766 2:-0.32697929564739403 3:-0.15359663581829275 4:-0.8951865090520432 5:0.2057889391931318 6:-0.6676656789571533 7:-0.03553655732400762 8:0.14550349954571096 9:0.034600542078191854 10:0.4223352065067103 +-3.2256352187273354 1:0.35278245969741096 2:0.7022211035026023 3:0.5686638754605697 4:-0.4202155290448111 5:-0.26102723928249216 6:0.010688215941416779 7:-0.4311544807877927 8:0.9500151672991208 9:0.14380635780710693 10:-0.7549354840975826 +1.5299675726687754 1:-0.13079299081883855 2:0.0983382230287082 3:0.15347083875928424 4:0.45507300685816965 5:0.1921083467305864 6:0.6361110540492223 7:0.7675261182370992 8:-0.2543488202081907 9:0.2927051050236915 10:0.680182444769418 +-0.250102447941961 1:-0.8062832278617296 2:0.8266289890474885 3:0.22684501241708888 4:0.1726291966578266 5:-0.6778773666126594 6:0.9993906921393696 7:0.1789490173139363 8:0.5584053824232391 9:0.03495894704368174 10:-0.8505720014852347 +12.792267926563595 1:-0.008461200645088818 2:-0.648273596036564 3:-0.005334477339629995 4:0.3781469006858833 5:0.30565234666790686 6:-0.2822867492866177 7:0.10175120738413801 8:0.5342432888482425 9:0.05146513075475534 10:-0.6459729964194652 +6.082192787194888 1:0.42519013450094767 2:0.09441503345243984 3:-0.07898439043103522 4:-0.32207498048636474 5:-0.9180071861219266 6:0.5951317320731633 7:0.41000814588717693 8:-0.3926260640533046 9:0.2789036768568971 10:0.13163692286014528 +-7.481405271455238 1:0.03324842612749346 2:0.07055844751995122 3:-0.47199515597021113 4:-0.682690342465275 5:0.3983414713797069 6:-0.2136729393256811 7:-0.09066563475481249 8:-0.4640338194317184 9:-0.03513782089224482 10:-0.1711809802758364 +6.739533816100517 1:0.1774546460228057 2:-0.6783644553523549 3:-0.47871398278230504 4:0.02272121490463097 5:-0.5047649289302389 6:0.26479596144873896 7:-0.32045436544054096 8:0.3113047940487379 9:0.6269418147567556 10:0.9710114516962312 +3.780807062175497 1:0.01715676997104909 2:0.8975962429865936 3:-0.46594560920034134 4:0.2873623499953055 5:0.8894362304584083 6:0.17973981232418468 7:0.49105791400707743 8:-0.7359842740294882 9:0.38941133808001127 10:-0.7151884777228046 +4.564039393483412 1:0.07478785545033317 2:-0.8672651994084235 3:0.450599300176334 4:0.35104802298560056 5:0.6797318185095045 6:-0.03891997518827006 7:-0.33208695871398675 8:0.6166574577055226 9:0.5730212324012205 10:-0.4194925751047054 +-0.3195679646035633 1:0.054527683864544096 2:-0.15591931640565093 3:0.9266742559542833 4:0.888522581905147 5:0.6576203900699167 6:0.6417770212400336 7:0.7509788029052338 8:-0.3104974571382815 9:0.7234744267051683 10:-0.15869049651427103 +11.290452658023497 1:0.20173310976772196 2:0.8657502566551409 3:0.9325160601080682 4:0.24570884032596263 5:-0.6546108813337841 6:-0.14020032028377583 7:-0.8825687891702743 8:-0.21420166926412865 9:-0.8600275184792756 10:-0.7990574622230739 +-4.003499192090455 1:0.8325875503351796 2:-0.5956350140619129 3:0.12598048009007923 4:0.12340188733473134 5:-0.839435659309717 6:-0.16623481818728414 7:0.12028795301041662 8:-0.7994713170657952 9:0.2216721974907896 10:0.8407561415075087 +-19.872991038068406 1:-0.9325810772922609 2:-0.6411471147334535 3:0.9949216290375054 4:0.483048267470493 5:-0.8736297429070232 6:-0.36222771685582544 7:0.26397860162786957 8:0.45527588775737704 9:-0.9424989711186325 10:0.6251162293059616 +10.502762149373098 1:-0.2307778924009991 2:0.6977871128979924 3:0.022830408261390822 4:0.6257738824362347 5:0.9770979848265122 6:0.09985730624684575 7:-0.9755858424230182 8:-0.689969833240031 9:-0.7294587311376761 10:0.3496326193951331 +-14.328978509075442 1:0.37929821892417404 2:0.8402056881660709 3:-0.1806835799958202 4:0.766314307210441 5:0.865876513623024 6:-0.7113501219432434 7:-0.0932956557986735 8:-0.7042025810921411 9:0.47530696925672267 10:-0.4629102077669889 +-16.26143027545273 1:-0.9309578475799722 2:0.7591795880911123 3:0.06296957473213705 4:0.786790093290086 5:-0.9527998391625465 6:-0.08573982501921895 7:-0.3812232026687308 8:-0.6890669703685022 9:0.25415911467755015 10:-0.07664746267502509 +11.772544195529013 1:0.3614756404325046 2:0.14508027508253818 3:0.23042774014795753 4:0.4164348685332022 5:0.4109091750657461 6:0.03853098236933272 7:0.38911994885223145 8:-0.5031309357181766 9:-0.596467768575587 10:0.17884522225228028 +14.697703557439503 1:0.24508864174863 2:0.7576193329655578 3:0.09030511120334461 4:0.9537528991778741 5:-0.7224092160621338 6:-0.34089385162121943 7:0.6924170720838818 8:0.32912306214891784 9:-0.4064624712125904 10:-0.5344662061201593 +-13.976130931152703 1:0.5891192531479754 2:0.29862103742464274 3:-0.36153976712796343 4:-0.6552669564323226 5:-0.22672513691161766 6:0.3001336202535376 7:0.34490251346382617 8:0.2072633053920192 9:-0.5659371284058774 10:0.49599636156628835 +-14.762758252931127 1:0.31302496164254223 2:-0.6062773982342133 3:-0.9874007658402217 4:-0.6214904627601421 5:-0.11421073677207683 6:-0.5850843421161205 7:0.1250679146774638 8:-0.7108170726393621 9:-0.6888351241194393 10:0.6077343683084389 +-3.300641320608255 1:-0.1407178879203672 2:0.12960233233004925 3:-0.4236196478321872 4:0.7903078296084356 5:-0.8755754953628643 6:-0.2062360260394529 7:-0.045680124889026175 8:0.783182093429277 9:-0.02995737262668463 10:-0.33382351650328435 +-15.72351561304857 1:-0.1802575775708093 2:-0.991006951265341 3:-0.9107951763247621 4:0.9069820084047908 5:-0.12691921206803047 6:-0.7087012119383593 7:-0.9179510577925369 8:0.18480349982718325 9:-0.4478459144114004 10:-0.5560585660624608 +-22.949825936196074 1:0.4797855980916854 2:0.01997502546020402 3:-0.8827928315487465 4:0.2755107907750989 5:0.015544482147298977 6:0.9652687138748801 7:0.6622667860970648 8:-0.7708138539912186 9:0.17728148663006627 10:0.47818190728952925 +12.092431628826905 1:0.1358843437335564 2:0.03643446587894239 3:-0.31070823939673287 4:0.5283033206569152 5:0.3469111543845367 6:-0.5162518174930761 7:0.24270234207184016 8:0.7352292800096338 9:0.8860322286740037 10:0.6748068653962045 +-23.51088409032297 1:-0.4683538422180036 2:0.1469540185936138 3:0.9113612952591796 4:-0.9838482669789823 5:0.4506466371133697 6:0.6456121712599778 7:0.8264783725578371 8:0.562664168655115 9:-0.8299281852090683 10:0.40690300256653256 +5.998186124881712 1:-0.9781302074883151 2:0.32984303335155785 3:0.7303430847899663 4:0.841481297188956 5:0.05580773881989276 6:0.7130788298702062 7:-0.218087116119847 8:-0.9889494995220598 9:0.9182854134226501 10:-0.7501751701020942 +9.852316338642547 1:0.146854160091757 2:-0.3611508707370965 3:0.3517016971654914 4:0.6187697988029395 5:-0.010768583697787548 6:0.5236725885871243 7:0.5945666964145524 8:-0.009180562740628506 9:-0.44474762415618274 10:0.41852743519493685 +-5.313930756588526 1:-0.6304209277071555 2:-0.37010359785263813 3:-0.3194739026510125 4:-0.750533359080716 5:0.45500303301733114 6:-0.012727544364283805 7:-0.43941651856862274 8:0.927108876532093 9:-0.24164903158058149 10:0.44134972919002124 +-4.2775224863223915 1:-0.35785764991284363 2:0.942797043714243 3:0.4539569191274251 4:-0.6944903010994341 5:-0.08357221983075225 6:0.4433049548665855 7:-0.5488972050023557 8:-0.24014623658145773 9:-0.6178118485382511 10:-0.4575463952834564 +-10.57769830424322 1:0.22693864400257335 2:-0.041639691095668674 3:0.9948726461115123 4:-0.7450471554938383 5:-0.1114847126717804 6:-0.27881184842402673 7:0.029766812446276214 8:-0.3727649352432578 9:-0.7791732805568077 10:0.9425576681069683 +-0.8430338600258201 1:0.4607090007225536 2:-0.6079961642969514 3:-0.5671626932935381 4:0.12784576080614185 5:-0.30766031989910236 6:-0.21232963505711555 7:0.3310463755850872 8:-0.6807682731528943 9:0.7826634145951483 10:0.0608057623636995 +13.450586257053727 1:-0.2697769964284986 2:0.07743737732312428 3:-0.8459687499864881 4:0.6091901514177853 5:-0.9464815428211699 6:0.15780407422581533 7:-0.28552052619478996 8:-0.27500859181806403 9:-0.7207541548282903 10:0.05215593729084533 +20.358241877831016 1:0.29768927445620164 2:-0.5379390525163252 3:0.6591913001003027 4:0.6635992348010928 5:0.3786594651413009 6:-0.7217135278882543 7:0.9634013908615768 8:0.03961253903778861 9:0.1335121312144949 10:0.7933944303463509 +9.800993960518852 1:0.39896823489212285 2:0.30948413101894023 3:0.08568060094378493 4:-0.7454513450113371 5:0.8054125831421357 6:-0.24464240413169347 7:-0.18294406588625112 8:-0.883455504399858 9:0.2468431033653562 10:-0.708151566382103 +-21.432387764165806 1:-0.4785033857256795 2:0.520350718059089 3:-0.2988515012130126 4:-0.46260150057299754 5:0.5394344995663083 6:0.39320468081626836 7:0.1890560923345248 8:0.13123799325264507 9:0.43613839380760355 10:0.39541998419731494 +-4.090570760187878 1:0.3909705814857716 2:0.9830271975811611 3:0.672523651785939 4:0.0035177223850744177 5:0.567082732451311 6:-0.2620454326881394 7:0.46622578556708105 8:0.646246879249865 9:0.4263175536668733 10:0.8982696975276223 +3.7459201216906926 1:-0.9480167656870653 2:-4.888270196095057E-4 3:0.48226844071577646 4:-0.23706663537631645 5:0.22420266627462127 6:0.2981747607694978 7:0.3893425967975348 8:0.6302701381298614 9:-0.21909113816064196 10:0.8371697958140494 +9.767952084958061 1:-0.2300790371078303 2:-0.4457883630748676 3:0.28710853302295325 4:0.7112839743052013 5:-0.8765858382640623 6:-0.6470779468607217 7:0.4369262584371727 8:-0.7175412028407337 9:0.5506733477278882 10:0.5393007189573547 +6.9802839308913365 1:0.21769855012808215 2:0.8653818331675485 3:0.2322943113578111 4:0.3760591265797468 5:0.06554014167292377 6:0.6866096712933549 7:0.866929973115441 8:-0.6462263417217329 9:0.2507247465275353 10:-0.7005877782050307 +16.014720800069103 1:0.6058055248984549 2:0.048517868234337014 3:-0.15744912875924877 4:0.32598079708869365 5:-0.587791997223768 6:-0.4636187312118474 7:0.7771908559246068 8:-0.349403853888719 9:0.229800030145503 10:-0.674614818934488 +8.417571532985823 1:-0.21164946152466801 2:-0.9981936663594053 3:0.8611869575187896 4:0.11100891297254312 5:-0.7406067304729631 6:-0.7613837395522254 7:-0.9617573325708704 8:0.5697426971647488 9:-0.5830879716990833 10:0.5951448538064159 +-12.491442077546413 1:-0.19172117564625735 2:-0.12421304883392126 3:0.7095605786791346 4:0.6401582292398038 5:-0.9347790209840108 6:0.6592209285686903 7:0.702282297844389 8:-0.22765902007749528 9:-0.17746922342943816 10:0.7196663432778121 +-8.605713514762092 1:0.36490454976480846 2:0.6991204480538957 3:0.6546945560337121 4:-0.032324845758738174 5:0.2453935969836043 6:0.5363119225093116 7:0.6266741350524205 8:-0.2132266305382322 9:-0.308105870487996 10:-0.08219413867616465 +-10.35591860037468 1:-0.014204168485027147 2:-0.7077035677144325 3:0.024004217785642767 4:0.818971992516166 5:0.9081305263471056 6:0.808854493237229 7:-0.6474336785461867 8:-0.32559288177031465 9:-0.32850453072496055 10:-0.7035310416695784 +3.605002621628445 1:0.6085817977516599 2:0.8101072412357928 3:0.7697891508923966 4:-0.5738750389864677 5:-0.734314989863889 6:-0.7879014492215499 7:0.6884442838920775 8:-0.46131231930402383 9:-0.7730585954271005 10:-0.7819874019145132 +12.30435312415091 1:0.3283668768730639 2:-0.18316686990068187 3:0.3955614099142126 4:0.8450470350842108 5:0.3958042901611589 6:0.6578475571960676 7:-0.4395488558075096 8:0.15720430113495376 9:-0.5318362828977672 10:0.45585285255232044 +9.020048819638827 1:-0.5986521145193395 2:0.3266542215286443 3:-0.09911773729611917 4:-0.21478254478908676 5:0.6546175049764293 6:-0.1414796368932345 7:0.25802631337510085 8:-0.6773828562539816 9:-0.22038193899258718 10:-0.17465737306657902 +14.854262978981406 1:0.5293763924477841 2:-0.24658868331583683 3:0.8268631648872109 4:0.8969207203400265 5:0.03933229861213983 6:-0.6212951181360529 7:-0.36695460282178205 8:-0.5468014636386027 9:-0.3419492829414976 10:-0.8273314086998671 +5.658665647926016 1:0.9543096383762801 2:0.13230023957687176 3:-0.3071929861496465 4:-0.3646067841449696 5:0.6979929890816723 6:-0.20721664168809228 7:0.6676482547655365 8:0.944757051233543 9:0.024377296173674567 10:-0.9413728609667691 +-6.930603551528371 1:0.09198647857985232 2:-0.3685113649452161 3:-0.2361728930325453 4:0.3674268130607439 5:0.27385598384498344 6:-0.7151900241735676 7:0.3310154476154119 8:-0.24328111897361682 9:0.2511378679668912 10:-0.35825141175578934 +13.361196783041926 1:0.11676665169094824 2:-0.49968608916548307 3:0.9941342810313298 4:-0.17858967215374988 5:0.1993744673440312 6:0.14596837574280297 7:-0.8245495433125194 8:-0.5637934691545672 9:-0.8589185806222286 10:-0.4923216901915597 +-3.280508467210429 1:-0.9917770074538397 2:-0.1547651813493751 3:0.621733177563484 4:0.7303326279246298 5:-0.0786900332560696 6:0.9107127797641994 7:0.7104513024299466 8:-0.32858522942354407 9:0.17013652749847386 10:0.27656984316288824 +11.13509519160867 1:0.6874932143640391 2:-0.46610293161038907 3:0.8744681017967024 4:0.40900365224695956 5:-0.49770054448432055 6:-0.0635770754462921 7:-0.5705387648707747 8:-0.577988250149829 9:-0.8099463063934682 10:0.42132700180827354 +-11.857350365429426 1:-0.24607974991258308 2:-0.943388538022258 3:0.8679112109377674 4:0.7779951176637694 5:-0.5802336023276593 6:-0.9093352471884992 7:0.29337797938742316 8:0.498519874589175 9:0.3493034812120912 10:-0.07307210651399076 +11.421632138263703 1:0.3911519359353859 2:-0.8154393787235621 3:0.47194271125243237 4:0.14014792298759593 5:-0.3589345913619957 6:0.7887695409762479 7:0.49962792312858895 8:-0.6402670146359797 9:-0.2314041601683119 10:-0.798901341175887 +5.194792012146463 1:0.810279303469398 2:-0.9772756877199589 3:-0.20925958437085557 4:0.8797562461102444 5:0.3211532423260066 6:0.25250279470783754 7:0.14387831263435813 8:-0.021466789385169882 9:0.18909293657271564 10:-0.5981349964027893 +12.242677118499806 1:0.3565715672082048 2:0.7366743237221687 3:0.1922233582434527 4:-0.3551925780624561 5:0.5290849503909634 6:0.7744214641246749 7:0.7277215028580597 8:-0.590440215391044 9:0.7427328184290733 10:-0.6231904162251609 +3.496172341296411 1:0.5028717258135624 2:-0.5838871888624848 3:-0.5540116561110324 4:0.8502487679795261 5:-0.7983061034328727 6:-0.3853123296389005 7:-0.1493800684643869 8:0.6008798629354264 9:-0.32299062155495406 10:-0.5827019502242026 +-15.437384793431217 1:0.41994681418237345 2:0.7106426870657483 3:-0.45211033467567696 4:-0.7272406549392239 5:-0.35736594496490737 6:0.4764507578985955 7:-0.5249912641281373 8:0.8562010912051132 9:0.45927621623833637 10:-0.3701817429794385 +5.490036861541498 1:0.8414999442459015 2:0.9273442862476728 3:-0.054654787893199774 4:-0.23126134156257327 5:-0.9155048245317694 6:0.25750538376376975 7:-0.8470916763665326 8:0.9105674676753848 9:0.5026028522378054 10:-0.06650501561108468 +-1.074065343287859 1:0.37484830603001607 2:-0.9858854245832975 3:0.007159356555897611 4:0.8172796295244154 5:0.519147377529164 6:0.8211049991970722 7:0.9901658817979146 8:-0.026519560032641998 9:-0.2328762488733862 10:0.43161994187258035 +2.0482082496444622 1:0.24940246021565793 2:0.47248358864259177 3:0.23833814894291105 4:-0.3449172512379757 5:0.7412869866239866 6:0.1351422898741914 7:-0.003784141556894216 8:-0.6321917152754075 9:0.8246267827865776 10:0.5057520480449009 +16.709794859608397 1:-0.5977424405191092 2:-0.13991362149785713 3:0.613487896720806 4:-0.37681525320218157 5:-0.4369592282569783 6:0.4702242879506955 7:0.07498463532645339 8:-0.9942304127133292 9:0.41304209196175257 10:0.6799250665519481 +4.598881854940949 1:-0.41212838137243835 2:0.6737124633791323 3:0.8376369191216593 4:0.2848328781926128 5:-0.17960265353296 6:0.0035488712665472377 7:-0.8355355482928055 8:-0.7439716673142398 9:-0.009043467128117433 10:0.7423272515054122 +9.566038608555402 1:-0.662329643040616 2:0.4727113884417973 3:-0.15734218732411365 4:-0.3950754785173889 5:0.13837083076070011 6:0.633261314089351 7:0.9929998062307679 8:-0.4639028424346423 9:-0.073992579817449 10:0.3413166410117088 +1.629198477883475 1:-0.2875719791707101 2:0.9395753700232541 3:-0.45090801750966314 4:-0.384528069378699 5:-0.35937736478702753 6:0.9597102694501136 7:-0.6898325123180971 8:-0.11436012866371303 9:-0.5330550575952768 10:0.24688769932037258 +-7.374620970147229 1:0.16864051681940984 2:-0.08391828256018252 3:-0.8184503043836224 4:0.5461252511055263 5:0.7264676659099087 6:-0.9654384426822686 7:-0.8537533138667612 8:0.9189716013058653 9:-0.03449322582531389 10:0.5490329745887035 +-0.5741704240890674 1:0.9392753294760656 2:-0.5579682000156501 3:-0.8083270703362093 4:-0.7022804026958895 5:-0.30426803430649896 6:0.8211432527140852 7:-0.8101343265051797 8:-0.0945946325760949 9:0.49546915718101814 10:0.5184327698839013 +12.583032451116004 1:0.20496323995364651 2:0.5082017540304999 3:0.2428646053751764 4:0.7101854338863274 5:-0.9619925264660094 6:0.4610134502825909 7:-0.5620669052678122 8:0.6766614078376236 9:-0.7169693435782278 10:-0.14362322382035164 +-10.489157123372898 1:-0.7441633083637054 2:0.07069898351187809 3:-0.47119552972566336 4:-0.43970155900871344 5:0.43192289605353973 6:-0.0798550143899397 7:0.2111188135787776 8:0.9101748615761336 9:-0.4079984876629721 10:-0.8101424982394589 +-3.811365493249739 1:0.7250263461647963 2:0.22182621035333838 3:-0.12735342714215725 4:0.26222861719040624 5:0.3928174057935714 6:0.817131411734006 7:-0.056109765698795 8:0.7908779197353637 9:-0.06768319505245768 10:0.4107045608924882 +-7.604636483513961 1:0.876751634787073 2:0.04037085575852295 3:0.18142385658771398 4:0.38350565074271903 5:-0.30937664332011905 6:-0.9544807672006823 7:0.008643477632712449 8:-0.27676843472226276 9:-0.12938540988602476 10:-0.2929762262661819 +-1.9889499615051784 1:-0.4243149295090465 2:0.22578711943818686 3:0.662530786460152 4:0.28592235843136105 5:0.4170345231441832 6:0.9290881132120887 7:0.5332443368002588 8:-0.33248958421809927 9:0.16273139830495942 10:0.6899022585936985 +-1.99891354174786 1:-0.1732078452611825 2:0.2361029542296429 3:-0.8455867017505336 4:0.31638672033240867 5:-0.648387667144986 6:-0.7647886103837449 7:0.6910155501192978 8:-0.2665663102538198 9:-0.5980899570876459 10:-0.9165896495676276 +9.74348630903265 1:0.18934450539532244 2:-0.715110505416745 3:-0.453777527810155 4:0.2743741252197758 5:-0.8439310405443103 6:-0.533835190276116 7:-0.5911710854054728 8:0.21026462628920695 9:-0.45849607678093585 10:0.1327074179200407 +20.221961806051706 1:0.624731930687735 2:-0.39914395421723015 3:0.781887900750925 4:0.5442619051596436 5:0.16651193067479153 6:0.9064846121246533 7:-0.3643159594276202 8:-0.5182065337246469 9:-0.6785628247191553 10:0.7111152852903913 +20.456947955410897 1:-0.21923785332346513 2:0.11340668617783778 3:0.7397883986253251 4:-0.11748081084695605 5:0.06314872700777197 6:-0.7124574845946587 7:0.18043581960897104 8:-0.09023925260092103 9:-0.7256417560118238 10:-0.5038088673851804 +12.241006086129564 1:-0.15271598143132215 2:0.9038942665552285 3:-0.6168514099878155 4:-0.12219038322317011 5:0.5402785935596728 6:0.4059744401803913 7:0.258870596734184 8:0.3190881033039108 9:0.2372469007313076 10:0.367188299614863 +3.980473021620311 1:-0.9025895351376971 2:-0.03333947011476446 3:-0.8220776066161464 4:0.449117985679933 5:0.9970519437779266 6:0.27430911004640457 7:0.039081352882204046 8:-0.8621514950929796 9:-0.569587565933642 10:-0.9118346349929578 +-13.420594775890757 1:0.3697979495309094 2:0.07383664120111888 3:0.7199366131785143 4:0.2118625428869032 5:-0.9015976323216077 6:-0.5298395275757712 7:-0.9517419542156635 8:0.39554920787574743 9:-0.3721957439110324 10:-0.4750272836396878 +-1.052659359353786 1:0.02106845330888185 2:0.7571245678782959 3:0.8034228830223251 4:0.32968340513846917 5:-0.6510386482911554 6:0.2710115488605187 7:-0.1319580272290235 8:0.932600992666184 9:0.8260461527035414 10:-0.8507648952138052 +9.813440129324034 1:0.41048687946340134 2:0.9384639988086239 3:0.4569555844323441 4:-0.3084729082645552 5:-0.7299010284877061 6:-0.6925012997779212 7:-0.6798013915257548 8:-0.504368104320321 9:-0.6234398059664716 10:0.8633407902005543 +-2.8942782378157714 1:0.5546381825677706 2:0.7959405841824887 3:0.584699836289184 4:-0.5726371777829862 5:-0.2827976152663936 6:0.138034013875719 7:-0.2935080791661324 8:-0.5323479091625714 9:0.6837641044797451 10:0.5986680812032501 +8.562937733537664 1:0.14753220510180776 2:-0.31591341855048327 3:-0.748545617199091 4:0.3251888821665734 5:0.8228589483149358 6:0.046659706976506676 7:-0.35049927996132624 8:0.2953170004605874 9:-0.6429374177050204 10:0.4624083116836044 +13.413187970975178 1:-0.7229883396779724 2:0.8876940454894067 3:-0.033794226589695775 4:0.46700071356381523 5:0.1599557295166274 6:-0.8944619785248653 7:-0.1258464584151997 8:-0.8797551785991506 9:-0.14408879184669354 10:0.11020655997336015 +-5.491389764900794 1:-0.366507395597937 2:0.630480481240723 3:-0.16600801981741609 4:0.09842042773854076 5:0.30129535029579047 6:0.14102166298628882 7:-0.28131788612036623 8:0.49635295715686234 9:0.0625636989631968 10:-0.41748132718912 +-10.29566593602992 1:-0.7898597726154271 2:-0.05425577320946573 3:0.5992645759265662 4:-0.4716868549309716 5:-0.020137302700854676 6:0.6216515277233232 7:-0.7295510954484412 8:-0.41443875567123967 9:-0.610576632050404 10:-0.9515988311377204 +7.084732852050431 1:0.9990215581592679 2:-0.9868954542412269 3:0.49133473382040704 4:0.7697599878561228 5:-0.34668939907967267 6:0.9777705993519483 7:0.4449043102759509 8:0.9812971199646168 9:0.6666598587737487 10:0.14398842572598514 +0.23715467505851734 1:0.21628799185444336 2:-0.4526390568867018 3:0.6558486691929235 4:0.13730688681492142 5:0.23076986155942736 6:0.7020484017619715 7:-0.12077999528458938 8:0.8306084972447003 9:-0.49337323198621563 10:-0.8270028152572872 +1.1552619549601455 1:-0.48202394020369277 2:-0.6274878708695264 3:-0.27623674153600697 4:-0.5312153415813432 5:-0.030820182786174044 6:-0.5893370965577813 7:0.6666315120904487 8:-0.36482991729570036 9:0.6065771813692735 10:0.05831057330788525 +-0.20433879835596253 1:-0.4702220250018212 2:0.9123705796362889 3:-0.2045657170490376 4:-0.18922063450309534 5:-0.31431213362503163 6:0.4150130060120387 7:0.34016193625941127 8:0.8391374136299805 9:0.6884250315764333 10:-0.7916408854251566 +-9.751622607785082 1:-0.0014232315621649505 2:-0.1284246813729939 3:0.5228953023175369 4:0.9688522449007109 5:-0.7857721219549156 6:-0.7812922263391038 7:-0.5916136652814756 8:0.793988610184206 9:0.7982949061274296 10:-0.592785473963741 +-22.837460416919342 1:-0.17363144173810174 2:-0.3340314573781735 3:0.9351424971322297 4:-0.6430601902397572 5:-0.13363305808148818 6:-0.42446359566938585 7:-0.4093070316761178 8:-0.9302259781839204 9:0.47004365892170585 10:-0.6231289889808045 +-3.6318714209289436 1:-0.8296410705737971 2:-0.6056572341069668 3:-0.2975417404042737 4:0.07134138175064741 5:-0.8966463747179154 6:-0.4112675899658855 7:0.7908013478009401 8:0.407396254566472 9:0.9227769302156879 10:0.12418427404473764 +-3.8909712376010583 1:-0.6552751548581366 2:-0.5641921108932855 3:-0.6340486345063014 4:-0.5441069121131075 5:0.908720622198947 6:-0.026054643814348077 7:0.03706191653058433 8:-0.6672524338819317 9:0.7958274915288801 10:-0.19029619970124023 +-10.600130341909033 1:-0.7457695999520562 2:-0.3739453132549577 3:0.01327423342620393 4:-0.08482897201178563 5:0.84573456086082 6:0.6279927575103963 7:0.014494803555804125 8:0.9420647557771027 9:-0.13484113287285893 10:0.3037405853352888 +-12.094351278535258 1:0.9982796018306028 2:0.8354271779265348 3:0.46284321795736116 4:0.07693347919601745 5:-0.4753440408996932 6:-0.47098252868073787 7:0.4810729184846003 8:-0.6136990339205741 9:-0.6715833036640317 10:-0.6247058955319091 +9.936399360181602 1:0.7330323083522969 2:0.47204204993669197 3:0.3850471475752122 4:0.21483460195167958 5:0.3806220122265147 6:0.6336993433402796 7:-0.47987416364572 8:-0.195509010865196 9:-0.6561820282562041 10:-0.45300480439842894 +-4.706701061062994 1:-0.847895844561626 2:-0.29946646506145114 3:0.25432868082106497 4:0.1352958872054535 5:-0.8803017974303002 6:-0.3675110562764785 7:0.10888496324899721 8:0.9620737605396772 9:-0.031046632561323895 10:-0.09466883461500908 +5.101614991255809 1:-0.5174248135588373 2:0.14394061894828014 3:0.5613709266711013 4:-0.5678634944326011 5:0.930216209978763 6:-0.6204727890080077 7:0.4133141749872311 8:0.6262685035917408 9:0.03382924477926896 10:-0.15231139191832854 +-8.772667465932606 1:-0.2117605577769197 2:-0.4283897136887762 3:0.44686767473401035 4:-0.5507826261358746 5:0.237124956028401 6:0.6413157520982717 7:0.2409214827604571 8:-0.8505503638033114 9:-0.9811997368468401 10:-0.9499963936664035 +-11.615775265015627 1:0.8782018665273386 2:-0.9751473570197167 3:0.6307050068521085 4:0.7012721336851997 5:0.21318736263512283 6:0.024885128053773853 7:-0.4580644243558505 8:0.1318650007251434 9:-0.9306090092992167 10:-0.5688746770986652 +19.64829023536192 1:0.14426537998360645 2:0.3557716894181753 3:-0.8577143134654568 4:0.5288643233801469 5:0.9231529738221469 6:0.975999712077738 7:0.24700404691888678 8:0.10206517527052283 9:-0.10041951294847062 10:-0.9412918491876225 +2.7409415438025486 1:-0.7404936009304737 2:-0.9792071376296605 3:-0.49510748520932113 4:0.9538460112904268 5:-0.5075114153141447 6:-0.5890791308058669 7:-0.775366087491284 8:0.4983912525892249 9:-0.2976197956132913 10:0.6791258030468514 +-4.394658158733604 1:-0.41628618754613345 2:-0.1472602552309057 3:0.44136102233464025 4:0.011882653940414434 5:-0.6559502840386595 6:-0.4022529016339016 7:0.048402312931387526 8:0.8753776623326166 9:-0.8528247288266961 10:0.6593783978826002 +1.1915739133607073 1:-0.7840827624854878 2:-0.4860418508208426 3:-0.7418773161179972 4:0.129874781837924 5:-0.22631682294184796 6:0.47794208013755024 7:0.5532183426143056 8:0.11879859459306741 9:0.09927630694484524 10:-0.19268618891399636 +2.156192215438919 1:0.44325986644475646 2:-0.6057278708888592 3:0.3943381582091723 4:0.6560336238050575 5:-0.9651308100517204 6:-0.2358219003943678 7:-0.04143043460232465 8:0.8623951169233035 9:-0.4933545255502605 10:0.8990427200454263 +-1.1009750789589774 1:-0.4515707618788496 2:-0.745936099912899 3:0.41307003181926794 4:0.6127760492402428 5:0.9250878169732681 6:-0.6778628527469126 7:0.42794190420905753 8:0.4943969797578971 9:0.7762709104958854 10:-0.6932349268610041 +10.04434496594037 1:-0.0995467494040092 2:-0.7766769414838959 3:-0.6608009972582911 4:0.7075788021090594 5:0.5208396359138381 6:-0.09724033794207299 7:-0.743087245352148 8:0.765372791789753 9:0.3788699859744704 10:-0.6898257995055466 +8.038039859115667 1:-0.5321510657026671 2:0.5571925538006008 3:0.747268102801854 4:0.09079641165917596 5:0.25861122989509266 6:-0.9948187479498878 7:-0.9665136866462685 8:-0.3904629432867681 9:-0.9975425877998279 10:0.32024289816988416 +5.14371929922303 1:-0.4829199170694627 2:-0.5713285263827719 3:-0.43889652467111184 4:0.18478247261988967 5:-0.27374063120041225 6:-0.8069125377696931 7:-0.15497746743367058 8:0.32448521325998714 9:-0.39397735035206227 10:0.08184957956614292 +-1.6848276484379352 1:-0.39250489761445895 2:0.02730338852529557 3:0.9916055514435305 4:-0.07571433435055064 5:0.19024527726403728 6:0.6385182319185971 7:0.32480605537471297 8:0.5807543325220577 9:-0.35642510103381153 10:-0.9060482769392468 +-11.640549677888826 1:0.03707410390488852 2:0.2527049166981137 3:0.4114872952854447 4:-0.8508977901757795 5:-0.42791544663481895 6:-0.9864047295390463 7:0.6023685964407528 8:0.12018443688097036 9:-0.36816249877130414 10:-0.9583147535652901 +11.672104494601319 1:-0.2416258355340175 2:0.6737553249072334 3:0.9041602191361382 4:-0.2123232797997281 5:-0.008255188002961988 6:-0.5151894064136904 7:-0.7341877977528246 8:0.624625272218277 9:-0.6261434804192929 10:-0.5710586715741532 +-2.2960192492344627 1:-0.7457768645184579 2:-0.5954998103421847 3:0.5428846769211537 4:-0.6176587961491775 5:0.46222150678166574 6:0.7852238239427731 7:-0.3614580530629148 8:-0.325840253127059 9:-0.5660596710348922 10:-0.8060263366626401 +5.428302298615722 1:0.8774286357993033 2:-0.23110126319781088 3:0.6264134914476072 4:-0.143015582616014 5:0.350109539755298 6:-0.147747167834422 7:0.05020570422182824 8:-0.5469605849960337 9:0.951112567977048 10:-0.34800121380288185 +-17.32672073267595 1:0.31374599099683476 2:-0.36270498808879115 3:0.7456203273799138 4:0.046239858938568856 5:-0.030136501929084014 6:-0.06596637210739509 7:-0.46829487815816484 8:-0.2054839116368734 9:-0.7006480295111763 10:-0.6886047709544985 +7.314490512652487 1:0.8745354279105222 2:-0.9270067504840309 3:0.965218170323435 4:0.12808957052353698 5:-0.5309399625085234 6:-0.5968520990090951 7:-0.667403236513185 8:0.08154410986660832 9:0.33025488397543934 10:0.03406708067839537 +4.687373993408297 1:0.6731426721418288 2:-0.7111023070261273 3:-0.9849054116048603 4:-0.12831346258317322 5:-0.04095946352836921 6:0.6967001556166801 7:0.8479895229743999 8:-0.35600791972899404 9:0.5005979045264868 10:0.6421341979636503 +-6.82923852156868 1:-0.04849233571020073 2:-0.8505855619911602 3:0.2927180954190314 4:0.5780268040086791 5:-0.22322207765417268 6:-0.8436513934568071 7:-0.3906240514635124 8:0.7258714963093444 9:-0.21695043530813085 10:0.8049335285918169 +-8.24622879369294 1:0.12154833675098842 2:-0.26446415445316673 3:-0.06653791221669247 4:-0.7920694887292259 5:0.6128791496627621 6:-0.6927179137980173 7:-0.24584418172709932 8:0.3557416365779935 9:0.22868636757755234 10:-0.8288196322549064 +-5.090863544403131 1:-0.1535668648046895 2:-0.59868738365189 3:-0.8822518703008675 4:-0.1790505106198006 5:0.9467581256591948 6:-0.0661313762905984 7:0.31263046332923694 8:-0.03628894224569357 9:0.8969599435828515 10:-0.05386674051170348 +-15.780685032623301 1:-0.2568492063716883 2:0.7740976197426315 3:-0.7829158104387535 4:0.8578846037465748 5:-0.6111039318672586 6:-0.26939268282639306 7:0.3659136640533909 8:-0.8205938562638555 9:-0.24945505706767923 10:-0.935948184861368 +-3.9916779937384743 1:0.22925954469403154 2:0.18159238246979537 3:0.05607027262862396 4:-0.3376037702047998 5:-0.10630000583678934 6:-0.7148277241201622 7:-0.08327294541727137 8:0.6532439360618307 9:0.34352364313237294 10:-0.21028242388807916 +8.798748248458631 1:0.509058184822212 2:-0.17532831457577935 3:-0.6387880909085213 4:-0.966194650702529 5:0.7829797328120436 6:0.5470735549914605 7:-0.38312745239682333 8:-0.8890923931840893 9:0.6823342859396513 10:0.9231260597729121 +14.341273640964873 1:0.6996156678090684 2:0.8612833977834464 3:0.9131301694042417 4:0.5199385192744859 5:-0.32605907950755086 6:-0.9816465962348846 7:-0.5939885763232406 8:-0.7730924566676425 9:0.6367821449954114 10:0.10873812383881054 +9.75855501262469 1:0.2933324921347933 2:-0.4652534314332506 3:-0.2940640558090537 4:0.9883453215038367 5:-0.042460731786114314 6:-0.15438550895912062 7:-0.11182397625560592 8:0.7425954283250873 9:0.5063859049644963 10:0.3012211854180429 +7.695200921242407 1:0.3554353390157281 2:0.08707592690448718 3:-0.10815435665633877 4:0.05524046679762784 5:0.8000157491787581 6:0.3756193347272323 7:-0.18659830666742527 8:-0.08168623764933125 9:-0.2551379303720174 10:0.8560030587463281 +26.903524792043335 1:-0.4672678144441864 2:0.868381965588082 3:-0.04748335609643428 4:-0.0908285508827269 5:-0.22436865911994275 6:-0.953965287326564 7:0.40644848732968164 8:-0.33391575325981115 9:0.008337907338700212 10:-0.45597904754961416 +9.87318781117539 1:0.7310287890171705 2:-0.38300115058116324 3:0.5492682498036086 4:0.552016070316655 5:0.3715022458396897 6:-0.3888040017277252 7:0.21348231125683648 8:0.23219558685722874 9:-0.6271161253492459 10:-0.009137052604519136 +7.6930514050666625 1:0.48603550488592284 2:-0.9218820771919889 3:0.17678612698428053 4:0.5110501870908806 5:0.5817010201164554 6:0.4488707800038747 7:0.4977618637956498 8:0.1683214570038094 9:0.17237242672259323 10:-0.5276084644007359 +3.155413914311745 1:0.04582517188512947 2:-0.9060800653779759 3:0.049786270132956556 4:-0.4236784487542993 5:0.6293910028372613 6:-0.7370237043436467 7:-0.4599678991281728 8:0.5317111095323057 9:0.0029525239228334055 10:0.9294876800738165 +-10.18815737519111 1:-0.9023553189306839 2:0.08434165073970856 3:0.7163931103395633 4:0.41749986495957914 5:-0.8190972970472759 6:-0.9996126872234177 7:0.1779075727741255 8:0.18212754689351862 9:0.24628508239298963 10:0.667589863190412 +18.585731475373457 1:-0.8399129036462931 2:-0.10024819268489127 3:-0.5011350892733817 4:-0.7299256348863585 5:-0.9412022985072928 6:-0.245064895931544 7:-0.1032512650854267 8:0.9943863256441088 9:-0.6429371028855466 10:0.062299742931960056 +8.998359297106072 1:-0.16850226855111905 2:0.7262839202089402 3:-0.04876255055071854 4:0.8948164957242868 5:-0.10720585418953132 6:0.2622719447841948 7:0.26433837506661373 8:-0.5143449147399106 9:0.17444585508955002 10:-0.813182163328944 +13.032424230011074 1:0.4014766166181287 2:-0.1710502754125871 3:-0.309850483152607 4:0.255642456909988 5:0.9949117714165621 6:0.12553772251510864 7:0.6412602805648968 8:-0.6225679446416825 9:-0.15867011477056936 10:-0.4970695349036196 +-6.931030745953174 1:0.5151452174260762 2:0.10077064818539072 3:0.9515221270405545 4:-0.21551878535257907 5:0.29152528087481366 6:-0.10995497026133605 7:-0.7872786530801681 8:0.9909149980139627 9:-0.6044617953251021 10:0.4135285912642448 +15.538062451207367 1:-0.493569696351595 2:0.7280914440594639 3:-0.5399160539735497 4:0.5688018985826291 5:0.8296550361854862 6:-0.3519274619833537 7:-0.5536583684230114 8:-0.9648774930921231 9:-0.2649670832738824 10:-0.2337289004188019 +9.499729032920945 1:0.22017490770298553 2:0.7693082799289328 3:-0.7645745307823122 4:-0.4243400515554365 5:-0.7065281515163817 6:-0.9488470141298047 7:-0.7888781431404843 8:-0.38027758953310964 9:0.11329243985448345 10:-0.5636550498916204 +-0.6039115764951412 1:0.3128791250125589 2:0.4690308315665288 3:-0.9819748103687955 4:0.28931283693913223 5:-0.6283983933456656 6:-0.10795935596621975 7:0.7785831799196448 8:0.4453768248295542 9:0.4055410615499917 10:-0.581108383985806 +9.682301463907875 1:0.5039970331368235 2:-0.008965105921562966 3:-0.5415225380115054 4:0.4677111860370293 5:-0.3854089758945243 6:-0.8468317339287676 7:-0.29258253017713587 8:0.7361173598968789 9:0.5722561668394952 10:0.8524030171340933 +-2.8752191903928064 1:-0.45407356732165205 2:0.6563221064539377 3:-0.8938366926767671 4:0.6028173420234533 5:0.6792881349943096 6:-0.6295604812779405 7:-0.21641416912497213 8:-0.8703620515028858 9:-0.3397362922228042 10:-0.0966947467107604 +-28.046018037776633 1:0.9493308195854675 2:0.3285214661535252 3:0.749300278016316 4:-0.006681618268088219 5:0.2936055273341429 6:0.0044706790416966236 7:0.5006172205470896 8:0.38751814960349473 9:0.6069735922707928 10:-0.794612882855285 +2.8752582614589373 1:-0.9443232811926943 2:0.3153126492983107 3:0.6423843271417344 4:-0.09528333043829118 5:-0.2318773828230698 6:0.32597909562645766 7:0.42808555740416065 8:0.2895959316734451 9:-0.5106491076955746 10:-0.2917418155655722 +-2.203945173593806 1:-0.13844025039418084 2:-0.024638102806725293 3:0.6114514176076162 4:-0.6939316676972749 5:-0.036549673716341324 6:0.0942395290460385 7:0.7943411369475493 8:0.7025693796408046 9:-0.21822635487138853 10:-0.6045250179827362 +-5.070655299509993 1:-0.8035156105848074 2:-0.5344928236067734 3:0.6105404604447127 4:-0.7538635525543969 5:0.9836765037886612 6:-0.5700253195942724 7:0.9232380985458313 8:-0.26374377078100464 9:0.9079431466301682 10:0.8404281771949533 +-2.540181413836895 1:0.220453181647285 2:-0.03105792440486077 3:-0.17131282366411926 4:-0.41800060634660485 5:-0.1477564564540963 6:0.055537469469941536 7:-0.8092076926316594 8:-0.29815112444525727 9:-0.20030580647762464 10:0.337865838755971 +19.341342586351033 1:-0.32052868280788616 2:0.954507993011956 3:0.38642226954792824 4:0.9240442034609888 5:-0.46077559741256824 6:-0.7991393493824104 7:0.9396232321156679 8:-0.2486930151964184 9:-0.6256485833035617 10:0.14861843824730103 +0.31398559122529757 1:-0.4684215762946897 2:0.07873308388585198 3:-0.3589594894052015 4:0.14284662079329458 5:-0.8936272055527841 6:0.5647217242826741 7:0.49613233215723507 8:-0.501698787526992 9:-0.46710107378968724 10:0.898517179577361 +12.243117462926584 1:-0.8147610562690222 2:0.21104006948075482 3:0.42405323019132957 4:-0.667965573810795 5:-0.267026607469405 6:0.7949752815579358 7:-0.07664414977654532 8:-0.6023087644686556 9:-0.659375887511856 10:0.459735946423397 +-4.623091296763939 1:0.08405646515942733 2:-0.40009448092691446 3:-0.39831245310544094 4:0.8794137836499942 5:-0.04788565812369017 6:-0.06763019434549333 7:0.41324877265674065 8:0.39746868847324146 9:-0.986729367280818 10:0.7001677710291752 +-5.782162271139417 1:0.29127970805530157 2:0.6712715787317827 3:0.27575757044478477 4:0.31525054647682804 5:0.6905016168465983 6:-0.5195319089267731 7:-0.06598129860341295 8:-0.5142554034519407 9:-0.11546331150946942 10:-0.2934524891698944 +-9.892155927826222 1:-0.7048583334456604 2:-0.46598491327111247 3:-0.02034722477413209 4:-0.663294196316965 5:0.4485329128582778 6:0.4553619594861118 7:0.7154814909138205 8:0.7532937661147989 9:0.020693077287389894 10:-0.23131986644633207 +0.5422764698408844 1:-0.1513298744027669 2:-0.4591544337339648 3:-0.7192219559850723 4:0.21236658135317632 5:0.12050445497328166 6:-0.42411528242712127 7:-0.15103925528861595 8:0.9032115729799512 9:-0.9228817525021624 10:0.2604090001033641 +4.187800872274017 1:0.3084355607627949 2:0.7029638272178733 3:0.34098344122299573 4:-0.5818421369891376 5:0.1332356708082485 6:0.22671316744441716 7:-0.6750469752494854 8:-0.4065302428716193 9:-0.48213803977370073 10:0.17918596677210186 +4.487701812297124 1:0.8352061350259052 2:0.2757393215770836 3:0.9310504392364667 4:0.519503546762708 5:0.5270245209143005 6:-0.08181154800488488 7:0.5148324302455536 8:-0.6680946101511949 9:0.7574060703813035 10:-0.4721334895419935 +-5.150140984417682 1:0.8113709439821006 2:0.21939305063309278 3:0.02109986546311826 4:0.07450107676582762 5:0.723883853128624 6:0.5392035186380486 7:-0.1382740221237464 8:0.9990201540159807 9:0.10429329766137108 10:-0.1365266408862309 +-6.544633229269576 1:-0.08278037549320039 2:0.6982730989138761 3:0.9090685953368327 4:0.6754092061339365 5:0.5889199822482736 6:0.020678619551471433 7:0.47605785660672084 8:-0.49926771127869873 9:-0.28380077002944093 10:0.5282319276258469 +7.216836352055753 1:-0.8510680074642156 2:0.42611818262128476 3:0.593607821624947 4:0.5635067468583634 5:0.2121930523769171 6:0.2708063180622071 7:-0.31491113345871735 8:0.005990053407278095 9:0.8985259402559085 10:-0.44549339042232794 +20.874246167942125 1:-0.53010692413621 2:-0.9897084749945524 3:-0.9083978261828305 4:-0.15581655583739495 5:0.9974035542095165 6:0.9894717992956665 7:-0.7287287537245402 8:0.06425127137526943 9:-0.06684164745938337 10:-0.3600621883071937 +-6.556192430758147 1:-0.7655958349167471 2:-0.08083170734199419 3:-0.8540636958251198 4:-0.09994429443696973 5:0.1734809016500265 6:-0.29563180244063325 7:0.2158497607364409 8:-0.6071644305523003 9:0.8063426715403785 10:0.47092299197899345 +7.252748885335252 1:-0.36403312429467216 2:0.1237451136826817 3:-0.5756427605741237 4:0.7612833636750866 5:0.9350628314096134 6:-0.012087843264624754 7:-0.03742573515965031 8:-0.05210460803183037 9:-0.5333214800203341 10:-0.013320030179712505 +-9.2679651250406 1:-0.5057250557539077 2:-0.41655319851679495 3:0.1897431234740683 4:-0.038318717640150046 5:0.9136495575471062 6:-0.8890525036858237 7:0.40859501498633377 8:-0.8746985847539293 9:-0.005836984002720369 10:0.7838036026237987 +-15.732088272239245 1:-0.8546867577633044 2:-0.3003980324850013 3:0.49649883896876834 4:0.710496747220617 5:0.5848510480601048 6:0.5714826756665468 7:0.5487975165953451 8:0.5654333402837335 9:0.863539315599626 10:-0.9699410102494574 +-0.20412431312519014 1:0.13323548063028934 2:-0.3030177580658542 3:-0.6358920925969869 4:0.3729380701923921 5:-0.8131818118430312 6:0.11567152703716288 7:-0.3645508535812394 8:-0.5487213252460876 9:0.5605886387366952 10:-0.8400308993051686 +10.445759684895373 1:-0.92707280355555 2:-0.9307772570299944 3:-0.11971873660640964 4:0.5140245291069254 5:0.5751145648836897 6:-0.43850910073502347 7:-0.7872208869913662 8:-0.3087975452145404 9:-0.4645849758749403 10:-0.1563641826381328 +3.349708377102383 1:-0.6334394121009499 2:-0.9008086683014112 3:-0.2678892493467009 4:0.7626514243443427 5:0.6406493676995701 6:0.3669245573649391 7:-0.052050629941784665 8:0.6713394117904852 9:-0.11458974566378233 10:-0.25949626043219576 +-23.487440120936512 1:-0.5195354431261132 2:0.8080357948412571 3:0.8498613208566037 4:0.044766977500795946 5:-0.9031972948753286 6:0.284006053218262 7:0.9640004956647206 8:-0.04090127960289358 9:0.44190479952918427 10:-0.7359820144913463 +-11.827072996392571 1:0.9409739656166973 2:0.17053032210347996 3:-0.5735271206214345 4:0.2713064952443933 5:-0.11725988807909005 6:0.34413389399753047 7:-0.2987734110474076 8:-0.5436538528015331 9:-0.06578668798680076 10:0.7901644743575837 +-3.650649176738987 1:0.9665344025238449 2:0.1395514751689353 3:0.954697162791015 4:0.2093601878355722 5:-0.42841737775246336 6:-0.02877209657213764 7:-0.8382526163632971 8:-0.03773878779258388 9:-0.3751775119106411 10:0.6477987464528951 +0.21915863046310957 1:0.25143109618049353 2:-0.06463696557011112 3:-0.3324862332340037 4:-0.7184623449423757 5:-0.8897217937178385 6:-0.7336278194091297 7:0.8547631637534296 8:-0.7582613025929346 9:0.9080481791309838 10:0.9427850135311773 +4.813247597584681 1:-0.4564689661727537 2:-0.4315414033069003 3:0.09676404446694242 4:0.6024645727173434 5:0.20466090997530606 6:-0.09432916868838737 7:0.6402934161890248 8:0.741842551426011 9:-0.343937669190693 10:0.308871619426873 +-3.0700825038127206 1:0.660084046469162 2:-0.02317305725931229 3:0.7567569356692221 4:0.2528834502236612 5:-0.3935091635208898 6:-0.9965507922509653 7:0.9065754202428946 8:0.6988037588300844 9:0.05145737657924321 10:0.4697377584426863 +9.762542323725354 1:-0.036129448543738896 2:-0.8252508992030534 3:-0.752854859129851 4:-0.9027424488033049 5:-0.4763092428375775 6:0.4832492121777574 7:-0.2935697977919014 8:-0.9197908986231211 9:0.8914359296658816 10:0.8688484670974876 +6.690913813146277 1:-0.7649833946109403 2:0.0419327356721928 3:0.5420954694310764 4:-0.7373259510045522 5:-0.9187577877864708 6:0.6431180783847401 7:-0.6272529754533058 8:-0.43356486537110106 9:0.16848266440424364 10:0.3129700315745716 +21.325049167466855 1:-0.36392795201361383 2:0.846518905511275 3:-0.26361421923150097 4:0.5140384860444887 5:-0.9147771624497878 6:-0.22044646197773576 7:0.14099760779666948 8:-0.546631395802236 9:-0.4345465263406878 10:-0.2759894364167672 +0.41237529640734055 1:0.05016964684797287 2:0.21708512805176072 3:-0.9444942733586354 4:-0.6118772896807114 5:-0.18053631846913665 6:-0.06752556529755416 7:-0.0081819952134361 8:-0.7774039956687315 9:-0.5548994336153177 10:0.7510833121912588 +-15.056482974542433 1:0.6012054064354875 2:-0.6127014811673221 3:-0.8356741843949218 4:0.19830469052767397 5:-0.07726493085289698 6:-0.5756891943805014 7:-0.49010583357941884 8:0.7493759119974515 9:-0.7828994218436376 10:0.6154265137741459 +-2.109441044710089 1:-0.5757976103755722 2:0.3686657403505862 3:0.5418762444017706 4:-0.5896052565388463 5:-0.1000712585735879 6:-0.8114188394866342 7:-0.5863884932327266 8:0.28289838755838015 9:0.5378646921099333 10:0.5063780890366179 +-5.249715067336168 1:0.6828022788286754 2:0.9044668986252975 3:-0.6010464361571437 4:0.8416122052398811 5:-0.9846446498408039 6:-0.3777762313579811 7:0.5763775880953983 8:-0.07608009385213488 9:-0.29576023599575474 10:0.8845728751981716 +6.907770824878343 1:-0.9751352215365647 2:-0.8297271715190588 3:-0.07240311280415779 4:0.4796310183582191 5:0.358213469979769 6:0.4628020211207058 7:-0.9753405605972942 8:-0.765583403709019 9:0.5623611232648877 10:-0.14725965272406616 +-9.299021854126096 1:0.8784076266914045 2:-0.8314918563417382 3:0.8701529449600536 4:-0.8070129727442199 5:0.07396877198841345 6:0.0040889707225901795 7:0.40529205456687145 8:0.6412485325027342 9:0.1443450351498905 10:0.404997568726581 +10.95643670126225 1:-0.37321642594676097 2:0.47766490569544473 3:0.9201313123144423 4:-0.649393433578801 5:-0.9084894063674787 6:-0.2547160991750408 7:0.7674649994523459 8:0.646056370118979 9:0.6014100713287893 10:-0.15130291862509182 +-2.6397202393123336 1:0.3285252466844373 2:-0.2714281159811125 3:-0.5869561846815805 4:-0.5643935541712441 5:-0.7285201267315389 6:0.6502951074428092 7:0.8611880383193904 8:0.6380425291162128 9:0.5118538704085516 10:0.4012684110865874 +12.521131042032012 1:0.4843931319727355 2:0.06440853455169626 3:-0.6151259240105509 4:-0.4180928328467284 5:-0.4607061773323424 6:0.8104775289268906 7:0.3284199695768064 8:0.8425028998495565 9:-0.34822319854822825 10:0.1969239149176112 +-16.151349351277112 1:0.7787909191620395 2:-0.5219981442072688 3:-0.7230569918898555 4:-0.05707801168212101 5:-0.8134225824740247 6:0.09950684183685454 7:0.6261274830059296 8:-0.9502006765164366 9:-0.6724983095526844 10:-0.600347212281825 +-5.039628433467326 1:0.7680701397575322 2:0.7956844224408437 3:0.4131717201035916 4:-0.3127895385265915 5:0.7226571953995224 6:-0.06845863083031967 7:-0.1007291660029832 8:-0.9130249132342207 9:-0.4605180615474036 10:0.42093879298156 +9.007596502870785 1:-0.6562175566238462 2:0.08420074013217049 3:0.589801949672486 4:-0.11964901133703987 5:-0.8145711913860048 6:0.43854302140351065 7:0.5992967124729605 8:0.253745043289755 9:-0.10742030998120033 10:-0.5993228348160153 +-12.41094640284016 1:0.31035917086763765 2:-0.8053417167237813 3:0.5754655536186164 4:-0.3645388095106201 5:-0.9135176753316416 6:-0.8690739610562535 7:-0.14039224825138197 8:-0.7112835675593987 9:0.25762942117230825 10:-0.9483300117501923 +-12.130353212287929 1:-0.41404309625298485 2:-0.7695984204591535 3:-0.44569447239245275 4:-0.3168863099965644 5:-0.26669244730409036 6:-0.33484042698895755 7:-0.41062396946367685 8:-0.09075804785640385 9:0.8511367190902208 10:0.021918606255194595 +-15.375857723312297 1:-0.9794952880997945 2:-0.9547237660069134 3:0.2460912345929791 4:0.3174335823329406 5:-0.23758562926743054 6:-0.113610303129287 7:0.18292675847568063 8:-0.9656446754474337 9:-0.58300134324846 10:-0.6689602908128025 +-6.397510534969392 1:0.440780662587545 2:-0.03737991637410243 3:0.9506435891605849 4:0.8177486462589998 5:-0.2917628929963241 6:0.42365289098031034 7:-0.4280555544979745 8:-0.18388426864865903 9:0.5057230088452542 10:-0.1699163749308643 +-9.789294452221961 1:-0.25066699970459694 2:0.1772977344415987 3:0.5913498268900952 4:0.6293756431864681 5:-0.6430441015863757 6:-0.7238519180293621 7:0.13639541626580498 8:-0.6620281401715837 9:-0.9515237061912034 10:-0.4333426289849791 +-13.15333560636553 1:0.3491978525665129 2:-0.4067353159374012 3:-0.8677040612253524 4:-0.5757086910974862 5:-0.3186886816681207 6:-0.06609938943414573 7:-0.5419747642754873 8:0.9632759660044383 9:0.2673520823110991 10:0.36463236596724546 +2.2307697392937795 1:0.12285527276472785 2:0.8938323722714365 3:-0.16995870341610209 4:-0.3298643049714254 5:0.16781582791954253 6:0.42381594687105895 7:0.9245288214717629 8:-0.08709025093361689 9:-0.14227085487682722 10:-0.2888302862659746 +5.892885365508635 1:0.10116053019915738 2:-0.41641547074900154 3:-0.3750004290914961 4:-0.5619470211369917 5:0.33343039544460384 6:0.46766042657994733 7:-0.6937940929321615 8:0.7044604392055189 9:0.8879353764416567 10:-0.5490902425042639 +-16.692207021311106 1:0.9117919458569854 2:0.628599902089868 3:-0.29426892743208954 4:-0.7936280881977256 5:0.8429787263741186 6:0.7932494418330283 7:0.31956207523432667 8:0.9890773145202636 9:-0.7936494627564858 10:0.9917688731048739 +10.454641756541454 1:0.3490213088098768 2:0.6103387992494194 3:0.6753935651135747 4:-0.39560763769937934 5:-0.3042308221531884 6:-0.9283481899557042 7:-0.7904038212853011 8:0.37488335848537346 9:-0.296477977723397 10:0.30894819444660304 +0.08978797103855778 1:-0.13445409764877803 2:-0.6404150831493631 3:-0.24740260669490133 4:0.031151119464385646 5:0.9207882173498612 6:-0.6146471129497393 7:-0.9736175690408087 8:-0.2673180325645341 9:0.5800384183301572 10:0.479811220263183 +1.7362099941626894 1:0.5171681395917551 2:0.6177735922313075 3:0.6446678302226738 4:-0.5731769722311459 5:-0.2686270617709168 6:-0.6048534221658814 7:0.7002124303669326 8:-0.1479765297345712 9:0.009254061109394307 10:-0.31519081920853287 +-1.0349488340235453 1:0.612980711993536 2:0.05771318707554962 3:-0.10821368362160744 4:-0.8755559420458141 5:0.42566546089913326 6:-0.7966341558699277 7:-0.45253617234374466 8:-0.8289517557653971 9:-0.8968075137250837 10:-0.6325457096866376 +0.10157453780074743 1:0.9143592240573388 2:0.06419631741815457 3:-0.9961326744227916 4:-0.47174548800139715 5:-0.0821464027819967 6:-0.5495006555498168 7:-0.5627911401420294 8:-0.43426056724099005 9:0.892026786364895 10:-0.23546485121284055 +-12.92222310337042 1:0.218687524173371 2:0.013626751799176162 3:-0.8372219908323961 4:0.6197296846266354 5:0.7429130827811232 6:0.48009972886541896 7:-0.35667717521227904 8:0.18337067878780533 9:-0.22935396092245197 10:0.4076715024284059 +22.923352376063196 1:-0.7522075505725567 2:-0.20686029838909326 3:-0.1386664769095396 4:0.157117595808127 5:0.9462377653889174 6:0.9182504509330662 7:0.18170057747293833 8:0.27735387813088863 9:-0.6355799944714868 10:0.9764849106195284 +-6.132450015997121 1:0.2822534275343054 2:0.2625905791399692 3:-0.02565260641304068 4:0.4891221076432757 5:-0.6426178913585772 6:-0.8999539149461033 7:0.12659507663825287 8:0.5889572439755832 9:0.49107548332672857 10:0.47595749470452 +-9.173693798406978 1:0.4430245286298278 2:0.9923116639471541 3:-0.5609082824097824 4:-0.36542266258313916 5:-0.5814039716882617 6:0.20413852042674874 7:0.6097541611931963 8:0.5743002479324253 9:0.4735459963431561 10:-0.053969823043886755 +-5.814408490931223 1:-0.9206287328000513 2:-0.48298486023273157 3:-0.8477202041890262 4:0.5801385102362351 5:0.7146074564553095 6:-0.5987672678579339 7:0.6829077928212723 8:-0.3522788540815065 9:0.7729595638821951 10:0.5264904880591215 +6.474329501040298 1:0.6914309300550991 2:-0.4507700505202725 3:0.713821440501512 4:0.41599059910235847 5:0.507160951750409 6:0.8635615811574222 7:-0.6235518270244333 8:-0.5336201820384283 9:-0.7989630679361768 10:0.837293162455248 +6.984517471584806 1:0.16745919469723392 2:0.018033079961716103 3:-0.7339201095541323 4:0.17042828693740697 5:0.4493471632580528 6:-0.8938445962323078 7:-0.3206968104792325 8:-0.616617071238893 9:0.9327878222034172 10:-0.6575294247048245 +-12.479280211451497 1:0.9769767754725367 2:0.7706430863248943 3:-0.4506244622476816 4:0.12921761745628713 5:-0.0697804449658812 6:-0.7702703569987461 7:0.017734558413919688 8:0.7216294158911261 9:0.42547357862241886 10:-0.9001915116155741 +2.8363866587728186 1:0.11478724114928918 2:-0.4679790550082039 3:0.2344912687736711 4:0.5524878060045462 5:0.5252859884051309 6:0.5080674087215156 7:0.5010449021825665 8:0.048046765816400105 9:0.06654581719548891 10:-0.5801934713347348 +4.186809777233374 1:-0.02335342201396018 2:0.9035437912091193 3:-0.9283585631882163 4:0.454351316397237 5:-0.6948564428085262 6:0.11495485234890368 7:-0.23683956078769963 8:0.6442534752881419 9:-0.013866407845647188 10:0.23369602940650736 +2.8235031660626415 1:0.5609344938188046 2:0.3449103464885612 3:0.03972169049525687 4:0.31858762565827137 5:0.4409953589124853 6:0.22836189275697016 7:-0.1497811991899889 8:-0.23248048920679265 9:-0.30066618281100177 10:-0.9247232456911632 +6.96223432848425 1:-0.8160398553437558 2:-0.8212180893749699 3:0.7728655115832999 4:0.02387973088796369 5:-0.043499804905828166 6:-0.6997726250046865 7:-0.8686633773265577 8:-0.12597318402253976 9:0.967018116368416 10:0.5951339624149812 +4.669684795838683 1:-0.32226903644852833 2:0.5465858078942492 3:0.5228467793266189 4:-0.013157722224545143 5:0.5810668818928995 6:-0.1372653090293532 7:0.6446157527288279 8:-0.06005754873230629 9:0.014302180040152379 10:0.43474245441042636 +16.112744845653285 1:0.37257742858083365 2:0.19398954512844124 3:-0.11860882189887478 4:0.6492510749703395 5:-0.41273736981203313 6:0.18643017041815835 7:0.29136917186214384 8:0.47602883023389 9:0.7126916980867937 10:0.48462508659691483 +-9.196003366226202 1:-0.7263358951920722 2:-0.8503799288093836 3:-0.3120563620589105 4:0.3925562655164563 5:0.027666662972283484 6:-0.35173134138805406 7:-0.32703527910354757 8:0.3060102722285065 9:0.8609161725740202 10:0.33394557004432923 +1.242972458167591 1:-0.9029238804456814 2:-0.6392681059531908 3:0.8940879647942577 4:-0.8807357173896475 5:-0.13628130467470512 6:-0.5487534785116224 7:-0.40270307148061346 8:0.09152108686997096 9:-0.20745066734844642 10:-0.20624830574384978 +3.453659210660726 1:0.2710596844435682 2:0.6510497900145247 3:-0.2899158136103117 4:-0.13531811694554707 5:0.6965847786422426 6:0.9105343028780231 7:-0.007340232468413754 8:0.7672537187738411 9:0.3538906829188173 10:0.35387524540947646 +-0.48115211266405217 1:-0.17943755364759517 2:-0.1384979591151625 3:0.8425773648797268 4:-0.43234064993405097 5:0.919754442523921 6:0.8390197802990036 7:0.43890653121452683 8:-0.7647648217789051 9:0.14770258954363835 10:-0.6681813635676657 +6.965069440749298 1:-0.9158261471030473 2:0.5228494114644282 3:-0.07760531122743153 4:0.6154296244963067 5:0.5231830145381096 6:0.4892535590799165 7:0.1987053183082137 8:0.9995670294711712 9:-0.2020375688074112 10:-0.7853579334836087 +-1.6896486293598596 1:0.4638529147853421 2:0.0953805943546191 3:0.8506904243225251 4:-0.028262644692445438 5:-0.9462342015500664 6:-0.6934738957112123 7:0.601125018257533 8:-0.04871041957758315 9:-0.015245062056267411 10:0.6119856200040805 +-1.763729644326212 1:0.5376618752928528 2:0.8062119856717131 3:0.44996834959923593 4:0.9917728248530817 5:0.5974717482179492 6:-0.406972851600659 7:-0.8523198502065281 8:-0.3076377139692321 9:0.9099974915864462 10:-0.43374966692373484 +9.012829566937228 1:0.6885456531832366 2:-0.0631164354373237 3:0.8394182300770314 4:0.7207913383891218 5:0.4715324450375691 6:-0.34417503908167757 7:-0.31448279255342126 8:-0.020591617987411936 9:-0.37668573574418107 10:-0.6528048324896532 +-15.951512565794573 1:-0.6112828771933607 2:0.4867007149846869 3:0.863494046941478 4:-0.7292072742454481 5:0.6338749652624007 6:0.5980798993978542 7:-0.5119002889878654 8:0.8394383182101366 9:-0.1412423080445726 10:-0.15838730884968655 +-0.29622788243318465 1:-0.9436253326661384 2:0.2907259958032098 3:-0.1530538226933904 4:-0.6174176535420375 5:0.8209632215649141 6:0.5060548803172731 7:0.8212448453211292 8:0.33506684706740386 9:-0.5408309869188785 10:-0.8105966349150977 +-7.683213587039055 1:0.2525015766703558 2:0.6417869320191234 3:-0.7569571597336913 4:0.5265130776924394 5:-0.03992944660560949 6:0.18292946303778823 7:0.4286344960738724 8:0.9158523573288766 9:0.5039796366711773 10:0.27660486075533797 +3.9061298856792797 1:-0.6501789225392032 2:-0.6040685518173872 3:-0.6448094322678659 4:-0.2019498832769746 5:-0.5302977370883424 6:-0.010754341856880067 7:0.8791702222974846 8:-0.2283571791337704 9:0.4726320486679656 10:0.3413255179758332 +12.928385148211825 1:0.7793178379505685 2:-0.5207562047491976 3:0.37253320760898934 4:0.7540757518052998 5:-0.679378421540417 6:-0.11966022036636881 7:-0.4317798870297489 8:-0.004211291952602059 9:0.39024653887361693 10:0.45391057946097146 +5.787566514603203 1:-0.20596730554338039 2:-0.8840796727164746 3:-0.749416279057892 4:-0.5511023306046077 5:0.9941631901218697 6:-0.09907966722992234 7:0.701617914811792 8:0.9696055014561289 9:-0.7083648075748707 10:0.5781111533720358 +5.701262468657861 1:-0.7066995012593675 2:-0.6756815056791965 3:-0.5720277255842998 4:-0.09218662060241067 5:0.21494136076896653 6:-0.37012884573008153 7:-0.6828277646796448 8:-0.10038134655965236 9:-0.46253754509583356 10:-0.20813933595648115 +0.9473494330088033 1:0.6876806675510589 2:-0.9530860102792402 3:-0.4043172626863887 4:0.6696455505098386 5:0.17863581804857254 6:0.1944646561635497 7:-0.5283662172535679 8:0.4872263841818012 9:-0.2882651789318431 10:-0.06293411605141874 +-2.6834375589185675 1:-0.22376759986120187 2:0.36555755546798885 3:-0.5223502955721961 4:-0.20702347869224624 5:-0.7745351063999764 6:0.22879328233099971 7:-0.5440007473902635 8:-0.6959483071829207 9:-0.131433881760733 10:0.2764225554693165 +-3.2766108642276146 1:0.0304613976530983 2:-0.3148062986719251 3:0.24950420590071953 4:0.7152023826801459 5:0.9656885739650887 6:-0.3210562623763835 7:-0.7305896664502614 8:-0.49074917893875836 9:0.7802670253347352 10:0.8667409958355992 +-1.1838791995691869 1:0.06642047806096318 2:0.5336148776806793 3:-0.6199614859883396 4:-0.15342280723497237 5:0.8407250402808968 6:0.7060811811107444 7:-0.2913182140909305 8:-0.5925203360011633 9:0.22644925021629692 10:0.42395071889002467 +-1.5856680515554806 1:-0.8724712788102853 2:0.11445744032031424 3:0.5483166457680566 4:0.9469521544884028 5:0.2541682828467746 6:-0.436750733871873 7:-0.9001249399695319 8:-0.7555793441458385 9:0.06946992897983018 10:0.9724148045760346 +-13.039928064104615 1:-0.558607026518148 2:-0.7356765018678253 3:-0.7547644426290201 4:-0.24898664843938745 5:-0.3606374046883567 6:0.5836652368902306 7:0.8497678666873467 8:0.21331875915717635 9:0.3558733809635668 10:0.9642603628738968 +-17.428674570939506 1:0.8562209225926345 2:0.7077202100653552 3:0.7449487615498371 4:0.4648122665228682 5:0.20867633509077188 6:0.08516406450475422 7:0.22426604902631664 8:-0.5503074163123833 9:-0.40653248591627533 10:-0.34680731694527833 +13.886853032969585 1:-0.6354915752033683 2:-0.9132338112681755 3:-0.4816479770266455 4:0.5448417181244594 5:-0.6250746297187781 6:0.7410618768880199 7:-0.18029029550083675 8:0.777358236920447 9:0.9625064189449102 10:0.048040935468046 +15.61684729251139 1:0.2980237970192188 2:-0.8160931971814265 3:-0.29649852157138445 4:0.3896688599904572 5:-0.17552110506337826 6:0.8721328328445139 7:0.48984799668438916 8:0.9984496052876473 9:0.9665885195526289 10:0.8966559812150274 +10.33625540376971 1:0.09939495068155724 2:0.9790332181038015 3:0.9483428886275702 4:-0.5717299810793317 5:0.4876405069057712 6:0.163962913892302 7:-0.4095537988924203 8:0.8608269751255508 9:0.010028680058212114 10:0.9095786494455713 +9.706032970113723 1:0.7687898546315146 2:-0.9825109379412285 3:-0.5423211794439926 4:-0.3099509487314134 5:-0.11561305536236333 6:0.9012327035409926 7:0.5257495475790148 8:-0.33804422025989433 9:-0.144428735681567 10:0.28019332199039604 +6.189043888072968 1:0.13246655756059478 2:-0.751192382628302 3:0.2233421456265161 4:-0.1933575076984373 5:0.8681727702736863 6:-0.7656847407654899 7:0.1033145549916572 8:0.33909210370257403 9:-0.22241363302770267 10:-0.14479004187830435 +-8.680225911784335 1:-0.07718769939880432 2:0.6702228057326558 3:0.6647810334933819 4:-0.05115658747070784 5:-0.850780588302118 6:-0.040961453376221924 7:-0.8407690297644956 8:0.33775829053563156 9:-0.45421556034898547 10:0.8238500771967823 +-9.42898793151394 1:0.8925906426831107 2:-0.6771269725125597 3:-0.11635105688280678 4:-0.7266044201050157 5:-0.6902918845825077 6:-0.5911234800910024 7:0.49395074569300657 8:0.43660804414878274 9:0.8736983081269782 10:-0.8001177058312081 +8.486245765579415 1:0.5614295382716652 2:0.3972427851719582 3:-0.276268504977494 4:0.7803448249454739 5:-0.358957923558495 6:0.3477822689529795 7:-0.7944805581842691 8:0.8356932134547437 9:-0.4783293647580624 10:-0.2522633417723845 +-1.8722161156986976 1:0.11831037290857482 2:-0.7309091607574014 3:-0.7339122716951587 4:0.2046641765436359 5:-0.9914679283125301 6:0.13518339528098555 7:-0.9760821540963867 8:-0.6080636193563043 9:0.3890502262427238 10:0.33864957953815145 +0.5122357093733743 1:-0.9555852441641726 2:0.4754771858792488 3:0.3743376249200432 4:-0.2651772997462427 5:-0.7915484529586028 6:-0.7575915279708862 7:-0.10432268807273859 8:0.021604934223709238 9:-0.6458011732912265 10:0.40773716196391674 +-18.845922472898582 1:-0.6031480148285926 2:-0.8736524730197766 3:-0.311456616524979 4:0.420921703897325 5:-0.2904011177124777 6:0.6683252350591937 7:-0.3436202976676894 8:0.5023604359385605 9:-0.33056149241985633 10:0.5168854058825227 +6.492106438811399 1:0.7824832256885428 2:0.6105456307389117 3:-0.0436873997963223 4:0.46730493583332855 5:0.2057529813440686 6:0.5738310686722767 7:0.6307964411259019 8:0.6208424783086652 9:0.8931894299284251 10:0.7164648197763028 +-1.6472226859532182 1:0.8854767145642171 2:-0.8175744681485637 3:-0.14894858038610903 4:0.9667400540136402 5:-0.3575837217508149 6:-0.9211342680517054 7:-0.956785876301889 8:0.6558217028031554 9:0.8014538160668165 10:-0.9475520920917395 +0.185861229793925 1:-0.8181719548530746 2:0.9990094335332504 3:-0.8195848911987829 4:0.6991933015233858 5:0.07295718417836583 6:0.5968996100546737 7:0.4871410306452193 8:0.2980483098540927 9:0.779953293728507 10:-0.7978867112395516 +-5.973450525185694 1:-0.975435413991927 2:-0.7832951303253313 3:0.5098999023442101 4:0.46795978867990007 5:0.2538986807863044 6:-0.8182887550010198 7:0.8335391734637112 8:0.4286082996234335 9:-0.1726765956719154 10:0.7649845978453362 +-12.773226999251197 1:-0.383327656965585 2:-0.9439560491389036 3:0.25039001869622446 4:-0.9342091044843222 5:0.8711023711291135 6:-0.6027135241543655 7:0.9456874780319795 8:-0.243290468946338 9:0.625765915285031 10:0.5160550067618355 +24.290551295953957 1:-0.8368553572749229 2:-0.5859456648150321 3:0.873779532007048 4:0.7462623178738954 5:-0.08133011570245352 6:0.36767541461776676 7:-0.33129619282275047 8:0.6104289727615573 9:0.9416581563055089 10:0.18201841676606856 +14.490247980976621 1:-0.4765937762114507 2:0.16430711839945555 3:-0.526776940706293 4:-0.6802269991653915 5:0.40748236413299344 6:-0.500290139207977 7:-0.31915972151663885 8:-0.4586068416002418 9:-0.15572660263944127 10:-0.32925702602833073 +8.377230871265601 1:0.44141613060964846 2:0.1582267687752743 3:0.8760950367284166 4:0.40434058393690364 5:-0.7063758409891474 6:-0.616055773516162 7:0.996372393127579 8:0.6142084876085476 9:-0.528320587432094 10:-0.2815909691094802 +-3.2987560995836653 1:-0.4600479783378091 2:-0.04201794336103326 3:-0.8934505203905587 4:-0.44991326751905536 5:-0.5220579476363783 6:0.46060949186328703 7:0.9169289030735643 8:-0.022458426893944283 9:0.08100795210565637 10:0.5726732415540354 +0.3422568955736137 1:-0.9888686059817204 2:0.22752298580182706 3:-0.5048696915520232 4:-0.059433420464226616 5:0.7823831512651716 6:0.9865977573980389 7:0.9164100011124972 8:-0.3638554550863984 9:0.3038282907667611 10:0.4652367033461571 +-8.24116881862084 1:0.7565819250331731 2:-0.3733277500524168 3:-0.8841150081071696 4:-0.922282989989148 5:-0.041520813551309876 6:0.8615967014876558 7:0.8474207144091339 8:-0.7518437864641427 9:0.45076605239968837 10:-0.48912984167595375 +-4.367083147104942 1:-0.276459380002813 2:-0.957555271384241 3:-0.3761632810202544 4:-0.3897414804149022 5:-0.3133861519856074 6:0.0777990809172171 7:0.6638552243422928 8:-0.3477312155364247 9:0.5934885465182675 10:-0.5238903641193555 +1.9280240152322783 1:-0.40051093785549696 2:0.5070348672240661 3:0.7506759969575532 4:0.5042104954516786 5:0.9959688260926507 6:0.4657024999761399 7:0.910611131925299 8:0.9836517468598804 9:-0.6263172749113686 10:0.16955852322929155 +8.918138317441574 1:-0.22407391224687023 2:0.5545084933214972 3:0.6335932367683528 4:-0.2786481116648991 5:-0.9549992830441785 6:-0.5577873948545062 7:-0.960657200286197 8:0.3709573488946196 9:-0.9191180485753339 10:0.5033478020271929 +-5.657796797481157 1:0.6359910361030725 2:-0.1742637774815281 3:0.39699327107265137 4:-0.9841991491194473 5:-0.622093571871533 6:-0.5433497301426455 7:-0.6731178481686009 8:0.930615153085582 9:-0.3065877908950827 10:-0.5456093749639228 +8.697079562319692 1:0.4815820396629933 2:0.1173457441514223 3:0.7313645402039386 4:0.3354835387237334 5:-0.10300554535074702 6:0.5116687640761355 7:-0.8850803659104614 8:0.10654026377571157 9:-0.864976708975602 10:0.01345035085413615 +0.033954684723234596 1:0.6703241653088159 2:-0.13447915740201166 3:0.026022550037831937 4:-0.5145659862194116 5:-0.6963587636078901 6:0.652083884947352 7:0.22644722530715278 8:0.2671580129293405 9:0.9659035105360283 10:0.9547989197693989 +7.359108382166921 1:-0.6855762478384229 2:-0.7543318537260015 3:0.4772611975128618 4:-0.5588002332845741 5:-0.24271386844336496 6:-0.28595644325868896 7:0.8732728098501104 8:-0.8026384804471058 9:0.7589508830210041 10:-0.9992933613402135 +4.953597303754355 1:0.8915633023548608 2:0.04688596266450751 3:-0.26866754730613374 4:0.16694236975718102 5:0.23465297255622608 6:0.36488427850844407 7:-0.06717041145276781 8:0.9470029805221898 9:0.32483835237272674 10:-0.7892521260150298 +0.683536559775105 1:-0.32176084249781556 2:0.5446298870866526 3:0.4095848716057642 4:-0.42579711490120187 5:0.4482850543749355 6:-0.0982243826242506 7:-0.9190317048427039 8:0.06234509402976718 9:0.21327512416175054 10:-0.38023673796734525 +-28.571478869743427 1:-0.4597184465402242 2:-0.5489429386926741 3:0.33422914572951634 4:-0.15992695377395516 5:-0.7310003311728188 6:0.18241063863467488 7:-0.48385214010599453 8:0.08139879039334552 9:-0.8401239538877046 10:-0.8896372220209929 +-19.884560774273424 1:0.4619217451285318 2:0.28157115824800005 3:-0.3829811521605375 4:0.5802544015450464 5:0.1117061271473403 6:-0.8926034502584623 7:-0.34862293810401956 8:0.2733254857260612 9:0.6514176550598809 10:-0.02758604919357066 +-17.494200356883344 1:-0.4218585945316018 2:0.15566399304488754 3:-0.164665303422032 4:-0.8579743106885072 5:0.5651453461779163 6:-0.6582935645654426 7:-0.40838717556437576 8:-0.19258926475033356 9:0.9864284520934183 10:0.7156150246487265 +-15.86200932757056 1:-0.6341453831788726 2:-0.9259180639727085 3:0.302702923864538 4:0.749555004323947 5:-0.7932989575334761 6:-0.5620972938631934 7:0.020542041027870717 8:0.11610338700447698 9:-0.7912600154897766 10:0.5108307672038874 +9.027804254487519 1:0.1746878011084212 2:-0.5872807344913673 3:0.6018547246457264 4:0.5106104933121229 5:0.7329523371170135 6:-0.40058771577765895 7:-0.48753463550174025 8:0.34308791976318 9:0.3407668956765344 10:0.5964472848798394 +15.949172086880687 1:-0.7790584545657173 2:-0.017224094786103317 3:-0.0974907790179953 4:-0.10287391996036166 5:0.6007953354774878 6:-0.7032497754397848 7:-0.36068070856329437 8:0.021391994204512432 9:-0.6509100388083549 10:-0.5410899936281377 +-6.151586699415245 1:-0.5318094974022525 2:-0.830796057445983 3:0.603828597318087 4:0.6660892552257192 5:-0.18529748408390523 6:-0.47166833767648986 7:0.592915541856605 8:0.9944601563352204 9:-0.6981606574244703 10:0.34942553665003584 +2.010398523297265 1:-0.9293899922307269 2:-0.07588009904844029 3:-0.8500855420709359 4:0.12191867923536615 5:-0.528778681165414 6:0.3117086447237414 7:-0.4222963938187163 8:-0.03247894950300623 9:-0.05387792412717962 10:0.4053568741659812 +-6.749023248121471 1:-0.9875370165216966 2:0.7137693455001415 3:-0.2510160963160164 4:0.8732150877079123 5:0.49658934612905314 6:-0.9817012857861731 7:-0.2045309437850289 8:0.7562713668333418 9:-0.6787434327188155 10:-0.6147932888026117 +4.452639829999693 1:-0.35256148944834176 2:0.7581152951164591 3:-0.37755890552299265 4:0.9480813371197343 5:-0.3419340388717347 6:0.3487602851799074 7:-0.5576726724270562 8:0.4899696188087421 9:0.563074979676983 10:0.7865891460062227 +-4.938733988900586 1:-0.4108386466193119 2:0.3287655432069885 3:-0.5853553038038923 4:-0.6480591422742821 5:-0.4787998161299789 6:-0.5828003484675421 7:0.42835744317623003 8:0.8378098987706633 9:-0.5645180498703375 10:0.28981512694646705 +-3.373242544176224 1:0.04989033652617936 2:0.6575826440927308 3:-0.24028051935833128 4:-0.6649808138961095 5:-0.6530198970442704 6:-0.19331254127919362 7:-0.6743004878881749 8:-0.7214986105015062 9:-0.30648035516261385 10:-0.6455097687924254 +-3.2843694575334834 1:-0.3548536057581908 2:0.7350125943559394 3:-0.3635282827378974 4:-0.8552820154885781 5:0.9140879208466111 6:0.21870365067770892 7:-0.17738543429561382 8:-0.052851966578491005 9:-0.36066059517759097 10:-0.9020765799355679 +-3.277146077677404 1:0.910961221014513 2:0.4302525202590246 3:0.11079959840001119 4:-0.3614188274820125 5:0.5080231397310961 6:0.013940825892631237 7:0.33583012240022403 8:0.5008797094229163 9:-0.663083147090173 10:-0.0865028013627418 +-0.202246147968096 1:-0.4929308143227653 2:0.8374300027105082 3:0.08763999085193186 4:-0.499738438136623 5:0.5926071511295365 6:-0.5135396038023627 7:0.6946715869746543 8:-0.5184428793490325 9:0.21753085495829239 10:-0.33796308746585235 +-7.1237150573506955 1:-0.8506203499039495 2:-0.6581804183622855 3:0.6484205342724825 4:0.013914696389758285 5:-0.6214530117645831 6:-0.011163110491807293 7:-0.6025372583334574 8:-0.0371573886520411 9:-0.7933455929226487 10:-0.38653838674273455 +6.298226129171093 1:0.7304191211928768 2:0.8128475475660479 3:-0.03161148630216015 4:-0.6018899317958344 5:0.19277055729934367 6:0.3002272616310928 7:0.949169758830406 8:-0.1011823256970481 9:0.16093341376629966 10:0.9596833606094763 +14.906594657519511 1:0.5053240355803015 2:0.6775698974866082 3:-0.6194771000646291 4:-0.02876927004033525 5:-0.5481504206112477 6:-0.9239150546263386 7:0.471216755072994 8:-0.0027794620943384363 9:-0.8954411386878227 10:0.8991742143686698 +2.1710965297686267 1:0.4578509053930304 2:0.9270194505165124 3:0.22470373699901236 4:0.21526179917432753 5:0.5299563895862103 6:-0.5824108997775908 7:0.03801922095671095 8:-0.5164033454609385 9:0.4370246809487237 10:0.6514133050988229 +15.05806598279517 1:0.48645077410559057 2:0.7821442063987365 3:0.1943681666933883 4:0.8289246958621577 5:-0.08034311437806041 6:0.03709694472527203 7:-0.895481297246602 8:-0.42921579749551664 9:0.5447075872378688 10:0.844397849728866 +-0.4683784136986876 1:-0.5083135683360327 2:0.626070365769088 3:-0.8737725909401557 4:0.725622293853621 5:0.0018794384199978253 6:-0.9343604622552886 7:0.6655593328822609 8:0.47501755618845753 9:0.8388618477210947 10:-0.5143806767304449 +5.823027255871114 1:0.08635467091841886 2:0.6314532702073175 3:0.8862069437865836 4:0.6542025864928516 5:-0.6846784290231471 6:0.048487096050569445 7:0.30828004933669395 8:-0.49438881988995687 9:0.5706936923061823 10:0.037705651885639346 +7.03779380408974 1:-0.07193682621291098 2:-0.5816975957307158 3:-0.8426927090342973 4:-0.37504851992255306 5:0.4473129018316815 6:0.3101938194888525 7:0.6160050428837607 8:-0.913998555949695 9:0.40461966540531313 10:-0.7581141330823786 +-9.770500546345563 1:-0.31358873581579894 2:0.11771478839130278 3:-0.3404842110585631 4:-0.0604362797252429 5:0.2159524972176814 6:-0.24737863017398087 7:-0.8541428610709716 8:-0.06753562283135062 9:-0.11567537916769255 10:-0.5606246203677223 +20.000154367451547 1:-0.344717847914646 2:0.8454969480099985 3:-0.58856299370874 4:0.5884510299634649 5:0.49162879631128553 6:0.7958075013181658 7:0.7781911267315837 8:-0.6780885011989877 9:0.9797694629597928 10:-0.1872163682079866 +-6.239848349456753 1:0.9132793720646253 2:0.1680340663118458 3:0.01740115925682284 4:-0.26580395408599133 5:0.28551914590761074 6:-0.9939706142381568 7:-0.8740927279520219 8:-0.8731218126652498 9:-0.10993630739903892 10:-0.3069565039708746 +-4.173072569004537 1:0.7864835254860851 2:-0.5614522227484218 3:-0.7718396381376464 4:0.49508673889127985 5:0.24030155936964714 6:0.8080778221819038 7:0.05395496402881128 8:-0.3045148076729973 9:-0.6134406357458853 10:0.7447268183581948 +-11.328415936777782 1:-0.10183127796258096 2:0.5689039487721601 3:-0.07015335898840225 4:0.23254189629731292 5:-0.3226974656715038 6:0.2859450214054784 7:-0.4916677058012495 8:-0.27564895614732055 9:-0.9416483232894219 10:-0.7472248333434015 +8.719164753818454 1:-0.8231424386390782 2:-0.03953537069863633 3:-0.3271580541537027 4:0.892192314973022 5:-0.6759017192358232 6:-0.419591686354591 7:-0.23967385135363606 8:0.936992531568956 9:-0.12946409158671512 10:-0.9082863469271643 +22.31738046492344 1:0.37030851555335365 2:-0.06654751559177563 3:-0.5759425437665169 4:0.9179952251152963 5:0.8628921839116359 6:0.8421952184405965 7:0.9625804174561126 8:-0.03075332253237728 9:0.12227386374957994 10:-0.6243390357793757 +-1.189108450798179 1:0.5681776913545951 2:0.46049028271139436 3:-0.366463711956754 4:0.025856437432560275 5:0.7547565372954261 6:0.5506193192167212 7:-0.6279807084274867 8:-0.38698884324386107 9:-0.9885778854008227 10:0.7814740172261654 +2.8767042393531965 1:-0.6841229745503388 2:0.6252203895646273 3:-0.6737644654353572 4:-0.7321040107741059 5:0.3162570540986238 6:0.6211089085315002 7:-0.33984617437403464 8:0.1227089818682312 9:0.04586594421613177 10:-0.4679977358965799 +2.783332151730615 1:-0.39148258540779013 2:-0.3037233649803406 3:0.7955133548911926 4:-0.1729544208044842 5:-0.18247049275020033 6:-0.1315085429729259 7:-4.447133918370483E-4 8:-0.805837119503338 9:0.11574866650006688 10:0.8517519041042676 +-8.99205564094827 1:-0.45501536967706535 2:-0.35829694693457914 3:0.775695048377375 4:-0.25331195582275745 5:0.15524612858817055 6:0.7400717904631442 7:0.8382485596668376 8:-0.5619009369436814 9:0.4386801597659249 10:0.09960232210246622 +-9.808386702564658 1:-0.987404834666963 2:-0.6732308850750186 3:0.5528285725528492 4:-0.8796302275267409 5:0.30705569958232193 6:0.8635312232105203 7:-0.14033675947074187 8:0.5516086773506235 9:-0.7487899106678442 10:0.8851518933134919 +4.948281656077033 1:0.4331269064492329 2:0.4628446087354616 3:0.33730748244242537 4:0.3473124014683382 5:-0.1707966473106064 6:0.8558057784524846 7:0.1390312032172829 8:-0.7918343112673001 9:-0.85993782695915 10:0.33563174747577107 +10.791261476321019 1:-0.5417345768902055 2:-0.06334901799780424 3:0.027652223245870466 4:-0.9881487640651161 5:-0.19441123027957707 6:0.40295156581142355 7:-0.8315553696517317 8:0.11405283165483926 9:0.5377980570161418 10:-0.24581620554740824 +-0.7287230169119936 1:0.33985587202063283 2:0.6841261099887705 3:-0.9441564997438197 4:0.28660913255058906 5:-0.7597915572726905 6:-0.8535957517473378 7:0.609134673753593 8:0.29636368731717977 9:0.05791523580926916 10:0.5589907965230858 +-26.805483428483072 1:0.4572552704218824 2:-0.576096954000229 3:-0.20809839485012915 4:0.9140086345619809 5:-0.5922981637492224 6:-0.8969369345510854 7:0.3741080343476908 8:-0.01854004246308416 9:0.07834089512221243 10:0.3838413057880994 +-16.71909683360509 1:-0.24375714099465773 2:-0.11915875769929496 3:-0.3741442802364221 4:-0.3812947578178094 5:-0.7032156297055756 6:-0.18339122712542388 7:-0.8634662520461855 8:-0.714561692659166 9:0.020558676493369177 10:0.22804428969949986 +-8.822357870425154 1:0.39332200105884363 2:0.5652370435795515 3:0.6220479966351453 4:-0.018976695481651484 5:-0.6868425195058918 6:0.2029750380170401 7:-0.5550873767310935 8:0.16864133648532342 9:-0.008843355054633628 10:0.6472547984399621 +0.36392761004065594 1:-0.9059630492963144 2:-0.41039282402227384 3:-0.006673269562094131 4:-0.4989314017618798 5:-0.17726034513032318 6:0.037764439388023874 7:0.30703957185016595 8:-0.09040426404909185 9:0.38661451965066274 10:0.1630571642147851 +7.415902871490132 1:0.188586850708651 2:-0.33013604761672566 3:0.6667976416858177 4:0.8537064956198137 5:0.03971370422819254 6:-0.43229195778759966 7:-0.9607154505216515 8:0.8413204878098277 9:0.40010565279599897 10:0.7306602852367441 +-4.129456164370826 1:-0.7967510984807558 2:0.545111159425699 3:0.16038228447433012 4:0.6311115528116698 5:-0.01985759480036542 6:-0.9516543115476572 7:0.18022912194075458 8:-0.2177157123823752 9:-0.5433158910016767 10:-0.4603867691069983 +-9.211066571082247 1:-0.3611235296125135 2:0.1402619601475985 3:-0.23132525512647795 4:0.5534401725834837 5:-0.34978585787763206 6:-0.24147682088922773 7:0.8089009287617064 8:-0.09075864922490862 9:-0.05759391404550773 10:0.3371306765964468 +6.52392916461972 1:0.19122050285976044 2:-0.625453376800498 3:-0.26804961781489856 4:0.9669297468261109 5:0.9142504122291741 6:0.7678963028488108 7:-0.6852943621882759 8:0.5898129788981794 9:-0.6580947533327339 10:0.46875109532259396 +-12.46765638103286 1:0.35148385951742633 2:-0.5206883134357769 3:0.35436280451876345 4:-0.8837833467474128 5:0.3433887284719144 6:0.3914771858025621 7:-0.17813796710416252 8:0.6553344538056296 9:0.3721548243590813 10:0.9442185832979726 +-4.937258492902948 1:0.9150659354384785 2:-0.17085510578573548 3:0.8233227233543232 4:0.2539669132090434 5:0.18955049451212935 6:-0.2833188558310358 7:-0.48483747414616496 8:0.8917378487725669 9:-0.13169122011498646 10:0.9815059855284158 +-0.5233425797210233 1:0.4238363705720569 2:-0.18363058784066522 3:0.2949874786744968 4:0.12235592695567354 5:-0.9746310186182559 6:-0.8990867637441311 7:-0.8580982328464586 8:-0.7930887027205957 9:0.16757307988090275 10:0.988861929608575 +-11.904986902675114 1:-0.3692990475534952 2:0.32166293883244323 3:0.3401547722249436 4:0.10009747375878408 5:0.7598877208920192 6:0.2853003389082669 7:0.22880221701675074 8:0.4521491122351502 9:0.33222018268933895 10:-0.9500018867461919 +8.324969054805921 1:-0.48086111720736513 2:0.3705524122401185 3:0.43635448766342133 4:0.6544321903349255 5:0.059000747296945155 6:0.3328036763371236 7:0.9609146376298034 8:0.5943082361322021 9:-0.3074246170581105 10:-0.6763916655761453 +0.21701641918233017 1:-0.29449708766806304 2:0.040640346437143426 3:-0.6524819533513639 4:0.37482287233702394 5:-0.29800608396043216 6:-0.537030944860492 7:0.2862394027536084 8:-0.3783043133672048 9:-0.5292179323972728 10:-0.09583783955916791 +-6.84977373580439 1:0.825136109631339 2:-0.5722868691442817 3:0.11048134523744757 4:-0.5946054293068455 5:0.28061485657354823 6:0.9135611623885838 7:0.35590421873954603 8:0.8943562249941011 9:0.4183378981109729 10:0.5714160298247304 +-11.039347808253828 1:-0.9620263418414967 2:0.22669065740934724 3:-0.7378036492234086 4:-0.4460191511609126 5:-0.2594476006347024 6:-0.989879976130936 7:0.762096015449097 8:0.6983868222083149 9:0.8729993459982626 10:0.3426647417451305 +-5.882860061103163 1:0.5247178959769465 2:-0.6217169944869176 3:-0.13640714414758315 4:0.6608201052790283 5:0.5789945243704264 6:-0.12686057623612612 7:0.7277882307863026 8:-0.47949544949858236 9:0.9781208432412936 10:-0.8980068284379361 +23.52945433069272 1:-0.12339549394875426 2:-0.6769524283089239 3:0.9324962870874394 4:0.28956947294105206 5:-0.2957355479338608 6:0.7504385350771912 7:-0.8769262306643106 8:0.41591311300668155 9:-0.7694611231426498 10:0.9885110924181837 +19.043184423383824 1:-0.13783178628851878 2:-0.853631844645959 3:-0.12792415583066052 4:0.6936898387576049 5:0.8488563282318959 6:-0.6530521292304581 7:0.27832187660440666 8:0.09838048719062442 9:-0.5913230087557231 10:0.260839433107553 +6.83105883806984 1:-0.9085282656519695 2:0.65203708247844 3:-0.687580071985604 4:-0.045008726377529173 5:0.4762107922777967 6:0.15939259525248506 7:-0.46363191848939334 8:-0.25856682230410266 9:0.313842004143269 10:0.5042938214484851 +-9.409197719620593 1:-0.34356198962701945 2:-0.06381545064099514 3:-0.9332814619122063 4:-0.2629675367181199 5:-0.03876014002851913 6:-0.4606936151803749 7:0.49272969757318563 8:0.5550196351479111 9:-0.1758425343811718 10:0.20285868144226837 +-1.3101852978323116 1:-0.3740821549570985 2:-0.9788976137554464 3:-0.6078739734947245 4:-0.8007745980271539 5:0.7381298546055934 6:0.7407750458109124 7:-0.7711351008178868 8:-0.9895256155202141 9:0.35793767138197174 10:0.6589909255086295 +0.5180809608973377 1:0.19289850282287446 2:0.6301214514538145 3:-0.15311307199521518 4:-0.8607670552113709 5:-0.46422067276745316 6:-0.29812862604449464 7:0.519464836430044 8:-0.9480450997338103 9:0.973503038633444 10:-0.7843880226794626 +1.9947872601406775 1:-0.15799682110486057 2:0.22645891561571352 3:0.3141842574216682 4:-0.36086019480721676 5:-0.1429373936064291 6:0.8097261636650581 7:0.11764088861630029 8:-0.9151998265501957 9:0.6536711690904891 10:-0.17232697113157425 +12.352290000973428 1:0.8176113135335772 2:0.39342616792621987 3:0.44011948797971234 4:-0.4412435869837865 5:-0.24509203724837314 6:0.8636655043434542 7:-0.4251583124505798 8:0.2068056615503988 9:-0.3501114760443049 10:-0.23701353324739483 +-2.891643319177732 1:0.7722403010820704 2:0.7994121584045861 3:0.18520464815273208 4:0.7273575609391227 5:-0.3758589216283552 6:-0.7598404862373955 7:0.5748649410179301 8:0.6897988099260968 9:0.5638920860629713 10:-0.992567809902162 +4.803737144054077 1:-0.7367711178556622 2:0.07370548192399351 3:-0.5510509754264419 4:0.11949095653894504 5:-0.7723751845800411 6:0.6450480728551136 7:-0.9508825019800493 8:-0.3250395411575804 9:-0.24913562167143777 10:-0.3617439870343031 +5.051689886526102 1:-0.09854955786627007 2:0.5298224514703289 3:-0.014996634675966236 4:-0.4462048687049027 5:0.22912790083984547 6:-0.513533454471272 7:0.1452771069237353 8:0.371152210841464 9:0.9204732090987018 10:0.7472990716905279 +3.8591142298280476 1:0.7532169023970261 2:0.8291433156934658 3:0.9255891263525324 4:0.3248663809949248 5:0.9905320652281553 6:-0.10383453745167626 7:0.8519246838852608 8:0.6024015353989258 9:-0.06958036249881938 10:0.5862142389541998 +11.30005914221598 1:0.026411858067972194 2:-0.6968445330429607 3:-0.8194566946165238 4:-0.12780659247925996 5:0.8406393783194903 6:-0.24617182945415128 7:0.30199973460219853 8:0.6062457235841974 9:-0.19314055910416927 10:-0.48313233883372964 +-10.288657252388708 1:-0.7388306404020344 2:0.07753617971873439 3:-0.5735498713988352 4:0.2183581175474576 5:-0.873572721679176 6:-0.8788755575751708 7:0.7087858362905568 8:0.7126712562404713 9:-0.7607334319316799 10:-0.4627367552114916 +4.895250842405817 1:0.9772954128558484 2:0.6020087399988574 3:0.16946626176056134 4:-0.011334492807484997 5:-0.5391845039589362 6:-0.4315843612118535 7:0.9065130011032458 8:-0.4860160207844919 9:0.0921755607946162 10:-0.022200673265013515 +1.0479421939727227 1:-0.055436367433274514 2:-0.6710483362647659 3:0.9222786043047919 4:-0.22005981623386184 5:-0.8141845044113469 6:-0.31766631447334226 7:0.6067696845798944 8:-0.1445661385071555 9:0.9172271611227454 10:-0.8079554780561127 +-9.754451457291598 1:0.533713237587885 2:0.6499588942067549 3:-0.49188790503368285 4:-0.6925119436487435 5:0.3345265979579788 6:-0.8117849521672496 7:0.9312055115656304 8:0.3273803451149724 9:0.7567478475677727 10:-0.6256676928549367 +5.869027126482974 1:0.7273823383600513 2:-0.2519813990388706 3:-0.8239584025397881 4:-0.13749750031735974 5:0.6142824732416132 6:0.6251630800232315 7:-0.6138240706157267 8:0.7210396245391326 9:-0.41832155201953714 10:-0.8965988320689853 +9.14234252751227 1:0.7295320896113133 2:0.6150271212503227 3:-0.9785024737101733 4:0.30006672036705506 5:0.11703528191771406 6:0.2971639460196238 7:-0.7920108995168815 8:0.32649036066184567 9:0.03522428067355543 10:-0.1766251898148803 +-5.643698771141404 1:0.27360638280623983 2:-0.6124401810442446 3:0.24950528730210886 4:0.09920211684887548 5:0.7187490549286091 6:0.6212724115415782 7:0.5864634211269566 8:0.114951165007104 9:0.44859258949094283 10:-0.3768352371578665 +12.781643819428492 1:0.9144335582094396 2:-0.4579872615218674 3:-0.6521934534632468 4:0.4462086111316512 5:0.240360283350179 6:0.23974046479581124 7:0.4840439971437822 8:-0.7250363120037027 9:-0.29769496257362094 10:-0.3382859512018359 +8.393556738722923 1:-0.8263387132502396 2:0.9434824094966923 3:0.1607861709872136 4:0.15217100448798782 5:-0.6517945935711484 6:-3.354731073326178E-4 7:0.07846631386981562 8:0.687844846942889 9:0.9277854407325892 10:-0.8855380268588307 +-15.348871155379253 1:-0.5734707274250155 2:-0.2526008551945753 3:0.23752094195309925 4:-0.7074613963298721 5:0.4674168537545218 6:-0.3198997855552628 7:-0.10415974108745596 8:0.5616912699671224 9:0.43742425558560694 10:0.19732530755184596 +13.138260063721448 1:-0.9415220143797984 2:0.6015431361268124 3:0.38898046240229545 4:-0.5750448371021175 5:-0.5803995196333898 6:0.11772198725731342 7:0.7512685244060366 8:-0.6683465740662857 9:0.9515652825318053 10:-0.32405935964523547 +-26.736207182601724 1:-0.47083104147202404 2:0.28748860067800597 3:0.007399318769021113 4:-0.8189013750589702 5:-0.5156633937248272 6:-0.9906928746525896 7:-0.8848419810272337 8:0.2197280161306785 9:0.12855082514870197 10:-0.7862803985146845 +-20.212077258958672 1:0.5609065808412279 2:-0.9201904391147984 3:0.908305865183735 4:0.9255146658282842 5:0.6871419344095282 6:0.4201876217923466 7:-0.42906289792612684 8:0.5787691868233418 9:0.7260522064761288 10:0.28251641556690554 +-0.44652227528840105 1:0.37640618494870504 2:-0.20012451052963542 3:0.9420894309510319 4:0.4218728633972739 5:0.5551974480349577 6:0.07615991810462619 7:-0.12409220462011294 8:-0.22212591926375946 9:0.21160498862483723 10:-0.6092792830633924 +-1.9481059746438067 1:-0.43820030250217457 2:-0.6836588417639442 3:0.733018205278934 4:-0.6564348753121718 5:0.7333385435136448 6:-0.5577457688360317 7:-0.31035811050608975 8:-0.7189201447768139 9:-0.7629842028723994 10:0.7179459779331092 +1.1951162998609508 1:0.19541555859727744 2:-0.4796785506546435 3:0.14123852670749248 4:0.7161847585887089 5:-0.2502765085719578 6:0.8815667909545981 7:-0.6418691905513725 8:0.49600147195728783 9:-0.3091837674381053 10:0.4320162841463153 +-8.99125390483227 1:-0.01183888602092864 2:-0.5901829024081027 3:-0.4343074406380647 4:-0.40450313056290166 5:0.05269590196351448 6:0.733631212862198 7:0.9575176715505025 8:0.5974628692830348 9:-0.20284241796038271 10:0.9577348510907686 +-7.955533026930219 1:0.6104830760481679 2:0.5915483572646505 3:0.3275427350991458 4:0.48361434056132424 5:-0.9466590639056058 6:-0.24662428438925743 7:0.9856361456534972 8:0.9434155212648045 9:0.3466736921968707 10:0.12927980558284102 +-12.500773785355054 1:0.5733321361720694 2:0.39154119830075085 3:-0.9347116355607772 4:0.0920586614926524 5:-0.6959457183810456 6:0.2136579936466858 7:0.17595268059814395 8:0.8828168055200465 9:0.18934277314853398 10:0.7565908584660754 +-11.43180236554046 1:0.082018621904135 2:0.9074181204118958 3:0.46125595008850273 4:0.40328845936169966 5:0.7803064691948824 6:0.20802011482729377 7:-0.41368899649077284 8:-0.8997565495498339 9:-0.1880483213318005 10:-0.15538597634233264 +-5.055293333055445 1:0.4442675297698402 2:0.19045719972922193 3:0.4877438951288897 4:0.7984474402420494 5:0.3251350777349489 6:-0.18676050499673869 7:-0.2701840041572374 8:0.4486609996458524 9:0.5403637876036615 10:-0.8971614841211264 +1.0276485382241776 1:0.7953696703382547 2:-0.3245779681908927 3:-0.3507435626548021 4:0.9510986059491036 5:-0.8655491074076527 6:0.20729233888498677 7:-0.43078300089533594 8:0.19504657032168216 9:-0.3173814102187291 10:-0.042479969052890754 +9.690201571311908 1:0.16852987139559206 2:-0.2514893273405625 3:-0.9993240281686275 4:-0.2166013247997891 5:0.33294165754921234 6:-0.5824203831560628 7:-0.15253642946648616 8:0.3547892367555441 9:-0.047604356104869794 10:0.9229112136183077 +2.2591036039970347 1:-0.9919593184325572 2:0.6323551392201245 3:-0.20815293136790447 4:-0.002395046469600759 5:-0.5015903362190326 6:-0.16698803749234048 7:0.7901657583805675 8:0.33755402936964973 9:-0.3707337678548108 10:0.6995480653730146 +1.5130881908855742 1:0.973710432688613 2:0.6518972988019702 3:-0.16491318496856833 4:-0.6066757853095415 5:0.8762371591845273 6:-0.9056066630820714 7:-0.3388079327070965 8:0.3934146060660142 9:-0.8756168865642253 10:0.9522427911640303 +4.023618949132531 1:-0.14974626191548301 2:-0.5874962377709136 3:0.6780439909311404 4:-0.37291203746764356 5:0.08104034602232169 6:-0.4706923395029945 7:-0.8924577368048239 8:-0.3363784341297067 9:-0.4139746050396018 10:-0.5107600309932907 +-2.8674162893420965 1:-0.7554383289076523 2:-0.1355597928418868 3:-0.3891904246986413 4:0.43949832438341785 5:-0.43859957095446833 6:0.37548094528561093 7:-0.5228633291549518 8:0.24169710795100352 9:0.7131753590746546 10:0.03458176767001042 +4.661164232198611 1:-0.12738868751385546 2:0.9446285809821182 3:-0.17981416859193433 4:-0.7535879975625193 5:-0.08594548726529161 6:-0.9983154486609989 7:-0.7272748852665216 8:-0.8197811039616518 9:0.5177610923333253 10:-0.6180731281817853 +-0.12347625601866746 1:0.10820547757674692 2:0.1825421454873002 3:-0.3412486258429426 4:-0.14925445930975534 5:-0.6594599831395103 6:0.9552502376248448 7:-0.7875626067291472 8:0.3854984181307912 9:0.014303876202374832 10:-0.7300443667550689 +14.546296184422973 1:0.2459523985646046 2:0.9434777073825811 3:0.2112745925235362 4:0.7730688005214974 5:-0.13727994893203732 6:0.6140037510172511 7:0.7545298281668846 8:0.7814551909982614 9:0.0026683642139069264 10:0.5633973602849358 +-19.66731861537172 1:0.9353590082406811 2:0.8768609458072838 3:0.9618210554140587 4:0.12103715737151921 5:-0.7691766106953688 6:-0.4220229608873225 7:-0.18117247651928658 8:-0.14333978019692784 9:-0.31512358142857066 10:0.4022153556528465 +18.84119697288412 1:0.4423204637505467 2:-0.4364821709544735 3:0.3935363893778452 4:-0.7750286735195999 5:-0.6981814766625978 6:0.6889512553826111 7:0.3646791168217727 8:0.0023536025493677837 9:-0.08378048150085249 10:-0.05659381771155503 +17.40329212914592 1:0.9155980216177384 2:-0.35593866074295355 3:0.44775710780914824 4:-0.42914421567532357 5:-0.2734430718503955 6:-0.8937042912745483 7:-0.3143761936611371 8:0.07805814979426184 9:-0.31386151509289784 10:0.6202932236456253 +-19.402336030214553 1:0.462288625222409 2:-0.902975525942725 3:0.7442695642729447 4:0.3802724233363486 5:0.4068685903786069 6:-0.5054707879424198 7:-0.8686166000900748 8:-0.014710838968344575 9:-0.1362606460134499 10:0.8444452252816472 +-3.855123203007599 1:0.5072557393175969 2:0.4626973233672753 3:-0.20910077161652119 4:0.9431415515135266 5:-0.1293690767585638 6:-0.2033835058111637 7:0.501429131658198 8:0.175133281735671 9:-0.6091682952201736 10:0.543010689352589 +1.493768355655548 1:-0.7772812666041105 2:-0.7743738591348672 3:-0.2848754060915175 4:0.3336846848765145 5:0.6219572132443736 6:-0.11144657683793624 7:0.7606913325884337 8:0.8547085151723017 9:-0.31728444617771134 10:-0.4668474022688931 +-17.803626188664516 1:0.5176340000264179 2:0.23048377874011128 3:0.6162746928601832 4:0.16908590014785418 5:0.9695207469685181 6:-0.34713218673384705 7:0.8526833760069625 8:0.9895592279649763 9:0.8805561957342884 10:-0.43452438291417894 +1.4060200157931342 1:-0.41964471941333525 2:0.7738486114171979 3:-0.0964606192284374 4:-0.25351781452566025 5:-0.21065389913054244 6:-0.40490416354122916 7:-0.7696501777959646 8:-0.7710488116813146 9:-0.6777228721053572 10:-0.09381158095961428 +-17.026492264209548 1:0.8367805314799452 2:0.1559190443625338 3:0.048200110551483544 4:-0.7340083467235765 5:0.2661150265782781 6:0.3881661781792165 7:0.9485287302765621 8:0.7201540574376382 9:0.8509234862656003 10:0.9658114866648093 +8.729450606651499 1:0.6404862166906327 2:0.16516090922657822 3:0.29013117743588057 4:0.37056732180613317 5:-0.3376494575302882 6:0.9012625630650577 7:-0.42150978319487 8:-0.05630249989686087 9:0.706104255632954 10:0.01935884085365225 +-5.516822117602276 1:-0.5718348423045241 2:-0.2145777722920088 3:-0.09307467998835195 4:-0.7311274103678378 5:0.5272184003067053 6:-0.00528176138162495 7:0.2852826178935919 8:0.6180999884045897 9:-0.7526372151008776 10:0.20416472532830543 +13.001541259752251 1:-0.5137703877272299 2:-0.15452359837207896 3:-0.25657600903152744 4:-0.9773110735601165 5:0.0718147980090178 6:0.18965211809311744 7:0.7795354990363292 8:0.21976898743223638 9:-0.20364089221752524 10:0.33822332985943304 +18.443388694564348 1:-0.9278344397401963 2:0.2678538727090136 3:-0.46932389854374734 4:0.8494176173177825 5:0.45765527018197694 6:0.20546395745879287 7:-0.199860294349123 8:0.47798730134403256 9:-0.2279771893187592 10:-0.30836118564314274 +8.952089112152663 1:-0.7371671220953286 2:0.8160149639986789 3:-0.026630089188139028 4:0.5931015267817183 5:-0.12216243475451294 6:0.161290795125286 7:0.7423016751095652 8:-0.5212872902985852 9:5.606147011660845E-5 10:-0.409626733921443 +-3.7062463981908027 1:0.5633514321449928 2:0.9914900963311462 3:0.1867799930236702 4:-0.15960235736142847 5:0.1204791067384241 6:-0.7733281422620872 7:-0.887447048141158 8:0.7931515335800692 9:0.732289882696125 10:-0.034992898370363124 +-10.58331129986813 1:0.6627003739767989 2:0.10688718810947728 3:-0.49230090744757216 4:0.8936580036513948 5:0.012227929286241057 6:-0.1442038886014838 7:0.9203452040795139 8:-0.20719832624131262 9:0.29561869366253335 10:-0.08597725084864649 +9.818996211259908 1:0.580133516885796 2:0.07422424429848573 3:0.33438634998226924 4:0.26054797992533696 5:-0.8771304726537796 6:-0.9710990591964794 7:-0.1869287393875041 8:-0.6167738073093247 9:0.34401921428837245 10:0.6737600514607418 +-11.87816749996684 1:-0.7193071334885193 2:0.5247127705364141 3:-0.02978727198197606 4:0.18353223007701058 5:0.40350110058596944 6:-0.36002841871228686 7:-0.20781535546501528 8:0.5517883176456557 9:-0.9938027872744732 10:0.6245061418135955 +-12.198096564661412 1:0.27542314155961156 2:0.3459734388741733 3:-0.38737776987446937 4:0.6244101669171684 5:-0.7801218302490938 6:0.20444733666197523 7:-0.5667599464182904 8:-0.9462131580071358 9:0.5576565405741785 10:-0.9307557040059242 +-3.6610413123521357 1:0.045569951437504086 2:0.32203961277046145 3:-0.04228927426053675 4:-0.9435304938416831 5:0.3750509710699601 6:0.21298970117620142 7:0.5491054691791977 8:0.33695088608872203 9:-0.9923500858828505 10:-0.6402707119893463 +3.782742149409224 1:0.7795250611996376 2:0.43296979846218275 3:-0.6481485005937841 4:0.3235717281667645 5:-0.8067382770768907 6:-0.06740397503468509 7:-0.2835017205434338 8:-0.5875853498478532 9:-0.25699561837680585 10:0.7813561594373908 +-17.065399625876015 1:-0.01772446594568744 2:0.563282914714494 3:0.14232420381013955 4:0.031667902604941345 5:-0.7815348482900619 6:0.3657733497576803 7:0.7208326162626688 8:-0.7863253120180662 9:0.3329194167867533 10:0.6175752945608013 +16.23248797654815 1:0.2615647748812251 2:-0.6631801348538622 3:0.6420349382574477 4:-0.31980528388089846 5:0.38021930887251365 6:-0.060298437830818896 7:-0.8911652782989568 8:0.3424617259589986 9:-0.8515350749364614 10:-0.42354709676980207 +-5.015963911416578 1:-0.07890564237014686 2:-0.09864377281008885 3:-0.13139943914680408 4:0.6610949669857866 5:0.06777579108221987 6:-0.26586245727222835 7:0.17443498956808612 8:-0.3129854922817781 9:-0.37913757211269505 10:0.7627186373372121 +22.647750304177556 1:-0.03666997412165163 2:0.49691867674483814 3:-0.45898559472166967 4:-0.09932248891016404 5:0.05692910907689508 6:-0.5006743461081364 7:0.9992936758550379 8:0.8252525466172065 9:0.9431711015127009 10:-0.4891497061921315 +-3.731112242951253 1:0.44353490207818513 2:0.23112032838224117 3:0.4697682541445527 4:-0.7507514828346664 5:-0.06323257550543837 6:0.0997091431243109 7:0.9394036761509628 8:0.4103869738859962 9:0.6564209227640914 10:-0.5427466755921158 +0.6761872737225261 1:-0.30051626190360503 2:-0.26699232020158803 3:0.8668758741279379 4:-0.40325291744583347 5:-0.9756425738484267 6:-0.5116398654634617 7:0.16424789009043073 8:0.8034099442414044 9:0.8554935001446193 10:0.42747702930667497 +8.449247195197387 1:-0.6588765973399024 2:0.2502285196526799 3:-0.20481547024283087 4:0.3770725284683252 5:-0.169707887761277 6:-0.0804075502584003 7:-0.3580757176408007 8:-0.6042549664471129 9:0.360349278976142 10:0.15899650901110962 +27.111027963108548 1:0.7106841652047162 2:0.6853699382312817 3:-0.8076297545289823 4:0.7932321056591545 5:-0.8011085095234463 6:-0.7017292726737878 7:0.10568649778064154 8:-0.40755358264969255 9:-0.061008981132773865 10:0.08895972651409556 +27.78383192005107 1:-0.8378790218922778 2:-0.6651002504721837 3:0.021049638665430415 4:0.32994334871293196 5:-0.7981304887988308 6:-0.2947962117284566 7:0.9739408711845776 8:0.9442893181893954 9:0.010541491359981059 10:0.8332791453382604 +15.700710963871254 1:-0.538773982400854 2:-0.5966426806845984 3:0.14570292467314627 4:-0.5937791901212952 5:0.7779251136963325 6:0.9962962075803357 7:-0.4774083823748394 8:-0.02528476957876369 9:-0.17305036341254398 10:-0.6013841506503688 +-12.558575788856189 1:0.03250364930617211 2:-0.6723950859659307 3:0.7090474884514901 4:0.25034305882632735 5:0.7036774024093582 6:0.622650236684523 7:0.5776881238206741 8:0.7999754726258337 9:0.21332972563833508 10:0.33849062947231645 +6.2776776518215955 1:-0.009605588630256623 2:0.5786496865369053 3:0.9208276908400748 4:-0.9477397424337148 5:0.6306053656362194 6:0.5396434662389846 7:-0.9841930450269964 8:0.5492682920407823 9:-0.020767248025529206 10:-0.8684655435686472 +6.424586997399564 1:0.861374923392324 2:0.8356037964367176 3:-0.7173479824827564 4:-0.6309584820438245 5:0.16136758138471285 6:-0.7485184163431866 7:-0.006053583829132236 8:-0.8762221084691306 9:0.19195377669247726 10:0.07259634302552964 +-9.64772485466405 1:0.7568015336230662 2:-0.4221524485756756 3:0.011711847664269248 4:0.7387065048724242 5:-0.04347512566745104 6:0.06642100869974654 7:-0.6993705848315939 8:0.16312217088045422 9:-0.11975577990989916 10:-0.6188717473788392 +3.8183706502283647 1:-0.7226937936463145 2:-0.5462756960199258 3:-0.39158419906610664 4:0.014310440945434433 5:-0.9950315917350652 6:-0.1844037449550875 7:0.9023517651879036 8:0.7948752060508435 9:-0.6792702010973877 10:0.40730074403235617 +1.1585019476700562 1:0.5575546848694 2:0.8997032130006739 3:0.6088643323129037 4:0.4872893656051758 5:-0.03977520372748922 6:0.3202565433572042 7:-0.31231768645537206 8:-0.6861153669592381 9:-0.08561643820383291 10:0.522243657731251 +-8.18651039877047 1:-0.809069379967462 2:-0.04827229852445103 3:0.19963602092982624 4:0.2568971171641006 5:-0.0015346733366310428 6:-0.6104625526166494 7:0.7746715041233412 8:-0.7343750018341593 9:-0.49272635466510106 10:-0.8115191199688623 +-3.377690136019927 1:-0.9408187510685164 2:0.9654993263332854 3:-0.16725010447984268 4:0.2574069587853294 5:-0.6930506968932861 6:0.11124762075550176 7:0.39145805505914866 8:0.2906495128462767 9:-0.27454907309824916 10:0.9001175309434777 +12.692571815413245 1:0.7404426710258791 2:0.9060576634778448 3:0.7023712021897308 4:-0.9808126157768493 5:0.03447666475715194 6:-0.4146339211599541 7:-0.7329651749553896 8:-0.2696019807317358 9:-0.9885367164723897 10:-0.8540304023043486 +2.5111054050889354 1:0.7448154454968356 2:-0.7532143233138027 3:-0.9724617436335079 4:0.662620399592766 5:0.45517204589358307 6:0.37409736074838684 7:0.337245076577648 8:0.50951903847353 9:0.2590369923587328 10:-0.3248257475117191 +-8.300340493749207 1:0.5504850435404609 2:0.5077232940244447 3:0.778859307357816 4:0.2601916883813373 5:-0.0032275666062382413 6:0.039752927221862855 7:0.19468432568826755 8:-0.2859531554546477 9:-0.4113477962970582 10:0.43272011953041667 +5.904938653193952 1:0.6622293273002955 2:0.6428891633785236 3:0.6999663090423285 4:0.9132698742913088 5:-0.3960072336866507 6:-0.14500922264286054 7:-0.4390171033743564 8:0.002067106212897185 9:-0.6079874251539117 10:-0.7131416109696531 +5.004048239623824 1:0.7212309895357449 2:0.3425199843383353 3:-0.7290323633040705 4:-0.5563097960397918 5:-0.7577898297822001 6:0.647883070472203 7:-0.23710559062843073 8:0.34398507133293954 9:-0.5440251617348038 10:-0.2971638032112218 +6.21255598077158 1:0.2498685983586959 2:-0.2586857335205359 3:-0.6380810501916263 4:0.17008841621855852 5:0.9485802018202867 6:-0.2580306792121272 7:0.032916516140567786 8:0.32950951532163675 9:-0.9291915084526683 10:0.8454021164786922 +-3.741044592262687 1:0.763300390779396 2:-0.1832552896771813 3:-0.39361907876758573 4:0.9050768615040607 5:-0.8850093869496836 6:0.9302208653737598 7:-0.12972094056755412 8:-0.459442486378308 9:0.5044112394875107 10:0.1399067554681861 +7.378402183384303 1:-0.27686808475610114 2:0.12735524561214606 3:0.5216635958678004 4:-0.9418584785460469 5:0.20441570818728771 6:-0.35073421178920583 7:0.7847501694079704 8:0.3222999552829353 9:0.21025696511089764 10:-0.5813710201294744 +-7.1500991588127265 1:-0.1945259148773102 2:-0.4089845159829022 3:-0.1971859124232922 4:0.9531447983295496 5:0.07996455700202221 6:0.17013529724757648 7:-0.2442095218739362 8:-0.8564146371721229 9:-0.5843910532907555 10:-0.33846471424918767 +-4.288417758202577 1:0.020710986120182184 2:-0.7450564238727908 3:0.3674992023059285 4:0.46737461414601555 5:0.9411702705113052 6:-0.7257365059912877 7:0.5813280037560231 8:-0.01567531846894843 9:0.24734195293533467 10:0.6516001002566887 +5.916426037500391 1:0.8260000862135342 2:-0.11324162495165968 3:0.13061304369435334 4:0.5762591624576425 5:0.548049763999644 6:-0.9751599851764361 7:0.02828821483057764 8:-0.4113286027346803 9:0.8912856976307486 10:-0.8470910204808244 +2.431004294471012 1:0.14088576701299083 2:-0.45104190898994734 3:0.29891134031619115 4:0.955503074037666 5:0.15962522624750242 6:0.7664481093046553 7:0.051697815479792686 8:-0.3471787155014081 9:-0.8007151537631465 10:-0.5598899500902301 +-16.08565904102149 1:0.3946137229565083 2:0.8443779319638349 3:0.5116855547320893 4:-0.5319339991982652 5:0.26564506849312797 6:0.18905397829944448 7:0.1976357098053687 8:0.15505612242632538 9:-0.935633748308776 10:-0.9782957013204887 +18.058440348477184 1:0.8402487524597533 2:-0.6200725197687718 3:-0.6158487677192792 4:0.0709328308135515 5:0.7501256905495493 6:0.38092209802839583 7:-0.8192579128383128 8:-0.9304002828581583 9:-0.6570300818845025 10:-0.5252554781538985 +-1.0026720160736349 1:0.46122079684901474 2:-0.7609201036934166 3:-0.9372178059537293 4:-0.25391036498391006 5:-0.7487429157699828 6:0.38024314675291637 7:0.21886059803198576 8:0.027516853267765207 9:0.33483464322377765 10:0.618580130027746 +-2.6688695419207162 1:-0.8775911623423445 2:-0.6647410420697879 3:0.05948516302547313 4:0.7278526664475804 5:-0.011366224409705028 6:0.33475665968289436 7:-0.6386120399761575 8:0.39609772177595115 9:-0.7872076290319412 10:-0.6195857302948329 +-13.867087895158768 1:-0.9114780602695882 2:0.7997695296649912 3:0.8337252417804881 4:-0.7927267913881113 5:0.6863829853181673 6:0.4162562153517635 7:0.2659922421074139 8:-0.551994669040742 9:-0.6403900338772157 10:-0.8680387717518072 +7.826011095515239 1:-0.2881951904396949 2:-0.19317071325391022 3:-0.06581062483451183 4:-0.6074074436315555 5:-0.9434740067975405 6:0.9426572655575483 7:-0.1812629432036228 8:0.39425575292939863 9:0.5065890539615039 10:0.8969825696966649 +1.4213836206303339 1:0.6996840540120932 2:0.1283999569152492 3:-0.2537375462472613 4:0.24772110606788456 5:0.9040210381745799 6:0.47062010977660207 7:0.9697678931927365 8:-0.9215764371674713 9:-0.27541598110075793 10:0.44277003247067803 +-0.973650798730175 1:-0.2121645467631068 2:-0.6770222508071349 3:-0.5733067523949165 4:0.27979529516037105 5:0.7128588235545461 6:-0.9208763636184307 7:0.14128337151047532 8:-0.002851660400375433 9:0.6943908711123281 10:-0.9201922993121072 +-0.17500848560451965 1:-0.6015070903427717 2:0.7815998200409671 3:-0.9932006200204946 4:-0.3303953411379028 5:-0.3329917860768894 6:-0.2822852019877604 7:0.6834785385197197 8:-0.6458607648553825 9:-0.06171476054995373 10:0.11421513352405444 +-15.310980589416289 1:-0.35290763483001486 2:-0.7263565311032778 3:-0.8688987069582226 4:-0.991098319894185 5:0.7029028082332363 6:-0.20251284356518684 7:-0.10928416773360117 8:0.307764663956116 9:0.6423143148384418 10:-0.15527637175127107 +3.260298266762908 1:-0.7817510582064782 2:0.45336200757318257 3:-0.15365670773321338 4:0.5063951567230205 5:-0.7102867196895872 6:-0.48050036620725955 7:0.9838016675169072 8:0.07854601230194436 9:-0.18953694857147863 10:0.19370072527454107 +3.846123583197846 1:0.6665586449040093 2:-0.2894063530813835 3:0.29965348483445386 4:0.23590344101670313 5:-0.7456743720187828 6:-0.4680876353446175 7:0.8106301610699425 8:0.691280702194663 9:-0.6060141408622055 10:0.34018639920235194 +-10.945919657782932 1:0.7669971723591666 2:0.38702771863552776 3:-0.6664311930513411 4:-0.2817072090916286 5:-0.16955916900934387 6:-0.9425831315444453 7:0.5685476711649924 8:-0.20782258743798265 9:0.015213591474494637 10:0.8183723865760859 +9.820049725467145 1:0.9582163993327679 2:0.7503905881505508 3:0.6255110430336392 4:0.6522701954798096 5:0.09248037700932144 6:-0.2833482854986902 7:-0.9841968940607242 8:-0.9343780716625845 9:-0.605526104070818 10:0.6000165028195326 +11.398715935456183 1:0.6605086903456443 2:0.14675454515266395 3:-0.7880053589830274 4:-0.8570785944515658 5:-0.4317693974151271 6:-0.12244918233307645 7:0.9808241653220866 8:0.5455853515046201 9:0.6870972425676756 10:0.7427686762232875 +-7.846310147695936 1:0.4355817642106965 2:0.7659504362110916 3:-0.3784171977305315 4:-0.5675896574776877 5:-0.20116390539973938 6:0.8775467546326667 7:-0.2824903364469842 8:0.7470660314619617 9:0.8967783051712528 10:0.7133700339519966 +-1.3847391232663768 1:0.3707613476850027 2:0.6931092598460797 3:-0.7701621508103305 4:-0.5679366502518555 5:-0.7234356749703683 6:-0.8059255104944509 7:-0.8307993875388229 8:0.6133975694770035 9:-0.7399749904168824 10:-0.1534990394513953 +16.93981662267873 1:0.6552665678625891 2:0.023248457840923775 3:-0.6850641408327465 4:0.7129790774369389 5:0.04166304042825364 6:-0.7160289667702797 7:-0.4733073680976494 8:0.2720897719417634 9:0.05850741911975099 10:0.34427554125371174 +2.8497179990245116 1:0.6664937514484015 2:0.3343796939204209 3:0.2611910348746209 4:-0.13658810351647 5:-0.5821801257591224 6:0.9854683468621908 7:-0.21396555404689188 8:-0.5923272173716836 9:-0.5674796199927252 10:-0.5681633547764235 +4.981807952389501 1:0.7517426071091595 2:0.7029291090701855 3:0.7126619831046563 4:-0.9982007415355478 5:-0.7743343367502893 6:-0.9048858749551119 7:-0.8243783842398396 8:0.4936163270697016 9:-0.6835495591484724 10:0.8412758607464845 +8.508637575729951 1:0.6837354268578517 2:-0.435346907350056 3:0.6597448795477736 4:0.8870204157376871 5:-0.6938576101541436 6:0.9199495715292882 7:0.33119640706964293 8:-0.6181273221979411 9:0.12929034268333317 10:0.6855150395247027 +14.369378079132883 1:-0.9489372180887643 2:-0.6577177233364067 3:0.543899463531252 4:0.5411152154119976 5:0.43733244485250733 6:0.5927084968109424 7:0.6100068837998656 8:0.9392735722529637 9:-0.9806701698603073 10:0.3984176141500082 +-6.456944198081549 1:0.8380442392342373 2:0.05166133486184443 3:-0.25864153418691704 4:-0.9506672344106888 5:0.5227275493542325 6:-0.03899736644563956 7:0.7660133053649136 8:-0.9375236703284806 9:-0.37213210747743175 10:0.0560768367274771 +-10.041353112580456 1:0.5293717914660876 2:-0.35874932480194044 3:0.14403824250820763 4:-0.4106496629336782 5:-0.794648717231762 6:-0.4369956159772408 7:0.8273613210141495 8:0.9212255384858874 9:0.00409867676727993 10:-0.23796544184855795 +-6.606325361718908 1:0.2765102732490652 2:0.10184669160432525 3:-0.9406443798496789 4:-0.46661976112717896 5:-0.5836573778289609 6:0.1308554421925976 7:0.05232199712543473 8:-0.4965370542771641 9:-0.3695836654343949 10:0.4874427445939513 +-15.359544879832677 1:-0.8253830145927283 2:0.29683545543963885 3:-0.9790356574071053 4:0.33749594518426473 5:-0.449483349548623 6:0.1740013774913005 7:0.5737323257916764 8:0.20159372721320645 9:-0.1812760896634873 10:-0.17652712339895738 +2.1801769966756845 1:0.3664130766917151 2:-0.1929450967547921 3:-0.7834945448457515 4:-0.03806442314852432 5:-0.6167622313628849 6:0.34919852301325394 7:-0.785891329691004 8:-0.5704062599527768 9:0.9846140894872721 10:-0.548571249100203 +-2.7006646885251415 1:-0.48505178676353067 2:0.06347121974094883 3:-0.3704723119141229 4:0.7407080276548548 5:0.06713252857406937 6:-0.2103524488773294 7:-0.9402467715192988 8:-0.8555624501612784 9:0.6244760190429901 10:-0.9038885681517279 +0.2105613019270259 1:-0.17125223509187282 2:-0.23328463772140529 3:-0.6497773470047024 4:0.33111604806115524 5:0.7944287248398398 6:0.5163977380074081 7:-0.025715995643062595 8:0.11762566041047462 9:0.9938658554834845 10:0.5363394203614278 +-0.6433952980357234 1:-0.905126800719938 2:0.5826442985002787 3:-0.8207546276288018 4:-0.0773547002692121 5:-0.6420058913410687 6:-0.9290787206193325 7:0.21829202840889095 8:-0.7752845890678082 9:0.4533233304372326 10:0.5457315861825041 +5.622874731146287 1:0.5486636398086722 2:-0.21867854114956642 3:0.13260110994566032 4:-0.024868470628895967 5:0.9246597814546305 6:0.07490395250443149 7:-0.21327567620097132 8:-0.33970581204395867 9:-0.19408398882121713 10:0.9757334811378136 +-18.27521356600463 1:-0.489685764918109 2:0.6832314342743568 3:0.9115808714640257 4:-4.680515344936964E-4 5:0.03760860984717218 6:0.4344127744883004 7:-0.30019645809377127 8:-0.48339658188341783 9:-0.5488933834939806 10:-0.4735052851773165 +5.518650144654079 1:-0.16881374315243192 2:0.22747702179774354 3:-0.8555270909193926 4:-0.6914231522703247 5:0.03618437407657238 6:-0.8404831131806643 7:0.16378525699004887 8:-0.333895928854854 9:0.23026574917978326 10:0.9409087845740918 +2.5599738684677646 1:-0.24371170373626905 2:-0.1752613047793694 3:-0.7930324885557696 4:0.17288443448968627 5:0.7233942014077801 6:0.47222694561171963 7:0.7878187692414558 8:-0.6520011755878357 9:-0.9952507460157223 10:-0.32951026378415094 +-8.508663400554862 1:0.9194236423060742 2:0.9517284917259223 3:-0.18723709334016392 4:-0.24913001260985546 5:0.8818286401027424 6:0.13661210218384512 7:-0.40792517201812983 8:-0.33132907984544957 9:-0.49137388288628703 10:-0.3273925353006979 +-10.233439586953153 1:0.0960128812383454 2:-0.8611756848964027 3:0.11807312551418647 4:-0.24570750746947145 5:-0.047826307143366886 6:-0.717269426008625 7:-0.2841658181308486 8:-0.31500935950449516 9:0.23183474949267713 10:-0.512986169560546 +-6.3459370724834265 1:0.9537835418930307 2:0.4598546399405288 3:-0.257013655072986 4:-0.29185820894937575 5:-0.6843688281544562 6:0.8343952028925479 7:-0.9656517094615942 8:-0.447440560943553 9:-0.9510349521362857 10:0.5918946980259567 +1.114406550703455 1:-0.5721838436595965 2:0.1201917297381252 3:-0.5253701290141362 4:-0.5874011312890843 5:0.7893580092022578 6:-0.18012813622584134 7:0.4781905737504004 8:-4.6732390143988667E-4 9:-0.7965374182885014 10:-0.8515444146742359 +8.688243146888663 1:0.2245581140502393 2:-0.0697600364101425 3:-0.7661833153629154 4:-0.2289151515902894 5:-0.5643191391300282 6:0.08069861795512168 7:-0.9670317635091523 8:0.14826752863715287 9:0.9325364047311011 10:0.4071178661803092 +14.896035572185347 1:0.20630949870309911 2:-0.5738578325975092 3:0.5664829389128903 4:0.3732752326637825 5:0.04079303403038881 6:-0.6604984910400766 7:0.15136076091734352 8:-0.6244939282579305 9:-0.5236288549540624 10:0.47284992666739023 +4.396558596072123 1:0.5565602414172521 2:0.1444095747909111 3:0.028227502879770272 4:0.38297378287943773 5:-0.26739745457451725 6:-0.708209627997985 7:0.7604483272526881 8:0.8072075261139096 9:0.11460574885028274 10:-0.07669406807610635 +1.7457141275341528 1:0.3668576517164046 2:-0.5352200081463954 3:0.5853385976871426 4:-0.4482551060006992 5:-0.5676795208498786 6:0.8043295590331514 7:-0.02160829797068753 8:0.42281303847010454 9:0.027894531623162466 10:-0.541120112980032 +-15.334767479922341 1:-0.036676500783341615 2:0.804758241454594 3:-0.0642091078911513 4:0.1402705435750966 5:-0.9215322030628859 6:0.7951173116514345 7:-0.994819896842561 8:0.2382406912119326 9:0.6634166177958731 10:0.7623222578718651 +5.017247792012723 1:-0.5925393497160352 2:0.48506599831456443 3:-0.5079795649118319 4:0.6668553329827696 5:-0.1103174867779837 6:0.7048535526809607 7:-0.9819230894106692 8:0.19609620625274982 9:0.5173985272313828 10:-0.11269849619148875 +6.201510810634532 1:-0.6802942101330738 2:0.898957584078176 3:0.853293387559251 4:0.6089336185656065 5:-0.9352626288322801 6:0.3208583332890447 7:-0.964481544931127 8:-0.8294773786068643 9:-0.8817311989413614 10:0.5165364663580934 +19.174935630244647 1:-0.20026105252200788 2:0.7276178994821614 3:0.7748716685190951 4:-0.7423420145576229 5:0.13147770471985032 6:-0.8382015712894606 7:0.021760992104270294 8:-0.24586987823702944 9:-0.05958177281299326 10:0.47347236224860834 +-14.822152909751189 1:0.7255660700197897 2:-0.22751988933383926 3:-0.08409197084114317 4:0.072750455428638 5:0.1841692073989072 6:-0.33838406658716513 7:-0.44701963574290526 8:0.5031210959133143 9:0.09640858549693743 10:0.9857351194637847 +-6.310082095945472 1:-0.7692076133438608 2:0.8533601511731044 3:0.676268298275629 4:-0.783895030001512 5:-0.8195462819549715 6:0.3963101354895673 7:-0.6254922461977397 8:-0.7521135990258581 9:-0.8032003997516024 10:0.8388672800826487 +8.853802632714807 1:0.46950948246522195 2:-0.6148693581037883 3:0.028739220735170656 4:-0.024281643566285815 5:-0.3495458137792231 6:-0.12347196435522867 7:0.5253894065203333 8:0.5100713458262918 9:0.63975795701667 10:0.08644353314625053 +-10.293714040655924 1:-0.17971950768550893 2:-0.6621720204354751 3:0.888036885802737 4:-0.04977483590350751 5:-0.8964991391283221 6:0.6873490822438724 7:0.42369087852118836 8:0.48972554317650663 9:0.8617233178519317 10:-0.8348331836605276 +0.23985611568891863 1:0.050526696983213215 2:0.8544297176525815 3:0.8586358519997579 4:-0.021299752441110487 5:0.2606696929560939 6:-0.39446486150105997 7:-0.4166234435381613 8:-0.6097643266459343 9:0.46633996256010146 10:-0.22521646199731027 +21.57719950299147 1:-0.5878491135126271 2:0.802134056970349 3:-0.5471017580843434 4:0.6067966843473331 5:-0.691712219323007 6:0.7814323754276735 7:0.31689445927290016 8:-0.1668780061940922 9:0.5285692389527452 10:0.8027091025203246 +-0.7836538830323514 1:0.5766794801558166 2:0.8281463568384935 3:0.5087453132796032 4:0.5212853344036532 5:0.6294700781054074 6:-0.9385097739886943 7:-0.13127371407538302 8:0.9845390503404141 9:-0.7224166213906742 10:-0.11155327354295896 +6.710413649604831 1:-0.6919803228062729 2:-0.6526904017578161 3:-0.34211291948607014 4:0.9094842803341618 5:-0.9454398661995895 6:0.3780766512494227 7:0.5823385348738088 8:0.8817830051841733 9:-0.514843382774189 10:0.32579701113259296 +5.384747201245483 1:-0.9661857672086316 2:-0.519769534339731 3:-0.4466396856529564 4:-0.4370113024678448 5:-0.6397400687811474 6:0.08225309277403725 7:-0.25936524603970756 8:-0.1711463274766858 9:-0.42848099098115755 10:-0.8096854737357237 +7.688509532916731 1:0.3892872094452817 2:-0.13306620868059982 3:-0.932974891205117 4:-0.8921357494146682 5:0.4806996560679244 6:-0.21500288444218696 7:-0.8911268070046585 8:-0.9510264953215406 9:0.1899740993687098 10:-0.43944320580463536 +2.2546997585565296 1:-0.5963883101717473 2:-0.01115153603404151 3:0.8781871380140298 4:0.7736250964135891 5:-0.7325745711528668 6:0.2518631794989008 7:0.5760249284318746 8:0.8690107952725199 9:0.02320853138646095 10:0.08570951531344417 +5.597710012706039 1:-0.5323512235815979 2:0.03366944321271936 3:0.5143537675853551 4:0.28471250955283445 5:0.4012202634439719 6:0.12032039285431151 7:-0.08108716844967812 8:0.30231384371011294 9:0.03259115565303028 10:0.9567467516929173 +-12.977848725392104 1:-0.5908891529017144 2:-0.7678208242918028 3:0.8512434510178621 4:-0.14910196410347298 5:0.6250260229199651 6:0.5393378705290228 7:-0.9573580597625002 8:-0.864881502860934 9:0.4175735160503429 10:0.4872169215922426 +10.35887243981476 1:-0.09126023790482862 2:0.18852634121926526 3:-0.13523918100503107 4:0.8333842692409983 5:-0.6015442103644761 6:0.5347736461652235 7:-0.823489760471118 8:0.5562688292037381 9:-0.807478561291906 10:-0.666881464988351 +0.4250502150408626 1:0.7771717566171905 2:-0.8729202752916785 3:-0.25782888805127024 4:-0.13605474993771205 5:0.5911781118120025 6:-0.8444023967853633 7:0.6787302541469229 8:-0.5444299313083194 9:0.356121883138657 10:-0.8845333845080687 +-0.8743487925900991 1:-0.9087681208947878 2:-0.292625136739453 3:-0.35113758823291774 4:-0.705933223571676 5:-0.6882289471031144 6:0.8350131255297044 7:-0.7659016065609232 8:0.11400114955653207 9:-0.9466143658505732 10:-0.5033643125229932 +-5.615143641864686 1:-0.6688289820084299 2:-0.4623159855015393 3:0.012827807007503855 4:-0.44521264878006117 5:-0.5563111031201406 6:-0.6065295981983794 7:0.3806712426786838 8:-0.11317152118817408 9:0.507896127467435 10:-0.8487801189674464 +-0.1829397047693725 1:0.09377558075225512 2:0.5774384503027374 3:-0.7104684187448009 4:-0.07285914169135976 5:-0.8797920488335114 6:0.6099615504974201 7:-0.8047440624324915 8:-0.6877856114263066 9:0.5843004021777447 10:0.5190581455348131 +18.479680552020344 1:0.9635517137863321 2:0.9954507816218203 3:0.11959899129360774 4:0.3753283274192787 5:-0.9386713095183621 6:0.0926833703812433 7:0.48003949462701323 8:0.9432769781973132 9:-0.9637036991931129 10:-0.4064407447273508 +1.3850645873427236 1:0.14476184437006356 2:-0.11280617018445871 3:-0.4385084538142101 4:-0.5961619435136434 5:0.419554626795412 6:-0.5047767472761191 7:0.457180284958592 8:-0.9129360314541999 9:-0.6320022059786656 10:-0.44989608519659363 diff --git a/data/mllib/sample_movielens_data.txt b/data/mllib/sample_movielens_data.txt new file mode 100644 index 0000000000000..f0eee19875f76 --- /dev/null +++ b/data/mllib/sample_movielens_data.txt @@ -0,0 +1,1501 @@ +0::2::3 +0::3::1 +0::5::2 +0::9::4 +0::11::1 +0::12::2 +0::15::1 +0::17::1 +0::19::1 +0::21::1 +0::23::1 +0::26::3 +0::27::1 +0::28::1 +0::29::1 +0::30::1 +0::31::1 +0::34::1 +0::37::1 +0::41::2 +0::44::1 +0::45::2 +0::46::1 +0::47::1 +0::48::1 +0::50::1 +0::51::1 +0::54::1 +0::55::1 +0::59::2 +0::61::2 +0::64::1 +0::67::1 +0::68::1 +0::69::1 +0::71::1 +0::72::1 +0::77::2 +0::79::1 +0::83::1 +0::87::1 +0::89::2 +0::91::3 +0::92::4 +0::94::1 +0::95::2 +0::96::1 +0::98::1 +0::99::1 +1::2::2 +1::3::1 +1::4::2 +1::6::1 +1::9::3 +1::12::1 +1::13::1 +1::14::1 +1::16::1 +1::19::1 +1::21::3 +1::27::1 +1::28::3 +1::33::1 +1::36::2 +1::37::1 +1::40::1 +1::41::2 +1::43::1 +1::44::1 +1::47::1 +1::50::1 +1::54::1 +1::56::2 +1::57::1 +1::58::1 +1::60::1 +1::62::4 +1::63::1 +1::67::1 +1::68::4 +1::70::2 +1::72::1 +1::73::1 +1::74::2 +1::76::1 +1::77::3 +1::78::1 +1::81::1 +1::82::1 +1::85::3 +1::86::2 +1::88::2 +1::91::1 +1::92::2 +1::93::1 +1::94::2 +1::96::1 +1::97::1 +2::4::3 +2::6::1 +2::8::5 +2::9::1 +2::10::1 +2::12::3 +2::13::1 +2::15::2 +2::18::2 +2::19::4 +2::22::1 +2::26::1 +2::28::1 +2::34::4 +2::35::1 +2::37::5 +2::38::1 +2::39::5 +2::40::4 +2::47::1 +2::50::1 +2::52::2 +2::54::1 +2::55::1 +2::57::2 +2::58::2 +2::59::1 +2::61::1 +2::62::1 +2::64::1 +2::65::1 +2::66::3 +2::68::1 +2::71::3 +2::76::1 +2::77::1 +2::78::1 +2::80::1 +2::83::5 +2::85::1 +2::87::2 +2::88::1 +2::89::4 +2::90::1 +2::92::4 +2::93::5 +3::0::1 +3::1::1 +3::2::1 +3::7::3 +3::8::3 +3::9::1 +3::14::1 +3::15::1 +3::16::1 +3::18::4 +3::19::1 +3::24::3 +3::26::1 +3::29::3 +3::33::1 +3::34::3 +3::35::1 +3::36::3 +3::37::1 +3::38::2 +3::43::1 +3::44::1 +3::46::1 +3::47::1 +3::51::5 +3::52::3 +3::56::1 +3::58::1 +3::60::3 +3::62::1 +3::65::2 +3::66::1 +3::67::1 +3::68::2 +3::70::1 +3::72::2 +3::76::3 +3::79::3 +3::80::4 +3::81::1 +3::83::1 +3::84::1 +3::86::1 +3::87::2 +3::88::4 +3::89::1 +3::91::1 +3::94::3 +4::1::1 +4::6::1 +4::8::1 +4::9::1 +4::10::1 +4::11::1 +4::12::1 +4::13::1 +4::14::2 +4::15::1 +4::17::1 +4::20::1 +4::22::1 +4::23::1 +4::24::1 +4::29::4 +4::30::1 +4::31::1 +4::34::1 +4::35::1 +4::36::1 +4::39::2 +4::40::3 +4::41::4 +4::43::2 +4::44::1 +4::45::1 +4::46::1 +4::47::1 +4::49::2 +4::50::1 +4::51::1 +4::52::4 +4::54::1 +4::55::1 +4::60::3 +4::61::1 +4::62::4 +4::63::3 +4::65::1 +4::67::2 +4::69::1 +4::70::4 +4::71::1 +4::73::1 +4::78::1 +4::84::1 +4::85::1 +4::87::3 +4::88::3 +4::89::2 +4::96::1 +4::97::1 +4::98::1 +4::99::1 +5::0::1 +5::1::1 +5::4::1 +5::5::1 +5::8::1 +5::9::3 +5::10::2 +5::13::3 +5::15::1 +5::19::1 +5::20::3 +5::21::2 +5::23::3 +5::27::1 +5::28::1 +5::29::1 +5::31::1 +5::36::3 +5::38::2 +5::39::1 +5::42::1 +5::48::3 +5::49::4 +5::50::3 +5::51::1 +5::52::1 +5::54::1 +5::55::5 +5::56::3 +5::58::1 +5::60::1 +5::61::1 +5::64::3 +5::65::2 +5::68::4 +5::70::1 +5::71::1 +5::72::1 +5::74::1 +5::79::1 +5::81::2 +5::84::1 +5::85::1 +5::86::1 +5::88::1 +5::90::4 +5::91::2 +5::95::2 +5::99::1 +6::0::1 +6::1::1 +6::2::3 +6::5::1 +6::6::1 +6::9::1 +6::10::1 +6::15::2 +6::16::2 +6::17::1 +6::18::1 +6::20::1 +6::21::1 +6::22::1 +6::24::1 +6::25::5 +6::26::1 +6::28::1 +6::30::1 +6::33::1 +6::38::1 +6::39::1 +6::43::4 +6::44::1 +6::45::1 +6::48::1 +6::49::1 +6::50::1 +6::53::1 +6::54::1 +6::55::1 +6::56::1 +6::58::4 +6::59::1 +6::60::1 +6::61::3 +6::63::3 +6::66::1 +6::67::3 +6::68::1 +6::69::1 +6::71::2 +6::73::1 +6::75::1 +6::77::1 +6::79::1 +6::81::1 +6::84::1 +6::85::3 +6::86::1 +6::87::1 +6::88::1 +6::89::1 +6::91::2 +6::94::1 +6::95::2 +6::96::1 +7::1::1 +7::2::2 +7::3::1 +7::4::1 +7::7::1 +7::10::1 +7::11::2 +7::14::2 +7::15::1 +7::16::1 +7::18::1 +7::21::1 +7::22::1 +7::23::1 +7::25::5 +7::26::1 +7::29::4 +7::30::1 +7::31::3 +7::32::1 +7::33::1 +7::35::1 +7::37::2 +7::39::3 +7::40::2 +7::42::2 +7::44::1 +7::45::2 +7::47::4 +7::48::1 +7::49::1 +7::53::1 +7::54::1 +7::55::1 +7::56::1 +7::59::1 +7::61::2 +7::62::3 +7::63::2 +7::66::1 +7::67::3 +7::74::1 +7::75::1 +7::76::3 +7::77::1 +7::81::1 +7::82::1 +7::84::2 +7::85::4 +7::86::1 +7::92::2 +7::96::1 +7::97::1 +7::98::1 +8::0::1 +8::2::4 +8::3::2 +8::4::2 +8::5::1 +8::7::1 +8::9::1 +8::11::1 +8::15::1 +8::18::1 +8::19::1 +8::21::1 +8::29::5 +8::31::3 +8::33::1 +8::35::1 +8::36::1 +8::40::2 +8::44::1 +8::45::1 +8::50::1 +8::51::1 +8::52::5 +8::53::5 +8::54::1 +8::55::1 +8::56::1 +8::58::4 +8::60::3 +8::62::4 +8::64::1 +8::67::3 +8::69::1 +8::71::1 +8::72::3 +8::77::3 +8::78::1 +8::79::1 +8::83::1 +8::85::5 +8::86::1 +8::88::1 +8::90::1 +8::92::2 +8::95::4 +8::96::3 +8::97::1 +8::98::1 +8::99::1 +9::2::3 +9::3::1 +9::4::1 +9::5::1 +9::6::1 +9::7::5 +9::9::1 +9::12::1 +9::14::3 +9::15::1 +9::19::1 +9::21::1 +9::22::1 +9::24::1 +9::25::1 +9::26::1 +9::30::3 +9::32::4 +9::35::2 +9::36::2 +9::37::2 +9::38::1 +9::39::1 +9::43::3 +9::49::5 +9::50::3 +9::53::1 +9::54::1 +9::58::1 +9::59::1 +9::60::1 +9::61::1 +9::63::3 +9::64::3 +9::68::1 +9::69::1 +9::70::3 +9::71::1 +9::73::2 +9::75::1 +9::77::2 +9::81::2 +9::82::1 +9::83::1 +9::84::1 +9::86::1 +9::87::4 +9::88::1 +9::90::3 +9::94::2 +9::95::3 +9::97::2 +9::98::1 +10::0::3 +10::2::4 +10::4::3 +10::7::1 +10::8::1 +10::10::1 +10::13::2 +10::14::1 +10::16::2 +10::17::1 +10::18::1 +10::21::1 +10::22::1 +10::24::1 +10::25::3 +10::28::1 +10::35::1 +10::36::1 +10::37::1 +10::38::1 +10::39::1 +10::40::4 +10::41::2 +10::42::3 +10::43::1 +10::49::3 +10::50::1 +10::51::1 +10::52::1 +10::55::2 +10::56::1 +10::58::1 +10::63::1 +10::66::1 +10::67::2 +10::68::1 +10::75::1 +10::77::1 +10::79::1 +10::86::1 +10::89::3 +10::90::1 +10::97::1 +10::98::1 +11::0::1 +11::6::2 +11::9::1 +11::10::1 +11::11::1 +11::12::1 +11::13::4 +11::16::1 +11::18::5 +11::19::4 +11::20::1 +11::21::1 +11::22::1 +11::23::5 +11::25::1 +11::27::5 +11::30::5 +11::32::5 +11::35::3 +11::36::2 +11::37::2 +11::38::4 +11::39::1 +11::40::1 +11::41::1 +11::43::2 +11::45::1 +11::47::1 +11::48::5 +11::50::4 +11::51::3 +11::59::1 +11::61::1 +11::62::1 +11::64::1 +11::66::4 +11::67::1 +11::69::5 +11::70::1 +11::71::3 +11::72::3 +11::75::3 +11::76::1 +11::77::1 +11::78::1 +11::79::5 +11::80::3 +11::81::4 +11::82::1 +11::86::1 +11::88::1 +11::89::1 +11::90::4 +11::94::2 +11::97::3 +11::99::1 +12::2::1 +12::4::1 +12::6::1 +12::7::3 +12::8::1 +12::14::1 +12::15::2 +12::16::4 +12::17::5 +12::18::2 +12::21::1 +12::22::2 +12::23::3 +12::24::1 +12::25::1 +12::27::5 +12::30::2 +12::31::4 +12::35::5 +12::38::1 +12::41::1 +12::44::2 +12::45::1 +12::50::4 +12::51::1 +12::52::1 +12::53::1 +12::54::1 +12::56::2 +12::57::1 +12::60::1 +12::63::1 +12::64::5 +12::66::3 +12::67::1 +12::70::1 +12::72::1 +12::74::1 +12::75::1 +12::77::1 +12::78::1 +12::79::3 +12::82::2 +12::83::1 +12::84::1 +12::85::1 +12::86::1 +12::87::1 +12::88::1 +12::91::3 +12::92::1 +12::94::4 +12::95::2 +12::96::1 +12::98::2 +13::0::1 +13::3::1 +13::4::2 +13::5::1 +13::6::1 +13::12::1 +13::14::2 +13::15::1 +13::17::1 +13::18::3 +13::20::1 +13::21::1 +13::22::1 +13::26::1 +13::27::1 +13::29::3 +13::31::1 +13::33::1 +13::40::2 +13::43::2 +13::44::1 +13::45::1 +13::49::1 +13::51::1 +13::52::2 +13::53::3 +13::54::1 +13::62::1 +13::63::2 +13::64::1 +13::68::1 +13::71::1 +13::72::3 +13::73::1 +13::74::3 +13::77::2 +13::78::1 +13::79::2 +13::83::3 +13::85::1 +13::86::1 +13::87::2 +13::88::2 +13::90::1 +13::93::4 +13::94::1 +13::98::1 +13::99::1 +14::1::1 +14::3::3 +14::4::1 +14::5::1 +14::6::1 +14::7::1 +14::9::1 +14::10::1 +14::11::1 +14::12::1 +14::13::1 +14::14::3 +14::15::1 +14::16::1 +14::17::1 +14::20::1 +14::21::1 +14::24::1 +14::25::2 +14::27::1 +14::28::1 +14::29::5 +14::31::3 +14::34::1 +14::36::1 +14::37::2 +14::39::2 +14::40::1 +14::44::1 +14::45::1 +14::47::3 +14::48::1 +14::49::1 +14::51::1 +14::52::5 +14::53::3 +14::54::1 +14::55::1 +14::56::1 +14::62::4 +14::63::5 +14::67::3 +14::68::1 +14::69::3 +14::71::1 +14::72::4 +14::73::1 +14::76::5 +14::79::1 +14::82::1 +14::83::1 +14::88::1 +14::93::3 +14::94::1 +14::95::2 +14::96::4 +14::98::1 +15::0::1 +15::1::4 +15::2::1 +15::5::2 +15::6::1 +15::7::1 +15::13::1 +15::14::1 +15::15::1 +15::17::2 +15::19::2 +15::22::2 +15::23::2 +15::25::1 +15::26::3 +15::27::1 +15::28::2 +15::29::1 +15::32::1 +15::33::2 +15::34::1 +15::35::2 +15::36::1 +15::37::1 +15::39::1 +15::42::1 +15::46::5 +15::48::2 +15::50::2 +15::51::1 +15::52::1 +15::58::1 +15::62::1 +15::64::3 +15::65::2 +15::72::1 +15::73::1 +15::74::1 +15::79::1 +15::80::1 +15::81::1 +15::82::2 +15::85::1 +15::87::1 +15::91::2 +15::96::1 +15::97::1 +15::98::3 +16::2::1 +16::5::3 +16::6::2 +16::7::1 +16::9::1 +16::12::1 +16::14::1 +16::15::1 +16::19::1 +16::21::2 +16::29::4 +16::30::2 +16::32::1 +16::34::1 +16::36::1 +16::38::1 +16::46::1 +16::47::3 +16::48::1 +16::49::1 +16::50::1 +16::51::5 +16::54::5 +16::55::1 +16::56::2 +16::57::1 +16::60::1 +16::63::2 +16::65::1 +16::67::1 +16::72::1 +16::74::1 +16::80::1 +16::81::1 +16::82::1 +16::85::5 +16::86::1 +16::90::5 +16::91::1 +16::93::1 +16::94::3 +16::95::2 +16::96::3 +16::98::3 +16::99::1 +17::2::1 +17::3::1 +17::6::1 +17::10::4 +17::11::1 +17::13::2 +17::17::5 +17::19::1 +17::20::5 +17::22::4 +17::28::1 +17::29::1 +17::33::1 +17::34::1 +17::35::2 +17::37::1 +17::38::1 +17::45::1 +17::46::5 +17::47::1 +17::49::3 +17::51::1 +17::55::5 +17::56::3 +17::57::1 +17::58::1 +17::59::1 +17::60::1 +17::63::1 +17::66::1 +17::68::4 +17::69::1 +17::70::1 +17::72::1 +17::73::3 +17::78::1 +17::79::1 +17::82::2 +17::84::1 +17::90::5 +17::91::3 +17::92::1 +17::93::1 +17::94::4 +17::95::2 +17::97::1 +18::1::1 +18::4::3 +18::5::2 +18::6::1 +18::7::1 +18::10::1 +18::11::4 +18::12::2 +18::13::1 +18::15::1 +18::18::1 +18::20::1 +18::21::2 +18::22::1 +18::23::2 +18::25::1 +18::26::1 +18::27::1 +18::28::5 +18::29::1 +18::31::1 +18::32::1 +18::36::1 +18::38::5 +18::39::5 +18::40::1 +18::42::1 +18::43::1 +18::44::4 +18::46::1 +18::47::1 +18::48::1 +18::51::2 +18::55::1 +18::56::1 +18::57::1 +18::62::1 +18::63::1 +18::66::3 +18::67::1 +18::70::1 +18::75::1 +18::76::3 +18::77::1 +18::80::3 +18::81::3 +18::82::1 +18::83::5 +18::84::1 +18::97::1 +18::98::1 +18::99::2 +19::0::1 +19::1::1 +19::2::1 +19::4::1 +19::6::2 +19::11::1 +19::12::1 +19::14::1 +19::23::1 +19::26::1 +19::31::1 +19::32::4 +19::33::1 +19::34::1 +19::37::1 +19::38::1 +19::41::1 +19::43::1 +19::45::1 +19::48::1 +19::49::1 +19::50::2 +19::53::2 +19::54::3 +19::55::1 +19::56::2 +19::58::1 +19::61::1 +19::62::1 +19::63::1 +19::64::1 +19::65::1 +19::69::2 +19::72::1 +19::74::3 +19::76::1 +19::78::1 +19::79::1 +19::81::1 +19::82::1 +19::84::1 +19::86::1 +19::87::2 +19::90::4 +19::93::1 +19::94::4 +19::95::2 +19::96::1 +19::98::4 +20::0::1 +20::1::1 +20::2::2 +20::4::2 +20::6::1 +20::8::1 +20::12::1 +20::21::2 +20::22::5 +20::24::2 +20::25::1 +20::26::1 +20::29::2 +20::30::2 +20::32::2 +20::39::1 +20::40::1 +20::41::2 +20::45::2 +20::48::1 +20::50::1 +20::51::3 +20::53::3 +20::55::1 +20::57::2 +20::60::1 +20::61::1 +20::64::1 +20::66::1 +20::70::2 +20::72::1 +20::73::2 +20::75::4 +20::76::1 +20::77::4 +20::78::1 +20::79::1 +20::84::2 +20::85::2 +20::88::3 +20::89::1 +20::90::3 +20::91::1 +20::92::2 +20::93::1 +20::94::4 +20::97::1 +21::0::1 +21::2::4 +21::3::1 +21::7::2 +21::11::1 +21::12::1 +21::13::1 +21::14::3 +21::17::1 +21::19::1 +21::20::1 +21::21::1 +21::22::1 +21::23::1 +21::24::1 +21::27::1 +21::29::5 +21::30::2 +21::38::1 +21::40::2 +21::43::3 +21::44::1 +21::45::1 +21::46::1 +21::48::1 +21::51::1 +21::53::5 +21::54::1 +21::55::1 +21::56::1 +21::58::3 +21::59::3 +21::64::1 +21::66::1 +21::68::1 +21::71::1 +21::73::1 +21::74::4 +21::80::1 +21::81::1 +21::83::1 +21::84::1 +21::85::3 +21::87::4 +21::89::2 +21::92::2 +21::96::3 +21::99::1 +22::0::1 +22::3::2 +22::5::2 +22::6::2 +22::9::1 +22::10::1 +22::11::1 +22::13::1 +22::14::1 +22::16::1 +22::18::3 +22::19::1 +22::22::5 +22::25::1 +22::26::1 +22::29::3 +22::30::5 +22::32::4 +22::33::1 +22::35::1 +22::36::3 +22::37::1 +22::40::1 +22::41::3 +22::44::1 +22::45::2 +22::48::1 +22::51::5 +22::55::1 +22::56::2 +22::60::3 +22::61::1 +22::62::4 +22::63::1 +22::65::1 +22::66::1 +22::68::4 +22::69::4 +22::70::3 +22::71::1 +22::74::5 +22::75::5 +22::78::1 +22::80::3 +22::81::1 +22::82::1 +22::84::1 +22::86::1 +22::87::3 +22::88::5 +22::90::2 +22::92::3 +22::95::2 +22::96::2 +22::98::4 +22::99::1 +23::0::1 +23::2::1 +23::4::1 +23::6::2 +23::10::4 +23::12::1 +23::13::4 +23::14::1 +23::15::1 +23::18::4 +23::22::2 +23::23::4 +23::24::1 +23::25::1 +23::26::1 +23::27::5 +23::28::1 +23::29::1 +23::30::4 +23::32::5 +23::33::2 +23::36::3 +23::37::1 +23::38::1 +23::39::1 +23::43::1 +23::48::5 +23::49::5 +23::50::4 +23::53::1 +23::55::5 +23::57::1 +23::59::1 +23::60::1 +23::61::1 +23::64::4 +23::65::5 +23::66::2 +23::67::1 +23::68::3 +23::69::1 +23::72::1 +23::73::3 +23::77::1 +23::82::2 +23::83::1 +23::84::1 +23::85::1 +23::87::3 +23::88::1 +23::95::2 +23::97::1 +24::4::1 +24::6::3 +24::7::1 +24::10::2 +24::12::1 +24::15::1 +24::19::1 +24::24::1 +24::27::3 +24::30::5 +24::31::1 +24::32::3 +24::33::1 +24::37::1 +24::39::1 +24::40::1 +24::42::1 +24::43::3 +24::45::2 +24::46::1 +24::47::1 +24::48::1 +24::49::1 +24::50::1 +24::52::5 +24::57::1 +24::59::4 +24::63::4 +24::65::1 +24::66::1 +24::67::1 +24::68::3 +24::69::5 +24::71::1 +24::72::4 +24::77::4 +24::78::1 +24::80::1 +24::82::1 +24::84::1 +24::86::1 +24::87::1 +24::88::2 +24::89::1 +24::90::5 +24::91::1 +24::92::1 +24::94::2 +24::95::1 +24::96::5 +24::98::1 +24::99::1 +25::1::3 +25::2::1 +25::7::1 +25::9::1 +25::12::3 +25::16::3 +25::17::1 +25::18::1 +25::20::1 +25::22::1 +25::23::1 +25::26::2 +25::29::1 +25::30::1 +25::31::2 +25::33::4 +25::34::3 +25::35::2 +25::36::1 +25::37::1 +25::40::1 +25::41::1 +25::43::1 +25::47::4 +25::50::1 +25::51::1 +25::53::1 +25::56::1 +25::58::2 +25::64::2 +25::67::2 +25::68::1 +25::70::1 +25::71::4 +25::73::1 +25::74::1 +25::76::1 +25::79::1 +25::82::1 +25::84::2 +25::85::1 +25::91::3 +25::92::1 +25::94::1 +25::95::1 +25::97::2 +26::0::1 +26::1::1 +26::2::1 +26::3::1 +26::4::4 +26::5::2 +26::6::3 +26::7::5 +26::13::3 +26::14::1 +26::16::1 +26::18::3 +26::20::1 +26::21::3 +26::22::5 +26::23::5 +26::24::5 +26::27::1 +26::31::1 +26::35::1 +26::36::4 +26::40::1 +26::44::1 +26::45::2 +26::47::1 +26::48::1 +26::49::3 +26::50::2 +26::52::1 +26::54::4 +26::55::1 +26::57::3 +26::58::1 +26::61::1 +26::62::2 +26::66::1 +26::68::4 +26::71::1 +26::73::4 +26::76::1 +26::81::3 +26::85::1 +26::86::3 +26::88::5 +26::91::1 +26::94::5 +26::95::1 +26::96::1 +26::97::1 +27::0::1 +27::9::1 +27::10::1 +27::18::4 +27::19::3 +27::20::1 +27::22::2 +27::24::2 +27::25::1 +27::27::3 +27::28::1 +27::29::1 +27::31::1 +27::33::3 +27::40::1 +27::42::1 +27::43::1 +27::44::3 +27::45::1 +27::51::3 +27::52::1 +27::55::3 +27::57::1 +27::59::1 +27::60::1 +27::61::1 +27::64::1 +27::66::3 +27::68::1 +27::70::1 +27::71::2 +27::72::1 +27::75::3 +27::78::1 +27::80::3 +27::82::1 +27::83::3 +27::86::1 +27::87::2 +27::90::1 +27::91::1 +27::92::1 +27::93::1 +27::94::2 +27::95::1 +27::98::1 +28::0::3 +28::1::1 +28::2::4 +28::3::1 +28::6::1 +28::7::1 +28::12::5 +28::13::2 +28::14::1 +28::15::1 +28::17::1 +28::19::3 +28::20::1 +28::23::3 +28::24::3 +28::27::1 +28::29::1 +28::33::1 +28::34::1 +28::36::1 +28::38::2 +28::39::2 +28::44::1 +28::45::1 +28::49::4 +28::50::1 +28::52::1 +28::54::1 +28::56::1 +28::57::3 +28::58::1 +28::59::1 +28::60::1 +28::62::3 +28::63::1 +28::65::1 +28::75::1 +28::78::1 +28::81::5 +28::82::4 +28::83::1 +28::85::1 +28::88::2 +28::89::4 +28::90::1 +28::92::5 +28::94::1 +28::95::2 +28::98::1 +28::99::1 +29::3::1 +29::4::1 +29::5::1 +29::7::2 +29::9::1 +29::10::3 +29::11::1 +29::13::3 +29::14::1 +29::15::1 +29::17::3 +29::19::3 +29::22::3 +29::23::4 +29::25::1 +29::29::1 +29::31::1 +29::32::4 +29::33::2 +29::36::2 +29::38::3 +29::39::1 +29::42::1 +29::46::5 +29::49::3 +29::51::2 +29::59::1 +29::61::1 +29::62::1 +29::67::1 +29::68::3 +29::69::1 +29::70::1 +29::74::1 +29::75::1 +29::79::2 +29::80::1 +29::81::2 +29::83::1 +29::85::1 +29::86::1 +29::90::4 +29::93::1 +29::94::4 +29::97::1 +29::99::1 diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassification.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassification.scala index 4001908c98015..56b02b65d8724 100644 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassification.scala +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassification.scala @@ -29,8 +29,9 @@ import org.apache.spark.mllib.optimization.{SquaredL2Updater, L1Updater} /** * An example app for binary classification. Run with * {{{ - * ./bin/run-example org.apache.spark.examples.mllib.BinaryClassification + * bin/run-example org.apache.spark.examples.mllib.BinaryClassification * }}} + * A synthetic dataset is located at `data/mllib/sample_binary_classification_data.txt`. * If you use it as a template to create your own app, please use `spark-submit` to submit your app. */ object BinaryClassification { @@ -81,6 +82,15 @@ object BinaryClassification { .required() .text("input paths to labeled examples in LIBSVM format") .action((x, c) => c.copy(input = x)) + note( + """ + |For example, the following command runs this app on a synthetic dataset: + | + | bin/spark-submit --class org.apache.spark.examples.mllib.BinaryClassification \ + | examples/target/scala-*/spark-examples-*.jar \ + | --algorithm LR --regType L2 --regParam 1.0 \ + | data/mllib/sample_binary_classification_data.txt + """.stripMargin) } parser.parse(args, defaultParams).map { params => diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/LinearRegression.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/LinearRegression.scala index 658d370f8656e..4811bb70e4b28 100644 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/LinearRegression.scala +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/LinearRegression.scala @@ -28,8 +28,9 @@ import org.apache.spark.mllib.optimization.{SimpleUpdater, SquaredL2Updater, L1U /** * An example app for linear regression. Run with * {{{ - * ./bin/run-example org.apache.spark.examples.mllib.LinearRegression + * bin/run-example org.apache.spark.examples.mllib.LinearRegression * }}} + * A synthetic dataset can be found at `data/mllib/sample_linear_regression_data.txt`. * If you use it as a template to create your own app, please use `spark-submit` to submit your app. */ object LinearRegression extends App { @@ -68,6 +69,14 @@ object LinearRegression extends App { .required() .text("input paths to labeled examples in LIBSVM format") .action((x, c) => c.copy(input = x)) + note( + """ + |For example, the following command runs this app on a synthetic dataset: + | + | bin/spark-submit --class org.apache.spark.examples.mllib.LinearRegression \ + | examples/target/scala-*/spark-examples-*.jar \ + | data/mllib/sample_linear_regression_data.txt + """.stripMargin) } parser.parse(args, defaultParams).map { params => diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/MovieLensALS.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/MovieLensALS.scala index 0e4447e0de24f..6eb41e7ba36fb 100644 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/MovieLensALS.scala +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/MovieLensALS.scala @@ -29,6 +29,12 @@ import org.apache.spark.serializer.{KryoSerializer, KryoRegistrator} /** * An example app for ALS on MovieLens data (http://grouplens.org/datasets/movielens/). + * Run with + * {{{ + * bin/run-example org.apache.spark.examples.mllib.MovieLensALS + * }}} + * A synthetic dataset in MovieLens format can be found at `data/mllib/sample_movielens_data.txt`. + * If you use it as a template to create your own app, please use `spark-submit` to submit your app. */ object MovieLensALS { @@ -70,6 +76,15 @@ object MovieLensALS { .required() .text("input paths to a MovieLens dataset of ratings") .action((x, c) => c.copy(input = x)) + note( + """ + |For example, the following command runs this app on a synthetic dataset: + | + | bin/spark-submit --class org.apache.spark.examples.mllib.MovieLensALS \ + | examples/target/scala-*/spark-examples-*.jar \ + | --rank 5 --numIterations 20 --lambda 1.0 --kryo \ + | data/mllib/sample_movielens_data.txt + """.stripMargin) } parser.parse(args, defaultParams).map { params => From 52eb54d02403a3c37d84b9da7cc1cdb261048cf8 Mon Sep 17 00:00:00 2001 From: Tathagata Das Date: Mon, 19 May 2014 22:36:24 -0700 Subject: [PATCH 021/118] [Spark 1877] ClassNotFoundException when loading RDD with serialized objects Updated version of #821 Author: Tathagata Das Author: Ghidireac Closes #835 from tdas/SPARK-1877 and squashes the following commits: f346f71 [Tathagata Das] Addressed Patrick's comments. fee0c5d [Ghidireac] SPARK-1877: ClassNotFoundException when loading RDD with serialized objects --- core/src/main/scala/org/apache/spark/SparkContext.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 634c10c33fc86..49737fa4be56b 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -718,7 +718,7 @@ class SparkContext(config: SparkConf) extends Logging { minPartitions: Int = defaultMinPartitions ): RDD[T] = { sequenceFile(path, classOf[NullWritable], classOf[BytesWritable], minPartitions) - .flatMap(x => Utils.deserialize[Array[T]](x._2.getBytes)) + .flatMap(x => Utils.deserialize[Array[T]](x._2.getBytes, Utils.getContextOrSparkClassLoader)) } protected[spark] def checkpointFile[T: ClassTag]( From 7f0cfe47f4709843d70ceccc25dee7551206ce0d Mon Sep 17 00:00:00 2001 From: Tathagata Das Date: Tue, 20 May 2014 10:27:12 -0700 Subject: [PATCH 022/118] [Hotfix] Blacklisted flaky HiveCompatibility test `lateral_view_outer` query sometimes returns a different set of 10 rows. Author: Tathagata Das Closes #838 from tdas/hive-test-fix2 and squashes the following commits: 9128a0d [Tathagata Das] Blacklisted flaky HiveCompatibility test. --- .../spark/sql/hive/execution/HiveCompatibilitySuite.scala | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala index d83732b51e9c2..9031abf733cd4 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala @@ -169,7 +169,10 @@ class HiveCompatibilitySuite extends HiveQueryFileTest with BeforeAndAfter { "archive_corrupt", // No support for case sensitivity is resolution using hive properties atm. - "case_sensitivity" + "case_sensitivity", + + // Flaky test, Hive sometimes returns different set of 10 rows. + "lateral_view_outer" ) /** @@ -476,7 +479,6 @@ class HiveCompatibilitySuite extends HiveQueryFileTest with BeforeAndAfter { "join_view", "lateral_view", "lateral_view_cp", - "lateral_view_outer", "lateral_view_ppd", "lineage1", "literal_double", From 6e337380fc47071fc7fb28d744e8209c729fe1e9 Mon Sep 17 00:00:00 2001 From: Sumedh Mungee Date: Wed, 21 May 2014 01:22:25 -0700 Subject: [PATCH 023/118] [SPARK-1250] Fixed misleading comments in bin/pyspark, bin/spark-class Fixed a couple of misleading comments in bin/pyspark and bin/spark-class. The comments make it seem like the script is looking for the Scala installation when in fact it is looking for Spark. Author: Sumedh Mungee Closes #843 from smungee/spark-1250-fix-comments and squashes the following commits: 26870f3 [Sumedh Mungee] [SPARK-1250] Fixed misleading comments in bin/pyspark and bin/spark-class --- bin/pyspark | 2 +- bin/spark-class | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/bin/pyspark b/bin/pyspark index 3908ffe79939b..d0fa56f31913f 100755 --- a/bin/pyspark +++ b/bin/pyspark @@ -17,7 +17,7 @@ # limitations under the License. # -# Figure out where the Scala framework is installed +# Figure out where Spark is installed FWDIR="$(cd `dirname $0`/..; pwd)" # Export this as SPARK_HOME diff --git a/bin/spark-class b/bin/spark-class index 2e57295fd0234..e884511010c6c 100755 --- a/bin/spark-class +++ b/bin/spark-class @@ -24,7 +24,7 @@ esac SCALA_VERSION=2.10 -# Figure out where the Scala framework is installed +# Figure out where Spark is installed FWDIR="$(cd `dirname $0`/..; pwd)" # Export this as SPARK_HOME From 1014668f2727863fe46f9c75201ee459d093bf0c Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Wed, 21 May 2014 01:23:34 -0700 Subject: [PATCH 024/118] [Docs] Correct example of creating a new SparkConf The example code on the configuration page currently does not compile. Author: Andrew Or Closes #842 from andrewor14/conf-docs and squashes the following commits: aabff57 [Andrew Or] Correct example of creating a new SparkConf --- docs/configuration.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/configuration.md b/docs/configuration.md index f89040d714773..462a9d9013d98 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -23,7 +23,7 @@ cluster (e.g. master URL and application name), as well as arbitrary key-value p `set()` method. For example, we could initialize an application as follows: {% highlight scala %} -val conf = new SparkConf +val conf = new SparkConf() .setMaster("local") .setAppName("CountingSheep") .set("spark.executor.memory", "1g") From 7c79ef7d43de258ad9a5de15c590132bd78ce8dd Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Wed, 21 May 2014 01:25:10 -0700 Subject: [PATCH 025/118] [Minor] Move JdbcRDDSuite to the correct package It was in the wrong package Author: Andrew Or Closes #839 from andrewor14/jdbc-suite and squashes the following commits: f948c5a [Andrew Or] cache -> cache() b215279 [Andrew Or] Move JdbcRDDSuite to the correct package --- .../scala/org/apache/spark/rdd/JdbcRDDSuite.scala | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/core/src/test/scala/org/apache/spark/rdd/JdbcRDDSuite.scala b/core/src/test/scala/org/apache/spark/rdd/JdbcRDDSuite.scala index 7c7f69b261a0a..76e317d754ba3 100644 --- a/core/src/test/scala/org/apache/spark/rdd/JdbcRDDSuite.scala +++ b/core/src/test/scala/org/apache/spark/rdd/JdbcRDDSuite.scala @@ -15,13 +15,13 @@ * limitations under the License. */ -package org.apache.spark +package org.apache.spark.rdd import java.sql._ import org.scalatest.{BeforeAndAfter, FunSuite} -import org.apache.spark.rdd.JdbcRDD +import org.apache.spark.{LocalSparkContext, SparkContext} class JdbcRDDSuite extends FunSuite with BeforeAndAfter with LocalSparkContext { @@ -35,18 +35,18 @@ class JdbcRDDSuite extends FunSuite with BeforeAndAfter with LocalSparkContext { ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1), DATA INTEGER )""") - create.close + create.close() val insert = conn.prepareStatement("INSERT INTO FOO(DATA) VALUES(?)") (1 to 100).foreach { i => insert.setInt(1, i * 2) insert.executeUpdate } - insert.close + insert.close() } catch { case e: SQLException if e.getSQLState == "X0Y32" => // table exists } finally { - conn.close + conn.close() } } @@ -57,7 +57,7 @@ class JdbcRDDSuite extends FunSuite with BeforeAndAfter with LocalSparkContext { () => { DriverManager.getConnection("jdbc:derby:target/JdbcRDDSuiteDb") }, "SELECT DATA FROM FOO WHERE ? <= ID AND ID <= ?", 1, 100, 3, - (r: ResultSet) => { r.getInt(1) } ).cache + (r: ResultSet) => { r.getInt(1) } ).cache() assert(rdd.count === 100) assert(rdd.reduce(_+_) === 10100) From ba5d4a99425a2083fea2a9759050c5e770197e23 Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Wed, 21 May 2014 11:59:05 -0700 Subject: [PATCH 026/118] [Typo] Stoped -> Stopped Author: Andrew Or Closes #847 from andrewor14/yarn-typo and squashes the following commits: c1906af [Andrew Or] Stoped -> Stopped --- .../spark/scheduler/cluster/YarnClientSchedulerBackend.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala b/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala index 2924189077b7d..0ac162538fc4b 100644 --- a/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala +++ b/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala @@ -113,7 +113,7 @@ private[spark] class YarnClientSchedulerBackend( override def stop() { super.stop() client.stop() - logInfo("Stoped") + logInfo("Stopped") } } From f18fd05b513b136363c94adb3e5b841f8bf48134 Mon Sep 17 00:00:00 2001 From: Kan Zhang Date: Wed, 21 May 2014 13:26:53 -0700 Subject: [PATCH 027/118] [SPARK-1519] Support minPartitions param of wholeTextFiles() in PySpark Author: Kan Zhang Closes #697 from kanzhang/SPARK-1519 and squashes the following commits: 4f8d1ed [Kan Zhang] [SPARK-1519] Support minPartitions param of wholeTextFiles() in PySpark --- python/pyspark/context.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/python/pyspark/context.py b/python/pyspark/context.py index cac133d0fcf6c..c9ff82d23b3cf 100644 --- a/python/pyspark/context.py +++ b/python/pyspark/context.py @@ -211,6 +211,13 @@ def defaultParallelism(self): """ return self._jsc.sc().defaultParallelism() + @property + def defaultMinPartitions(self): + """ + Default min number of partitions for Hadoop RDDs when not given by user + """ + return self._jsc.sc().defaultMinPartitions() + def __del__(self): self.stop() @@ -264,7 +271,7 @@ def textFile(self, name, minPartitions=None): return RDD(self._jsc.textFile(name, minPartitions), self, UTF8Deserializer()) - def wholeTextFiles(self, path): + def wholeTextFiles(self, path, minPartitions=None): """ Read a directory of text files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system @@ -300,7 +307,8 @@ def wholeTextFiles(self, path): >>> sorted(textFiles.collect()) [(u'.../1.txt', u'1'), (u'.../2.txt', u'2')] """ - return RDD(self._jsc.wholeTextFiles(path), self, + minPartitions = minPartitions or self.defaultMinPartitions + return RDD(self._jsc.wholeTextFiles(path, minPartitions), self, PairDeserializer(UTF8Deserializer(), UTF8Deserializer())) def _checkpointFile(self, name, input_deserializer): From bb88875ad52e8209c25e8350af1fe4b7159086ae Mon Sep 17 00:00:00 2001 From: Takuya UESHIN Date: Wed, 21 May 2014 15:37:47 -0700 Subject: [PATCH 028/118] [SPARK-1889] [SQL] Apply splitConjunctivePredicates to join condition while finding join ke... ...ys. When tables are equi-joined by multiple-keys `HashJoin` should be used, but `CartesianProduct` and then `Filter` are used. The join keys are paired by `And` expression so we need to apply `splitConjunctivePredicates` to join condition while finding join keys. Author: Takuya UESHIN Closes #836 from ueshin/issues/SPARK-1889 and squashes the following commits: fe1c387 [Takuya UESHIN] Apply splitConjunctivePredicates to join condition while finding join keys. --- .../sql/catalyst/planning/patterns.scala | 11 ++++++----- .../spark/sql/execution/PlannerSuite.scala | 19 ++++++++++++++++++- 2 files changed, 24 insertions(+), 6 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/planning/patterns.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/planning/patterns.scala index 0e3a8a6bd30a8..4544b32958c7e 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/planning/patterns.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/planning/patterns.scala @@ -129,11 +129,12 @@ object HashFilteredJoin extends Logging with PredicateHelper { // as join keys. def splitPredicates(allPredicates: Seq[Expression], join: Join): Option[ReturnType] = { val Join(left, right, joinType, _) = join - val (joinPredicates, otherPredicates) = allPredicates.partition { - case Equals(l, r) if (canEvaluate(l, left) && canEvaluate(r, right)) || - (canEvaluate(l, right) && canEvaluate(r, left)) => true - case _ => false - } + val (joinPredicates, otherPredicates) = + allPredicates.flatMap(splitConjunctivePredicates).partition { + case Equals(l, r) if (canEvaluate(l, left) && canEvaluate(r, right)) || + (canEvaluate(l, right) && canEvaluate(r, left)) => true + case _ => false + } val joinKeys = joinPredicates.map { case Equals(l, r) if canEvaluate(l, left) && canEvaluate(r, right) => (l, r) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/execution/PlannerSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/execution/PlannerSuite.scala index e24c74a7a5572..c563d63627544 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/execution/PlannerSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/execution/PlannerSuite.scala @@ -21,7 +21,7 @@ import org.scalatest.FunSuite import org.apache.spark.sql.TestData._ import org.apache.spark.sql.catalyst.expressions._ -import org.apache.spark.sql.catalyst.plans.logical +import org.apache.spark.sql.catalyst.plans._ import org.apache.spark.sql.execution import org.apache.spark.sql.test.TestSQLContext._ import org.apache.spark.sql.test.TestSQLContext.planner._ @@ -57,4 +57,21 @@ class PlannerSuite extends FunSuite { val planned = PartialAggregation(query) assert(planned.isEmpty) } + + test("equi-join is hash-join") { + val x = testData2.as('x) + val y = testData2.as('y) + val join = x.join(y, Inner, Some("x.a".attr === "y.a".attr)).queryExecution.analyzed + val planned = planner.HashJoin(join) + assert(planned.size === 1) + } + + test("multiple-key equi-join is hash-join") { + val x = testData2.as('x) + val y = testData2.as('y) + val join = x.join(y, Inner, + Some("x.a".attr === "y.a".attr && "x.b".attr === "y.b".attr)).queryExecution.analyzed + val planned = planner.HashJoin(join) + assert(planned.size === 1) + } } From 2a948e7e1a345ae4e3d89ea24123410819d799d1 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Wed, 21 May 2014 18:49:12 -0700 Subject: [PATCH 029/118] Configuration documentation updates 1. Add < code > to configuration options 2. List env variables in tabular format to be consistent with other pages. 3. Moved Viewing Spark Properties section up. This is against branch-1.0, but should be cherry picked into master as well. Author: Reynold Xin Closes #851 from rxin/doc-config and squashes the following commits: 28ac0d3 [Reynold Xin] Add to configuration options, and list env variables in a table. (cherry picked from commit 75af8bd3336d09e8c691e54ae9d2358fe1bf3723) Signed-off-by: Reynold Xin --- docs/configuration.md | 194 +++++++++++++++++++++++------------------- 1 file changed, 105 insertions(+), 89 deletions(-) diff --git a/docs/configuration.md b/docs/configuration.md index 462a9d9013d98..4d41c36e38e26 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -47,6 +47,13 @@ Any values specified in the file will be passed on to the application, and merge specified through SparkConf. If the same configuration property exists in both `spark-defaults.conf` and SparkConf, then the latter will take precedence as it is the most application-specific. +## Viewing Spark Properties + +The application web UI at `http://:4040` lists Spark properties in the "Environment" tab. +This is a useful place to check to make sure that your properties have been set correctly. Note +that only values explicitly specified through either `spark-defaults.conf` or SparkConf will +appear. For all other configuration properties, you can assume the default value is used. + ## All Configuration Properties Most of the properties that control internal settings have reasonable default values. However, @@ -55,14 +62,14 @@ there are at least five properties that you will commonly want to control: - + - + - + - + - + @@ -93,9 +89,9 @@ there are at least five properties that you will commonly want to control: @@ -167,8 +163,9 @@ Apart from these, the following properties are also available, and may be useful @@ -182,9 +179,9 @@ Apart from these, the following properties are also available, and may be useful @@ -271,15 +268,17 @@ Apart from these, the following properties are also available, and may be useful @@ -296,7 +295,8 @@ Apart from these, the following properties are also available, and may be useful @@ -304,8 +304,8 @@ Apart from these, the following properties are also available, and may be useful @@ -329,9 +329,10 @@ Apart from these, the following properties are also available, and may be useful @@ -399,9 +400,9 @@ Apart from these, the following properties are also available, and may be useful @@ -416,10 +417,10 @@ Apart from these, the following properties are also available, and may be useful @@ -450,21 +451,36 @@ Apart from these, the following properties are also available, and may be useful @@ -485,10 +501,11 @@ Apart from these, the following properties are also available, and may be useful @@ -523,7 +540,8 @@ Apart from these, the following properties are also available, and may be useful @@ -531,7 +549,10 @@ Apart from these, the following properties are also available, and may be useful @@ -546,15 +567,16 @@ Apart from these, the following properties are also available, and may be useful @@ -589,7 +611,8 @@ Apart from these, the following properties are also available, and may be useful @@ -604,39 +627,40 @@ Apart from these, the following properties are also available, and may be useful @@ -660,8 +684,8 @@ Apart from these, the following properties are also available, and may be useful @@ -719,13 +743,13 @@ Apart from these, the following properties are also available, and may be useful # Environment Variables -Certain Spark settings can be configured through environment variables, which are read from the `conf/spark-env.sh` -script in the directory where Spark is installed (or `conf/spark-env.cmd` on Windows). In Standalone and Mesos modes, -this file can give machine specific information such as hostnames. It is also sourced when running local -Spark applications or submission scripts. +Certain Spark settings can be configured through environment variables, which are read from the +`conf/spark-env.sh` script in the directory where Spark is installed (or `conf/spark-env.cmd` on +Windows). In Standalone and Mesos modes, this file can give machine specific information such as +hostnames. It is also sourced when running local Spark applications or submission scripts. -Note that `conf/spark-env.sh` does not exist by default when Spark is installed. However, you can copy -`conf/spark-env.sh.template` to create it. Make sure you make the copy executable. +Note that `conf/spark-env.sh` does not exist by default when Spark is installed. However, you can +copy `conf/spark-env.sh.template` to create it. Make sure you make the copy executable. The following variables can be set in `spark-env.sh`: @@ -750,12 +774,104 @@ The following variables can be set in `spark-env.sh`:
Property NameDefaultMeaning
spark.executor.memoryspark.executor.memory 512m Amount of memory to use per executor process, in the same format as JVM memory strings (e.g. 512m, 2g).
spark.serializerspark.serializer org.apache.spark.serializer.
JavaSerializer
Class to use for serializing objects that will be sent over the network or need to be cached @@ -73,7 +80,7 @@ there are at least five properties that you will commonly want to control:
spark.kryo.registratorspark.kryo.registrator (none) If you use Kryo serialization, set this class to register your custom classes with Kryo. @@ -83,7 +90,7 @@ there are at least five properties that you will commonly want to control:
spark.local.dirspark.local.dir /tmp Directory to use for "scratch" space in Spark, including map output files and RDDs that get stored @@ -95,7 +102,7 @@ there are at least five properties that you will commonly want to control:
spark.cores.maxspark.cores.max (not set) When running on a standalone deploy cluster or a @@ -114,7 +121,7 @@ Apart from these, the following properties are also available, and may be useful - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
Property NameDefaultMeaning
spark.default.parallelismspark.default.parallelism
  • Local mode: number of cores on the local machine
  • @@ -128,7 +135,7 @@ Apart from these, the following properties are also available, and may be useful
spark.storage.memoryFractionspark.storage.memoryFraction 0.6 Fraction of Java heap to use for Spark's memory cache. This should not be larger than the "old" @@ -137,7 +144,7 @@ Apart from these, the following properties are also available, and may be useful
spark.shuffle.memoryFractionspark.shuffle.memoryFraction 0.3 Fraction of Java heap to use for aggregation and cogroups during shuffles, if @@ -148,7 +155,7 @@ Apart from these, the following properties are also available, and may be useful
spark.storage.memoryMapThresholdspark.storage.memoryMapThreshold 8192 Size of a block, in bytes, above which Spark memory maps when reading a block from disk. @@ -157,7 +164,7 @@ Apart from these, the following properties are also available, and may be useful
spark.tachyonStore.baseDirspark.tachyonStore.baseDir System.getProperty("java.io.tmpdir") Directories of the Tachyon File System that store RDDs. The Tachyon file system's URL is set by spark.tachyonStore.url. @@ -165,14 +172,14 @@ Apart from these, the following properties are also available, and may be useful
spark.tachyonStore.urlspark.tachyonStore.url tachyon://localhost:19998 The URL of the underlying Tachyon file system in the TachyonStore.
spark.mesos.coarsespark.mesos.coarse false If set to "true", runs over Mesos clusters in @@ -183,21 +190,21 @@ Apart from these, the following properties are also available, and may be useful
spark.ui.portspark.ui.port 4040 Port for your application's dashboard, which shows memory and workload data
spark.ui.retainedStagesspark.ui.retainedStages 1000 How many stages the Spark UI remembers before garbage collecting.
spark.ui.filtersspark.ui.filters None Comma separated list of filter class names to apply to the Spark web ui. The filter should be a @@ -207,7 +214,7 @@ Apart from these, the following properties are also available, and may be useful
spark.ui.acls.enablespark.ui.acls.enable false Whether spark web ui acls should are enabled. If enabled, this checks to see if the user has @@ -217,7 +224,7 @@ Apart from these, the following properties are also available, and may be useful
spark.ui.view.aclsspark.ui.view.acls Empty Comma separated list of users that have view access to the spark web ui. By default only the @@ -225,35 +232,35 @@ Apart from these, the following properties are also available, and may be useful
spark.ui.killEnabledspark.ui.killEnabled true Allows stages and corresponding jobs to be killed from the web ui.
spark.shuffle.compressspark.shuffle.compress true Whether to compress map output files. Generally a good idea.
spark.shuffle.spill.compressspark.shuffle.spill.compress true Whether to compress data spilled during shuffles.
spark.broadcast.compressspark.broadcast.compress true Whether to compress broadcast variables before sending them. Generally a good idea.
spark.rdd.compressspark.rdd.compress false Whether to compress serialized RDD partitions (e.g. for StorageLevel.MEMORY_ONLY_SER). @@ -261,7 +268,7 @@ Apart from these, the following properties are also available, and may be useful
spark.io.compression.codecspark.io.compression.codec org.apache.spark.io.
LZFCompressionCodec
The codec used to compress internal data such as RDD partitions and shuffle outputs. By default, Spark provides two @@ -269,14 +276,14 @@ Apart from these, the following properties are also available, and may be useful
spark.io.compression.snappy.block.sizespark.io.compression.snappy.block.size 32768 Block size (in bytes) used in Snappy compression, in the case when Snappy compression codec is used.
spark.scheduler.modespark.scheduler.mode FIFO The scheduling mode between @@ -286,14 +293,14 @@ Apart from these, the following properties are also available, and may be useful
spark.scheduler.revive.intervalspark.scheduler.revive.interval 1000 The interval length for the scheduler to revive the worker resource offers to run tasks. (in milliseconds)
spark.reducer.maxMbInFlightspark.reducer.maxMbInFlight 48 Maximum size (in megabytes) of map outputs to fetch simultaneously from each reduce task. Since @@ -302,14 +309,14 @@ Apart from these, the following properties are also available, and may be useful
spark.closure.serializerspark.closure.serializer org.apache.spark.serializer.
JavaSerializer
Serializer class to use for closures. Currently only the Java serializer is supported.
spark.kryo.referenceTrackingspark.kryo.referenceTracking true Whether to track references to the same object when serializing data with Kryo, which is @@ -319,7 +326,7 @@ Apart from these, the following properties are also available, and may be useful
spark.kryoserializer.buffer.mbspark.kryoserializer.buffer.mb 2 Maximum object size to allow within Kryo (the library needs to create a buffer at least as @@ -328,7 +335,7 @@ Apart from these, the following properties are also available, and may be useful
spark.serializer.objectStreamResetspark.serializer.objectStreamReset 10000 When serializing using org.apache.spark.serializer.JavaSerializer, the serializer caches @@ -339,14 +346,14 @@ Apart from these, the following properties are also available, and may be useful
spark.broadcast.factoryspark.broadcast.factory org.apache.spark.broadcast.
HttpBroadcastFactory
Which broadcast implementation to use.
spark.locality.waitspark.locality.wait 3000 Number of milliseconds to wait to launch a data-local task before giving up and launching it @@ -358,7 +365,7 @@ Apart from these, the following properties are also available, and may be useful
spark.locality.wait.processspark.locality.wait.process spark.locality.wait Customize the locality wait for process locality. This affects tasks that attempt to access @@ -366,7 +373,7 @@ Apart from these, the following properties are also available, and may be useful
spark.locality.wait.nodespark.locality.wait.node spark.locality.wait Customize the locality wait for node locality. For example, you can set this to 0 to skip @@ -374,14 +381,14 @@ Apart from these, the following properties are also available, and may be useful
spark.locality.wait.rackspark.locality.wait.rack spark.locality.wait Customize the locality wait for rack locality.
spark.worker.timeoutspark.worker.timeout 60 Number of seconds after which the standalone deploy master considers a worker lost if it @@ -389,7 +396,7 @@ Apart from these, the following properties are also available, and may be useful
spark.worker.cleanup.enabledspark.worker.cleanup.enabled false Enable periodic cleanup of worker / application directories. Note that this only affects standalone @@ -398,7 +405,7 @@ Apart from these, the following properties are also available, and may be useful
spark.worker.cleanup.intervalspark.worker.cleanup.interval 1800 (30 minutes) Controls the interval, in seconds, at which the worker cleans up old application work dirs @@ -406,7 +413,7 @@ Apart from these, the following properties are also available, and may be useful
spark.worker.cleanup.appDataTtlspark.worker.cleanup.appDataTtl 7 * 24 * 3600 (7 days) The number of seconds to retain application work directories on each worker. This is a Time To Live @@ -416,7 +423,7 @@ Apart from these, the following properties are also available, and may be useful
spark.akka.frameSizespark.akka.frameSize 10 Maximum message size to allow in "control plane" communication (for serialized tasks and task @@ -425,7 +432,7 @@ Apart from these, the following properties are also available, and may be useful
spark.akka.threadsspark.akka.threads 4 Number of actor threads to use for communication. Can be useful to increase on large clusters @@ -433,49 +440,49 @@ Apart from these, the following properties are also available, and may be useful
spark.akka.timeoutspark.akka.timeout 100 Communication timeout between Spark nodes, in seconds.
spark.akka.heartbeat.pausesspark.akka.heartbeat.pauses 600 This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). Acceptable heart beat pause in seconds for akka. This can be used to control sensitivity to gc pauses. Tune this in combination of `spark.akka.heartbeat.interval` and `spark.akka.failure-detector.threshold` if you need to.
spark.akka.failure-detector.thresholdspark.akka.failure-detector.threshold 300.0 This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). This maps to akka's `akka.remote.transport-failure-detector.threshold`. Tune this in combination of `spark.akka.heartbeat.pauses` and `spark.akka.heartbeat.interval` if you need to.
spark.akka.heartbeat.intervalspark.akka.heartbeat.interval 1000 This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). A larger interval value in seconds reduces network overhead and a smaller value ( ~ 1 s) might be more informative for akka's failure detector. Tune this in combination of `spark.akka.heartbeat.pauses` and `spark.akka.failure-detector.threshold` if you need to. Only positive use case for using failure detector can be, a sensistive failure detector can help evict rogue executors really quick. However this is usually not the case as gc pauses and network lags are expected in a real spark cluster. Apart from that enabling this leads to a lot of exchanges of heart beats between nodes leading to flooding the network with those.
spark.driver.hostspark.driver.host (local hostname) Hostname or IP address for the driver to listen on.
spark.driver.portspark.driver.port (random) Port for the driver to listen on.
spark.cleaner.ttlspark.cleaner.ttl (infinite) Duration (seconds) of how long Spark will remember any metadata (stages generated, tasks generated, etc.). @@ -485,7 +492,7 @@ Apart from these, the following properties are also available, and may be useful
spark.streaming.blockIntervalspark.streaming.blockInterval 200 Interval (milliseconds) at which data received by Spark Streaming receivers is coalesced @@ -493,7 +500,7 @@ Apart from these, the following properties are also available, and may be useful
spark.streaming.unpersistspark.streaming.unpersist true Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from @@ -504,7 +511,7 @@ Apart from these, the following properties are also available, and may be useful
spark.task.maxFailuresspark.task.maxFailures 4 Number of individual task failures before giving up on the job. @@ -512,7 +519,7 @@ Apart from these, the following properties are also available, and may be useful
spark.broadcast.blockSizespark.broadcast.blockSize 4096 Size of each piece of a block in kilobytes for TorrentBroadcastFactory. @@ -521,14 +528,14 @@ Apart from these, the following properties are also available, and may be useful
spark.shuffle.consolidateFilesspark.shuffle.consolidateFiles false If set to "true", consolidates intermediate files created during a shuffle. Creating fewer files can improve filesystem performance for shuffles with large numbers of reduce tasks. It is recommended to set this to "true" when using ext4 or xfs filesystems. On ext3, this option might degrade performance on machines with many (>8) cores due to filesystem limitations.
spark.shuffle.file.buffer.kbspark.shuffle.file.buffer.kb 100 Size of the in-memory buffer for each shuffle file output stream, in kilobytes. These buffers @@ -536,7 +543,7 @@ Apart from these, the following properties are also available, and may be useful
spark.shuffle.spillspark.shuffle.spill true If set to "true", limits the amount of memory used during reduces by spilling data out to disk. This spilling @@ -544,56 +551,56 @@ Apart from these, the following properties are also available, and may be useful
spark.speculationspark.speculation false If set to "true", performs speculative execution of tasks. This means if one or more tasks are running slowly in a stage, they will be re-launched.
spark.speculation.intervalspark.speculation.interval 100 How often Spark will check for tasks to speculate, in milliseconds.
spark.speculation.quantilespark.speculation.quantile 0.75 Percentage of tasks which must be complete before speculation is enabled for a particular stage.
spark.speculation.multiplierspark.speculation.multiplier 1.5 How many times slower a task is than the median to be considered for speculation.
spark.logConfspark.logConf false Whether to log the supplied SparkConf as INFO at start of spark context.
spark.eventLog.enabledspark.eventLog.enabled false Whether to log spark events, useful for reconstructing the Web UI after the application has finished.
spark.eventLog.compressspark.eventLog.compress false Whether to compress logged events, if spark.eventLog.enabled is true.
spark.eventLog.dirspark.eventLog.dir file:///tmp/spark-events Base directory in which spark events are logged, if spark.eventLog.enabled is true. @@ -602,7 +609,7 @@ Apart from these, the following properties are also available, and may be useful
spark.deploy.spreadOutspark.deploy.spreadOut true Whether the standalone cluster manager should spread applications out across nodes or try @@ -613,7 +620,7 @@ Apart from these, the following properties are also available, and may be useful
spark.deploy.defaultCoresspark.deploy.defaultCores (infinite) Default number of cores to give to applications in Spark's standalone mode if they don't @@ -626,14 +633,14 @@ Apart from these, the following properties are also available, and may be useful
spark.files.overwritespark.files.overwrite false Whether to overwrite files added through SparkContext.addFile() when the target file exists and its contents do not match those of the source.
spark.files.fetchTimeoutspark.files.fetchTimeout false Communication timeout to use when fetching files added through SparkContext.addFile() from @@ -641,7 +648,7 @@ Apart from these, the following properties are also available, and may be useful
spark.files.userClassPathFirstspark.files.userClassPathFirst false (Experimental) Whether to give user-added jars precedence over Spark's own jars when @@ -650,7 +657,7 @@ Apart from these, the following properties are also available, and may be useful
spark.authenticatespark.authenticate false Whether spark authenticates its internal connections. See spark.authenticate.secret if not @@ -658,7 +665,7 @@ Apart from these, the following properties are also available, and may be useful
spark.authenticate.secretspark.authenticate.secret None Set the secret key used for Spark to authenticate between components. This needs to be set if @@ -666,7 +673,7 @@ Apart from these, the following properties are also available, and may be useful
spark.core.connection.auth.wait.timeoutspark.core.connection.auth.wait.timeout 30 Number of seconds for the connection to wait for authentication to occur before timing @@ -674,14 +681,14 @@ Apart from these, the following properties are also available, and may be useful
spark.task.cpusspark.task.cpus 1 Number of cores to allocate for each task.
spark.executor.extraJavaOptionsspark.executor.extraJavaOptions (none) A string of extra JVM options to pass to executors. For instance, GC settings or other @@ -692,7 +699,7 @@ Apart from these, the following properties are also available, and may be useful
spark.executor.extraClassPathspark.executor.extraClassPath (none) Extra classpath entries to append to the classpath of executors. This exists primarily @@ -701,7 +708,7 @@ Apart from these, the following properties are also available, and may be useful
spark.executor.extraLibraryPathspark.executor.extraLibraryPath (none) Set a special library path to use when launching executor JVM's. @@ -710,13 +717,6 @@ Apart from these, the following properties are also available, and may be useful
-## Viewing Spark Properties - -The application web UI at `http://:4040` lists Spark properties in the "Environment" tab. -This is a useful place to check to make sure that your properties have been set correctly. Note -that only values explicitly specified through either `spark-defaults.conf` or SparkConf will -appear. For all other configuration properties, you can assume the default value is used. - # Environment Variables Certain Spark settings can be configured through environment variables, which are read from the `conf/spark-env.sh` @@ -729,12 +729,28 @@ Note that `conf/spark-env.sh` does not exist by default when Spark is installed. The following variables can be set in `spark-env.sh`: -* `JAVA_HOME`, the location where Java is installed (if it's not on your default `PATH`) -* `PYSPARK_PYTHON`, the Python binary to use for PySpark -* `SPARK_LOCAL_IP`, to configure which IP address of the machine to bind to. -* `SPARK_PUBLIC_DNS`, the hostname your Spark program will advertise to other machines. -* Options for the Spark [standalone cluster scripts](spark-standalone.html#cluster-launch-scripts), - such as number of cores to use on each machine and maximum memory. + + + + + + + + + + + + + + + + + + + +
Environment VariableMeaning
JAVA_HOMELocation where Java is installed (if it's not on your default `PATH`).
PYSPARK_PYTHONPython binary executable to use for PySpark.
SPARK_LOCAL_IPIP address of the machine to bind to.
SPARK_PUBLIC_DNSHostname your Spark program will advertise to other machines.
+ +In addition to the above, there are also options for setting up the Spark [standalone cluster scripts](spark-standalone.html#cluster-launch-scripts), such as number of cores to use on each machine and maximum memory. Since `spark-env.sh` is a shell script, some of these can be set programmatically -- for example, you might compute `SPARK_LOCAL_IP` by looking up the IP of a specific network interface. From dba314029b4c9d72d7e48a2093b39edd01931f57 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Thu, 22 May 2014 01:52:50 -0700 Subject: [PATCH 030/118] [SPARK-1870] Make spark-submit --jars work in yarn-cluster mode. Sent secondary jars to distributed cache of all containers and add the cached jars to classpath before executors start. Tested on a YARN cluster (CDH-5.0). `spark-submit --jars` also works in standalone server and `yarn-client`. Thanks for @andrewor14 for testing! I removed "Doesn't work for drivers in standalone mode with "cluster" deploy mode." from `spark-submit`'s help message, though we haven't tested mesos yet. CC: @dbtsai @sryza Author: Xiangrui Meng Closes #848 from mengxr/yarn-classpath and squashes the following commits: 23e7df4 [Xiangrui Meng] rename spark.jar to __spark__.jar and app.jar to __app__.jar to avoid confliction apped $CWD/ and $CWD/* to the classpath remove unused methods a40f6ed [Xiangrui Meng] standalone -> cluster 65e04ad [Xiangrui Meng] update spark-submit help message and add a comment for yarn-client 11e5354 [Xiangrui Meng] minor changes 3e7e1c4 [Xiangrui Meng] use sparkConf instead of hadoop conf dc3c825 [Xiangrui Meng] add secondary jars to classpath in yarn --- .../spark/deploy/SparkSubmitArguments.scala | 3 +- .../apache/spark/deploy/yarn/ClientBase.scala | 69 +++++-------------- .../cluster/YarnClientSchedulerBackend.scala | 2 +- 3 files changed, 19 insertions(+), 55 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala index 264d4544cd31c..0cc05fb95aef0 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala @@ -326,8 +326,7 @@ private[spark] class SparkSubmitArguments(args: Seq[String]) { | --class CLASS_NAME Your application's main class (for Java / Scala apps). | --name NAME A name of your application. | --jars JARS Comma-separated list of local jars to include on the driver - | and executor classpaths. Doesn't work for drivers in - | standalone mode with "cluster" deploy mode. + | and executor classpaths. | --py-files PY_FILES Comma-separated list of .zip or .egg files to place on the | PYTHONPATH for Python apps. | --files FILES Comma-separated list of files to be placed in the working diff --git a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala index 27a518ccda459..aeb3f0062df3b 100644 --- a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala +++ b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala @@ -44,7 +44,7 @@ import org.apache.spark.{Logging, SparkConf, SparkContext} * Client submits an application to the YARN ResourceManager. * * Depending on the deployment mode this will launch one of two application master classes: - * 1. In standalone mode, it will launch an [[org.apache.spark.deploy.yarn.ApplicationMaster]] + * 1. In cluster mode, it will launch an [[org.apache.spark.deploy.yarn.ApplicationMaster]] * which launches a driver program inside of the cluster. * 2. In client mode, it will launch an [[org.apache.spark.deploy.yarn.ExecutorLauncher]] to * request executors on behalf of a driver running outside of the cluster. @@ -220,10 +220,11 @@ trait ClientBase extends Logging { } } + var cachedSecondaryJarLinks = ListBuffer.empty[String] val fileLists = List( (args.addJars, LocalResourceType.FILE, true), (args.files, LocalResourceType.FILE, false), (args.archives, LocalResourceType.ARCHIVE, false) ) - fileLists.foreach { case (flist, resType, appMasterOnly) => + fileLists.foreach { case (flist, resType, addToClasspath) => if (flist != null && !flist.isEmpty()) { flist.split(',').foreach { case file: String => val localURI = new URI(file.trim()) @@ -232,11 +233,15 @@ trait ClientBase extends Logging { val linkname = Option(localURI.getFragment()).getOrElse(localPath.getName()) val destPath = copyRemoteFile(dst, localPath, replication) distCacheMgr.addResource(fs, conf, destPath, localResources, resType, - linkname, statCache, appMasterOnly) + linkname, statCache) + if (addToClasspath) { + cachedSecondaryJarLinks += linkname + } } } } } + sparkConf.set(ClientBase.CONF_SPARK_YARN_SECONDARY_JARS, cachedSecondaryJarLinks.mkString(",")) UserGroupInformation.getCurrentUser().addCredentials(credentials) localResources @@ -374,11 +379,12 @@ trait ClientBase extends Logging { } object ClientBase { - val SPARK_JAR: String = "spark.jar" - val APP_JAR: String = "app.jar" + val SPARK_JAR: String = "__spark__.jar" + val APP_JAR: String = "__app__.jar" val LOG4J_PROP: String = "log4j.properties" val LOG4J_CONF_ENV_KEY: String = "SPARK_LOG4J_CONF" val LOCAL_SCHEME = "local" + val CONF_SPARK_YARN_SECONDARY_JARS = "spark.yarn.secondary.jars" def getSparkJar = sys.env.get("SPARK_JAR").getOrElse(SparkContext.jarOfClass(this.getClass).head) @@ -479,66 +485,25 @@ object ClientBase { extraClassPath.foreach(addClasspathEntry) - addClasspathEntry(Environment.PWD.$()) + val cachedSecondaryJarLinks = + sparkConf.getOption(CONF_SPARK_YARN_SECONDARY_JARS).getOrElse("").split(",") // Normally the users app.jar is last in case conflicts with spark jars if (sparkConf.get("spark.yarn.user.classpath.first", "false").toBoolean) { addPwdClasspathEntry(APP_JAR) + cachedSecondaryJarLinks.foreach(addPwdClasspathEntry) addPwdClasspathEntry(SPARK_JAR) ClientBase.populateHadoopClasspath(conf, env) } else { addPwdClasspathEntry(SPARK_JAR) ClientBase.populateHadoopClasspath(conf, env) addPwdClasspathEntry(APP_JAR) + cachedSecondaryJarLinks.foreach(addPwdClasspathEntry) } + // Append all class files and jar files under the working directory to the classpath. + addClasspathEntry(Environment.PWD.$()) addPwdClasspathEntry("*") } - /** - * Adds the user jars which have local: URIs (or alternate names, such as APP_JAR) explicitly - * to the classpath. - */ - private def addUserClasspath(args: ClientArguments, env: HashMap[String, String]) = { - if (args != null) { - addClasspathEntry(args.userJar, APP_JAR, env) - } - - if (args != null && args.addJars != null) { - args.addJars.split(",").foreach { case file: String => - addClasspathEntry(file, null, env) - } - } - } - - /** - * Adds the given path to the classpath, handling "local:" URIs correctly. - * - * If an alternate name for the file is given, and it's not a "local:" file, the alternate - * name will be added to the classpath (relative to the job's work directory). - * - * If not a "local:" file and no alternate name, the environment is not modified. - * - * @param path Path to add to classpath (optional). - * @param fileName Alternate name for the file (optional). - * @param env Map holding the environment variables. - */ - private def addClasspathEntry(path: String, fileName: String, - env: HashMap[String, String]) : Unit = { - if (path != null) { - scala.util.control.Exception.ignoring(classOf[URISyntaxException]) { - val localPath = getLocalPath(path) - if (localPath != null) { - YarnSparkHadoopUtil.addToEnvironment(env, Environment.CLASSPATH.name, localPath, - File.pathSeparator) - return - } - } - } - if (fileName != null) { - YarnSparkHadoopUtil.addToEnvironment(env, Environment.CLASSPATH.name, - Environment.PWD.$() + Path.SEPARATOR + fileName, File.pathSeparator); - } - } - /** * Returns the local path if the URI is a "local:" URI, or null otherwise. */ diff --git a/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala b/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala index 0ac162538fc4b..e01ed5a57d697 100644 --- a/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala +++ b/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala @@ -52,7 +52,7 @@ private[spark] class YarnClientSchedulerBackend( val argsArrayBuf = new ArrayBuffer[String]() argsArrayBuf += ( "--class", "notused", - "--jar", null, + "--jar", null, // The primary jar will be added dynamically in SparkContext. "--args", hostport, "--am-class", classOf[ExecutorLauncher].getName ) From f9f5fd5f4e81828a3e0c391892e0f28751568843 Mon Sep 17 00:00:00 2001 From: Aaron Davidson Date: Thu, 22 May 2014 15:11:05 -0700 Subject: [PATCH 031/118] Fix UISuite unit test that fails under Jenkins contention Due to perhaps zombie processes on Jenkins, it seems that at least 10 Spark ports are in use. It also doesn't matter that the port increases when used, it could in fact go down -- the only part that matters is that it selects a different port rather than failing to bind. Changed test to match this. Thanks to @andrewor14 for helping diagnose this. Author: Aaron Davidson Closes #857 from aarondav/tiny and squashes the following commits: c199ec8 [Aaron Davidson] Fix UISuite unit test that fails under Jenkins contention --- core/src/test/scala/org/apache/spark/ui/UISuite.scala | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/core/src/test/scala/org/apache/spark/ui/UISuite.scala b/core/src/test/scala/org/apache/spark/ui/UISuite.scala index fff8020ade6d1..038746d2eda4b 100644 --- a/core/src/test/scala/org/apache/spark/ui/UISuite.scala +++ b/core/src/test/scala/org/apache/spark/ui/UISuite.scala @@ -94,7 +94,7 @@ class UISuite extends FunSuite { } } - test("jetty port increases under contention") { + test("jetty selects different port under contention") { val startPort = 4040 val server = new Server(startPort) @@ -110,8 +110,9 @@ class UISuite extends FunSuite { // Allow some wiggle room in case ports on the machine are under contention val boundPort1 = serverInfo1.boundPort val boundPort2 = serverInfo2.boundPort - assert(boundPort1 > startPort && boundPort1 < startPort + 10) - assert(boundPort2 > boundPort1 && boundPort2 < boundPort1 + 10) + assert(boundPort1 != startPort) + assert(boundPort2 != startPort) + assert(boundPort1 != boundPort2) } test("jetty binds to port 0 correctly") { From 8edbee7d1b4afc192d97ba192a5526affc464205 Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Thu, 22 May 2014 20:25:41 -0700 Subject: [PATCH 032/118] [SPARK-1897] Respect spark.jars (and --jars) in spark-shell Spark shell currently overwrites `spark.jars` with `ADD_JARS`. In all modes except yarn-cluster, this means the `--jar` flag passed to `bin/spark-shell` is also discarded. However, in the [docs](http://people.apache.org/~pwendell/spark-1.0.0-rc7-docs/scala-programming-guide.html#initializing-spark), we explicitly tell the users to add the jars this way. Author: Andrew Or Closes #849 from andrewor14/shell-jars and squashes the following commits: 928a7e6 [Andrew Or] ',' -> "," (minor) afc357c [Andrew Or] Handle spark.jars == "" in SparkILoop, not SparkSubmit c6da113 [Andrew Or] Do not set spark.jars to "" d8549f7 [Andrew Or] Respect spark.jars and --jars in spark-shell --- .../src/main/scala/org/apache/spark/repl/SparkILoop.scala | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala b/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala index 296da740687ec..55684e94bd614 100644 --- a/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala +++ b/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala @@ -993,7 +993,13 @@ object SparkILoop { implicit def loopToInterpreter(repl: SparkILoop): SparkIMain = repl.intp private def echo(msg: String) = Console println msg - def getAddedJars: Array[String] = Option(System.getenv("ADD_JARS")).map(_.split(',')).getOrElse(new Array[String](0)) + def getAddedJars: Array[String] = { + val envJars = sys.env.get("ADD_JARS") + val propJars = sys.props.get("spark.jars").flatMap { p => + if (p == "") None else Some(p) + } + propJars.orElse(envJars).map(_.split(",")).getOrElse(Array.empty) + } // Designed primarily for use by test code: take a String with a // bunch of code, and prints out a transcript of what it would look From cce77457e00aa5f1f4db3d50454cf257efb156ed Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Thu, 22 May 2014 20:32:27 -0700 Subject: [PATCH 033/118] [SPARK-1896] Respect spark.master (and --master) before MASTER in spark-shell The hierarchy for configuring the Spark master in the shell is as follows: ``` MASTER > --master > spark.master (spark-defaults.conf) ``` This is inconsistent with the way we run normal applications, which is: ``` --master > spark.master (spark-defaults.conf) > MASTER ``` I was trying to run a shell locally on a standalone cluster launched through the ec2 scripts, which automatically set `MASTER` in spark-env.sh. It was surprising to me that `--master` didn't take effect, considering that this is the way we tell users to set their masters [here](http://people.apache.org/~pwendell/spark-1.0.0-rc7-docs/scala-programming-guide.html#initializing-spark). Author: Andrew Or Closes #846 from andrewor14/shell-master and squashes the following commits: 2cb81c9 [Andrew Or] Respect spark.master before MASTER in REPL --- repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala b/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala index 55684e94bd614..5f34362ccd973 100644 --- a/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala +++ b/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala @@ -962,11 +962,10 @@ class SparkILoop(in0: Option[BufferedReader], protected val out: JPrintWriter, private def getMaster(): String = { val master = this.master match { case Some(m) => m - case None => { + case None => val envMaster = sys.env.get("MASTER") val propMaster = sys.props.get("spark.master") - envMaster.orElse(propMaster).getOrElse("local[*]") - } + propMaster.orElse(envMaster).getOrElse("local[*]") } master } From b2bdd0e505f1ae3d39c46139f17bd43779ece635 Mon Sep 17 00:00:00 2001 From: Tathagata Das Date: Thu, 22 May 2014 20:48:55 -0700 Subject: [PATCH 034/118] Updated scripts for auditing releases - Added script to automatically generate change list CHANGES.txt - Added test for verifying linking against maven distributions of `spark-sql` and `spark-hive` - Added SBT projects for testing functionality of `spark-sql` and `spark-hive` - Fixed issues in existing tests that might have come up because of changes in Spark 1.0 Author: Tathagata Das Closes #844 from tdas/update-dev-scripts and squashes the following commits: 25090ba [Tathagata Das] Added missing license e2e20b3 [Tathagata Das] Updated tests for auditing releases. --- dev/audit-release/audit_release.py | 11 +- .../src/main/java/SimpleApp.java | 1 + .../src/main/scala/SparkApp.scala | 2 +- dev/audit-release/sbt_app_hive/build.sbt | 29 +++ dev/audit-release/sbt_app_hive/data.txt | 9 + .../src/main/resources/hive-site.xml | 213 ++++++++++++++++++ .../sbt_app_hive/src/main/scala/HiveApp.scala | 57 +++++ dev/audit-release/sbt_app_sql/build.sbt | 29 +++ .../sbt_app_sql/src/main/scala/SqlApp.scala | 57 +++++ .../src/main/scala/StreamingApp.scala | 1 - dev/create-release/generate-changelist.py | 144 ++++++++++++ 11 files changed, 547 insertions(+), 6 deletions(-) create mode 100644 dev/audit-release/sbt_app_hive/build.sbt create mode 100644 dev/audit-release/sbt_app_hive/data.txt create mode 100644 dev/audit-release/sbt_app_hive/src/main/resources/hive-site.xml create mode 100644 dev/audit-release/sbt_app_hive/src/main/scala/HiveApp.scala create mode 100644 dev/audit-release/sbt_app_sql/build.sbt create mode 100644 dev/audit-release/sbt_app_sql/src/main/scala/SqlApp.scala create mode 100755 dev/create-release/generate-changelist.py diff --git a/dev/audit-release/audit_release.py b/dev/audit-release/audit_release.py index 4a816d4101e57..8c7573b91f688 100755 --- a/dev/audit-release/audit_release.py +++ b/dev/audit-release/audit_release.py @@ -93,9 +93,12 @@ def get_url(url): # For each of these modules, we'll test an 'empty' application in sbt and # maven that links against them. This will catch issues with messed up # dependencies within those projects. -modules = ["spark-core", "spark-bagel", "spark-mllib", "spark-streaming", "spark-repl", - "spark-graphx", "spark-streaming-flume", "spark-streaming-kafka", - "spark-streaming-mqtt", "spark-streaming-twitter", "spark-streaming-zeromq"] +modules = [ + "spark-core", "spark-bagel", "spark-mllib", "spark-streaming", "spark-repl", + "spark-graphx", "spark-streaming-flume", "spark-streaming-kafka", + "spark-streaming-mqtt", "spark-streaming-twitter", "spark-streaming-zeromq", + "spark-catalyst", "spark-sql", "spark-hive" +] modules = map(lambda m: "%s_%s" % (m, SCALA_BINARY_VERSION), modules) # Check for directories that might interfere with tests @@ -122,7 +125,7 @@ def ensure_path_not_present(x): os.chdir(original_dir) # SBT application tests -for app in ["sbt_app_core", "sbt_app_graphx", "sbt_app_streaming"]: +for app in ["sbt_app_core", "sbt_app_graphx", "sbt_app_streaming", "sbt_app_sql", "sbt_app_hive"]: os.chdir(app) ret = run_cmd("sbt clean run", exit_on_failure=False) test(ret == 0, "sbt application (%s)" % app) diff --git a/dev/audit-release/maven_app_core/src/main/java/SimpleApp.java b/dev/audit-release/maven_app_core/src/main/java/SimpleApp.java index 6b65dda39b1a2..5217689e7c092 100644 --- a/dev/audit-release/maven_app_core/src/main/java/SimpleApp.java +++ b/dev/audit-release/maven_app_core/src/main/java/SimpleApp.java @@ -37,5 +37,6 @@ public static void main(String[] args) { System.exit(-1); } System.out.println("Test succeeded"); + sc.stop(); } } diff --git a/dev/audit-release/sbt_app_core/src/main/scala/SparkApp.scala b/dev/audit-release/sbt_app_core/src/main/scala/SparkApp.scala index a89b0d7d38bf1..77bbd167b199a 100644 --- a/dev/audit-release/sbt_app_core/src/main/scala/SparkApp.scala +++ b/dev/audit-release/sbt_app_core/src/main/scala/SparkApp.scala @@ -19,6 +19,7 @@ package main.scala import scala.util.Try +import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ @@ -30,7 +31,6 @@ object SimpleApp { } val logFile = "input.txt" val sc = new SparkContext(conf) - SparkContext.jarOfClass(this.getClass).foreach(sc.addJar) val logData = sc.textFile(logFile, 2).cache() val numAs = logData.filter(line => line.contains("a")).count() val numBs = logData.filter(line => line.contains("b")).count() diff --git a/dev/audit-release/sbt_app_hive/build.sbt b/dev/audit-release/sbt_app_hive/build.sbt new file mode 100644 index 0000000000000..7ac1be729c561 --- /dev/null +++ b/dev/audit-release/sbt_app_hive/build.sbt @@ -0,0 +1,29 @@ +// +// Licensed to the Apache Software Foundation (ASF) under one or more +// contributor license agreements. See the NOTICE file distributed with +// this work for additional information regarding copyright ownership. +// The ASF licenses this file to You under the Apache License, Version 2.0 +// (the "License"); you may not use this file except in compliance with +// the License. You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// + +name := "Simple Project" + +version := "1.0" + +scalaVersion := System.getenv.get("SCALA_VERSION") + +libraryDependencies += "org.apache.spark" %% "spark-hive" % System.getenv.get("SPARK_VERSION") + +resolvers ++= Seq( + "Spark Release Repository" at System.getenv.get("SPARK_RELEASE_REPOSITORY"), + "Akka Repository" at "http://repo.akka.io/releases/", + "Spray Repository" at "http://repo.spray.cc/") diff --git a/dev/audit-release/sbt_app_hive/data.txt b/dev/audit-release/sbt_app_hive/data.txt new file mode 100644 index 0000000000000..0229e67f51e01 --- /dev/null +++ b/dev/audit-release/sbt_app_hive/data.txt @@ -0,0 +1,9 @@ +0val_0 +1val_1 +2val_2 +3val_3 +4val_4 +5val_5 +6val_6 +7val_7 +9val_9 diff --git a/dev/audit-release/sbt_app_hive/src/main/resources/hive-site.xml b/dev/audit-release/sbt_app_hive/src/main/resources/hive-site.xml new file mode 100644 index 0000000000000..93b835813d535 --- /dev/null +++ b/dev/audit-release/sbt_app_hive/src/main/resources/hive-site.xml @@ -0,0 +1,213 @@ + + + + + + + + + + + + + + + + + + build.dir + ${user.dir}/build + + + + build.dir.hive + ${build.dir}/hive + + + + hadoop.tmp.dir + ${build.dir.hive}/test/hadoop-${user.name} + A base for other temporary directories. + + + + + + hive.exec.scratchdir + ${build.dir}/scratchdir + Scratch space for Hive jobs + + + + hive.exec.local.scratchdir + ${build.dir}/localscratchdir/ + Local scratch space for Hive jobs + + + + javax.jdo.option.ConnectionURL + + jdbc:derby:;databaseName=../build/test/junit_metastore_db;create=true + + + + javax.jdo.option.ConnectionDriverName + org.apache.derby.jdbc.EmbeddedDriver + + + + javax.jdo.option.ConnectionUserName + APP + + + + javax.jdo.option.ConnectionPassword + mine + + + + + hive.metastore.warehouse.dir + ${test.warehouse.dir} + + + + + hive.metastore.metadb.dir + ${build.dir}/test/data/metadb/ + + Required by metastore server or if the uris argument below is not supplied + + + + + test.log.dir + ${build.dir}/test/logs + + + + + test.src.dir + ${build.dir}/src/test + + + + + + + hive.jar.path + ${build.dir.hive}/ql/hive-exec-${version}.jar + + + + + hive.metastore.rawstore.impl + org.apache.hadoop.hive.metastore.ObjectStore + Name of the class that implements org.apache.hadoop.hive.metastore.rawstore interface. This class is used to store and retrieval of raw metadata objects such as table, database + + + + hive.querylog.location + ${build.dir}/tmp + Location of the structured hive logs + + + + + + hive.task.progress + false + Track progress of a task + + + + hive.support.concurrency + false + Whether hive supports concurrency or not. A zookeeper instance must be up and running for the default hive lock manager to support read-write locks. + + + + fs.pfile.impl + org.apache.hadoop.fs.ProxyLocalFileSystem + A proxy for local file system used for cross file system testing + + + + hive.exec.mode.local.auto + false + + Let hive determine whether to run in local mode automatically + Disabling this for tests so that minimr is not affected + + + + + hive.auto.convert.join + false + Whether Hive enable the optimization about converting common join into mapjoin based on the input file size + + + + hive.ignore.mapjoin.hint + false + Whether Hive ignores the mapjoin hint + + + + hive.input.format + org.apache.hadoop.hive.ql.io.CombineHiveInputFormat + The default input format, if it is not specified, the system assigns it. It is set to HiveInputFormat for hadoop versions 17, 18 and 19, whereas it is set to CombineHiveInputFormat for hadoop 20. The user can always overwrite it - if there is a bug in CombineHiveInputFormat, it can always be manually set to HiveInputFormat. + + + + hive.default.rcfile.serde + org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe + The default SerDe hive will use for the rcfile format + + + diff --git a/dev/audit-release/sbt_app_hive/src/main/scala/HiveApp.scala b/dev/audit-release/sbt_app_hive/src/main/scala/HiveApp.scala new file mode 100644 index 0000000000000..7257d17d10116 --- /dev/null +++ b/dev/audit-release/sbt_app_hive/src/main/scala/HiveApp.scala @@ -0,0 +1,57 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package main.scala + +import scala.collection.mutable.{ListBuffer, Queue} + +import org.apache.spark.SparkConf +import org.apache.spark.SparkContext +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.hive.LocalHiveContext + +case class Person(name: String, age: Int) + +object SparkSqlExample { + + def main(args: Array[String]) { + val conf = sys.env.get("SPARK_AUDIT_MASTER") match { + case Some(master) => new SparkConf().setAppName("Simple Sql App").setMaster(master) + case None => new SparkConf().setAppName("Simple Sql App") + } + val sc = new SparkContext(conf) + val hiveContext = new LocalHiveContext(sc) + + import hiveContext._ + hql("DROP TABLE IF EXISTS src") + hql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") + hql("LOAD DATA LOCAL INPATH 'data.txt' INTO TABLE src") + val results = hql("FROM src SELECT key, value WHERE key >= 0 AND KEY < 5").collect() + results.foreach(println) + + def test(f: => Boolean, failureMsg: String) = { + if (!f) { + println(failureMsg) + System.exit(-1) + } + } + + test(results.size == 5, "Unexpected number of selected elements: " + results) + println("Test succeeded") + sc.stop() + } +} diff --git a/dev/audit-release/sbt_app_sql/build.sbt b/dev/audit-release/sbt_app_sql/build.sbt new file mode 100644 index 0000000000000..6e0ad3b4b2960 --- /dev/null +++ b/dev/audit-release/sbt_app_sql/build.sbt @@ -0,0 +1,29 @@ +// +// Licensed to the Apache Software Foundation (ASF) under one or more +// contributor license agreements. See the NOTICE file distributed with +// this work for additional information regarding copyright ownership. +// The ASF licenses this file to You under the Apache License, Version 2.0 +// (the "License"); you may not use this file except in compliance with +// the License. You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// + +name := "Simple Project" + +version := "1.0" + +scalaVersion := System.getenv.get("SCALA_VERSION") + +libraryDependencies += "org.apache.spark" %% "spark-sql" % System.getenv.get("SPARK_VERSION") + +resolvers ++= Seq( + "Spark Release Repository" at System.getenv.get("SPARK_RELEASE_REPOSITORY"), + "Akka Repository" at "http://repo.akka.io/releases/", + "Spray Repository" at "http://repo.spray.cc/") diff --git a/dev/audit-release/sbt_app_sql/src/main/scala/SqlApp.scala b/dev/audit-release/sbt_app_sql/src/main/scala/SqlApp.scala new file mode 100644 index 0000000000000..50af90c213b5a --- /dev/null +++ b/dev/audit-release/sbt_app_sql/src/main/scala/SqlApp.scala @@ -0,0 +1,57 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package main.scala + +import scala.collection.mutable.{ListBuffer, Queue} + +import org.apache.spark.SparkConf +import org.apache.spark.SparkContext +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.SQLContext + +case class Person(name: String, age: Int) + +object SparkSqlExample { + + def main(args: Array[String]) { + val conf = sys.env.get("SPARK_AUDIT_MASTER") match { + case Some(master) => new SparkConf().setAppName("Simple Sql App").setMaster(master) + case None => new SparkConf().setAppName("Simple Sql App") + } + val sc = new SparkContext(conf) + val sqlContext = new SQLContext(sc) + + import sqlContext._ + val people = sc.makeRDD(1 to 100, 10).map(x => Person(s"Name$x", x)) + people.registerAsTable("people") + val teenagers = sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") + val teenagerNames = teenagers.map(t => "Name: " + t(0)).collect() + teenagerNames.foreach(println) + + def test(f: => Boolean, failureMsg: String) = { + if (!f) { + println(failureMsg) + System.exit(-1) + } + } + + test(teenagerNames.size == 7, "Unexpected number of selected elements: " + teenagerNames) + println("Test succeeded") + sc.stop() + } +} diff --git a/dev/audit-release/sbt_app_streaming/src/main/scala/StreamingApp.scala b/dev/audit-release/sbt_app_streaming/src/main/scala/StreamingApp.scala index a1d8971abe9a4..58a662bd9b2e8 100644 --- a/dev/audit-release/sbt_app_streaming/src/main/scala/StreamingApp.scala +++ b/dev/audit-release/sbt_app_streaming/src/main/scala/StreamingApp.scala @@ -32,7 +32,6 @@ object SparkStreamingExample { case None => new SparkConf().setAppName("Simple Streaming App") } val ssc = new StreamingContext(conf, Seconds(1)) - SparkContext.jarOfClass(this.getClass).foreach(ssc.sparkContext.addJar) val seen = ListBuffer[RDD[Int]]() val rdd1 = ssc.sparkContext.makeRDD(1 to 100, 10) diff --git a/dev/create-release/generate-changelist.py b/dev/create-release/generate-changelist.py new file mode 100755 index 0000000000000..13b744ec1b37e --- /dev/null +++ b/dev/create-release/generate-changelist.py @@ -0,0 +1,144 @@ +#!/usr/bin/python + +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Creates CHANGES.txt from git history. +# +# Usage: +# First set the new release version and old CHANGES.txt version in this file. +# Make sure you have SPARK_HOME set. +# $ python generate-changelist.py + + +import os +import sys +import subprocess +import time +import traceback + +SPARK_HOME = os.environ["SPARK_HOME"] +NEW_RELEASE_VERSION = "1.0.0" +PREV_RELEASE_GIT_TAG = "v0.9.1" + +CHANGELIST = "CHANGES.txt" +OLD_CHANGELIST = "%s.old" % (CHANGELIST) +NEW_CHANGELIST = "%s.new" % (CHANGELIST) +TMP_CHANGELIST = "%s.tmp" % (CHANGELIST) + +# date before first PR in TLP Spark repo +SPARK_REPO_CHANGE_DATE1 = time.strptime("2014-02-26", "%Y-%m-%d") +# date after last PR in incubator Spark repo +SPARK_REPO_CHANGE_DATE2 = time.strptime("2014-03-01", "%Y-%m-%d") +# Threshold PR number that differentiates PRs to TLP +# and incubator repos +SPARK_REPO_PR_NUM_THRESH = 200 + +LOG_FILE_NAME = "changes_%s" % time.strftime("%h_%m_%Y_%I_%M_%S") +LOG_FILE = open(LOG_FILE_NAME, 'w') + +def run_cmd(cmd): + try: + print >> LOG_FILE, "Running command: %s" % cmd + output = subprocess.check_output(cmd, shell=True, stderr=LOG_FILE) + print >> LOG_FILE, "Output: %s" % output + return output + except: + traceback.print_exc() + cleanup() + sys.exit(1) + +def append_to_changelist(string): + with open(TMP_CHANGELIST, "a") as f: + print >> f, string + +def cleanup(ask = True): + if ask == True: + print "OK to delete temporary and log files? (y/N): " + response = raw_input() + if ask == False or (ask == True and response == "y"): + if os.path.isfile(TMP_CHANGELIST): + os.remove(TMP_CHANGELIST) + if os.path.isfile(OLD_CHANGELIST): + os.remove(OLD_CHANGELIST) + LOG_FILE.close() + os.remove(LOG_FILE_NAME) + +print "Generating new %s for Spark release %s" % (CHANGELIST, NEW_RELEASE_VERSION) +os.chdir(SPARK_HOME) +if os.path.isfile(TMP_CHANGELIST): + os.remove(TMP_CHANGELIST) +if os.path.isfile(OLD_CHANGELIST): + os.remove(OLD_CHANGELIST) + +append_to_changelist("Spark Change Log") +append_to_changelist("----------------") +append_to_changelist("") +append_to_changelist("Release %s" % NEW_RELEASE_VERSION) +append_to_changelist("") + +print "Getting commits between tag %s and HEAD" % PREV_RELEASE_GIT_TAG +hashes = run_cmd("git log %s..HEAD --pretty='%%h'" % PREV_RELEASE_GIT_TAG).split() + +print "Getting details of %s commits" % len(hashes) +for h in hashes: + date = run_cmd("git log %s -1 --pretty='%%ad' --date=iso | head -1" % h).strip() + subject = run_cmd("git log %s -1 --pretty='%%s' | head -1" % h).strip() + body = run_cmd("git log %s -1 --pretty='%%b'" % h) + committer = run_cmd("git log %s -1 --pretty='%%cn <%%ce>' | head -1" % h).strip() + body_lines = body.split("\n") + + if "Merge pull" in subject: + ## Parse old format commit message + append_to_changelist(" %s %s" % (h, date)) + append_to_changelist(" %s" % subject) + append_to_changelist(" [%s]" % body_lines[0]) + append_to_changelist("") + + elif "maven-release" not in subject: + ## Parse new format commit message + # Get authors from commit message, committer otherwise + authors = [committer] + if "Author:" in body: + authors = [line.split(":")[1].strip() for line in body_lines if "Author:" in line] + + # Generate GitHub PR URL for easy access if possible + github_url = "" + if "Closes #" in body: + pr_num = [line.split()[1].lstrip("#") for line in body_lines if "Closes #" in line][0] + github_url = "github.com/apache/spark/pull/%s" % pr_num + day = time.strptime(date.split()[0], "%Y-%m-%d") + if day < SPARK_REPO_CHANGE_DATE1 or (day < SPARK_REPO_CHANGE_DATE2 and pr_num < SPARK_REPO_PR_NUM_THRESH): + github_url = "github.com/apache/incubator-spark/pull/%s" % pr_num + + append_to_changelist(" %s" % subject) + append_to_changelist(" %s" % ', '.join(authors)) + # for author in authors: + # append_to_changelist(" %s" % author) + append_to_changelist(" %s" % date) + if len(github_url) > 0: + append_to_changelist(" Commit: %s, %s" % (h, github_url)) + else: + append_to_changelist(" Commit: %s" % h) + append_to_changelist("") + +# Append old change list +print "Appending changelist from tag %s" % PREV_RELEASE_GIT_TAG +run_cmd("git show %s:%s | tail -n +3 >> %s" % (PREV_RELEASE_GIT_TAG, CHANGELIST, TMP_CHANGELIST)) +run_cmd("cp %s %s" % (TMP_CHANGELIST, NEW_CHANGELIST)) +print "New change list generated as %s" % NEW_CHANGELIST +cleanup(False) + From a08262d8769808dd3a8ee1b1e80fbf6ac13a557c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?baishuo=28=E7=99=BD=E7=A1=95=29?= Date: Fri, 23 May 2014 13:02:40 -0700 Subject: [PATCH 035/118] Update LBFGSSuite.scala MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit the same reason as https://github.com/apache/spark/pull/588 Author: baishuo(白硕) Closes #815 from baishuo/master and squashes the following commits: 6876c1e [baishuo(白硕)] Update LBFGSSuite.scala --- .../org/apache/spark/mllib/optimization/LBFGSSuite.scala | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mllib/src/test/scala/org/apache/spark/mllib/optimization/LBFGSSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/optimization/LBFGSSuite.scala index 6af1b502eb4dd..820eca9b1bf65 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/optimization/LBFGSSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/optimization/LBFGSSuite.scala @@ -43,7 +43,7 @@ class LBFGSSuite extends FunSuite with LocalSparkContext with ShouldMatchers { // Add an extra variable consisting of all 1.0's for the intercept. val testData = GradientDescentSuite.generateGDInput(A, B, nPoints, 42) val data = testData.map { case LabeledPoint(label, features) => - label -> Vectors.dense(1.0, features.toArray: _*) + label -> Vectors.dense(1.0 +: features.toArray) } lazy val dataRDD = sc.parallelize(data, 2).cache() @@ -55,7 +55,7 @@ class LBFGSSuite extends FunSuite with LocalSparkContext with ShouldMatchers { test("LBFGS loss should be decreasing and match the result of Gradient Descent.") { val regParam = 0 - val initialWeightsWithIntercept = Vectors.dense(1.0, initialWeights: _*) + val initialWeightsWithIntercept = Vectors.dense(1.0 +: initialWeights.toArray) val convergenceTol = 1e-12 val maxNumIterations = 10 From 5081a0a9d47ca31900ea4de570de2cbb0e063105 Mon Sep 17 00:00:00 2001 From: Andrew Or Date: Sat, 24 May 2014 18:01:49 -0700 Subject: [PATCH 036/118] [SPARK-1900 / 1918] PySpark on YARN is broken If I run the following on a YARN cluster ``` bin/spark-submit sheep.py --master yarn-client ``` it fails because of a mismatch in paths: `spark-submit` thinks that `sheep.py` resides on HDFS, and balks when it can't find the file there. A natural workaround is to add the `file:` prefix to the file: ``` bin/spark-submit file:/path/to/sheep.py --master yarn-client ``` However, this also fails. This time it is because python does not understand URI schemes. This PR fixes this by automatically resolving all paths passed as command line argument to `spark-submit` properly. This has the added benefit of keeping file and jar paths consistent across different cluster modes. For python, we strip the URI scheme before we actually try to run it. Much of the code is originally written by @mengxr. Tested on YARN cluster. More tests pending. Author: Andrew Or Closes #853 from andrewor14/submit-paths and squashes the following commits: 0bb097a [Andrew Or] Format path correctly before adding it to PYTHONPATH 323b45c [Andrew Or] Include --py-files on PYTHONPATH for pyspark shell 3c36587 [Andrew Or] Improve error messages (minor) 854aa6a [Andrew Or] Guard against NPE if user gives pathological paths 6638a6b [Andrew Or] Fix spark-shell jar paths after #849 went in 3bb0359 [Andrew Or] Update more comments (minor) 2a1f8a0 [Andrew Or] Update comments (minor) 6af2c77 [Andrew Or] Merge branch 'master' of github.com:apache/spark into submit-paths a68c4d1 [Andrew Or] Handle Windows python file path correctly 427a250 [Andrew Or] Resolve paths properly for Windows a591a4a [Andrew Or] Update tests for resolving URIs 6c8621c [Andrew Or] Move resolveURIs to Utils db8255e [Andrew Or] Merge branch 'master' of github.com:apache/spark into submit-paths f542dce [Andrew Or] Fix outdated tests 691c4ce [Andrew Or] Ignore special primary resource names 5342ac7 [Andrew Or] Add missing space in error message 02f77f3 [Andrew Or] Resolve command line arguments to spark-submit properly --- .../apache/spark/deploy/PythonRunner.scala | 60 ++++++++++++++-- .../org/apache/spark/deploy/SparkSubmit.scala | 25 ++++--- .../spark/deploy/SparkSubmitArguments.scala | 33 ++++++--- .../scala/org/apache/spark/util/Utils.scala | 71 ++++++++++++++++++- .../spark/deploy/PythonRunnerSuite.scala | 61 ++++++++++++++++ .../spark/deploy/SparkSubmitSuite.scala | 41 ++++++----- .../org/apache/spark/util/UtilsSuite.scala | 66 ++++++++++++++++- python/pyspark/context.py | 8 ++- .../org/apache/spark/repl/SparkILoop.scala | 5 +- 9 files changed, 323 insertions(+), 47 deletions(-) create mode 100644 core/src/test/scala/org/apache/spark/deploy/PythonRunnerSuite.scala diff --git a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala index 2dfa02bd26f13..0d6751f3fa6d2 100644 --- a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala +++ b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala @@ -17,10 +17,13 @@ package org.apache.spark.deploy +import java.net.URI + import scala.collection.mutable.ArrayBuffer import scala.collection.JavaConversions._ import org.apache.spark.api.python.{PythonUtils, RedirectThread} +import org.apache.spark.util.Utils /** * A main class used by spark-submit to launch Python applications. It executes python as a @@ -28,12 +31,15 @@ import org.apache.spark.api.python.{PythonUtils, RedirectThread} */ object PythonRunner { def main(args: Array[String]) { - val primaryResource = args(0) + val pythonFile = args(0) val pyFiles = args(1) val otherArgs = args.slice(2, args.length) - val pythonExec = sys.env.get("PYSPARK_PYTHON").getOrElse("python") // TODO: get this from conf + // Format python file paths before adding them to the PYTHONPATH + val formattedPythonFile = formatPath(pythonFile) + val formattedPyFiles = formatPaths(pyFiles) + // Launch a Py4J gateway server for the process to connect to; this will let it see our // Java system properties and such val gatewayServer = new py4j.GatewayServer(null, 0) @@ -42,13 +48,13 @@ object PythonRunner { // Build up a PYTHONPATH that includes the Spark assembly JAR (where this class is), the // python directories in SPARK_HOME (if set), and any files in the pyFiles argument val pathElements = new ArrayBuffer[String] - pathElements ++= Option(pyFiles).getOrElse("").split(",") + pathElements ++= formattedPyFiles pathElements += PythonUtils.sparkPythonPath pathElements += sys.env.getOrElse("PYTHONPATH", "") val pythonPath = PythonUtils.mergePythonPaths(pathElements: _*) // Launch Python process - val builder = new ProcessBuilder(Seq(pythonExec, "-u", primaryResource) ++ otherArgs) + val builder = new ProcessBuilder(Seq(pythonExec, "-u", formattedPythonFile) ++ otherArgs) val env = builder.environment() env.put("PYTHONPATH", pythonPath) env.put("PYSPARK_GATEWAY_PORT", "" + gatewayServer.getListeningPort) @@ -59,4 +65,50 @@ object PythonRunner { System.exit(process.waitFor()) } + + /** + * Format the python file path so that it can be added to the PYTHONPATH correctly. + * + * Python does not understand URI schemes in paths. Before adding python files to the + * PYTHONPATH, we need to extract the path from the URI. This is safe to do because we + * currently only support local python files. + */ + def formatPath(path: String, testWindows: Boolean = false): String = { + if (Utils.nonLocalPaths(path, testWindows).nonEmpty) { + throw new IllegalArgumentException("Launching Python applications through " + + s"spark-submit is currently only supported for local files: $path") + } + val windows = Utils.isWindows || testWindows + var formattedPath = if (windows) Utils.formatWindowsPath(path) else path + + // Strip the URI scheme from the path + formattedPath = + new URI(formattedPath).getScheme match { + case Utils.windowsDrive(d) if windows => formattedPath + case null => formattedPath + case _ => new URI(formattedPath).getPath + } + + // Guard against malformed paths potentially throwing NPE + if (formattedPath == null) { + throw new IllegalArgumentException(s"Python file path is malformed: $path") + } + + // In Windows, the drive should not be prefixed with "/" + // For instance, python does not understand "/C:/path/to/sheep.py" + formattedPath = if (windows) formattedPath.stripPrefix("/") else formattedPath + formattedPath + } + + /** + * Format each python file path in the comma-delimited list of paths, so it can be + * added to the PYTHONPATH correctly. + */ + def formatPaths(paths: String, testWindows: Boolean = false): Array[String] = { + Option(paths).getOrElse("") + .split(",") + .filter(_.nonEmpty) + .map { p => formatPath(p, testWindows) } + } + } diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala index c54331c00fab8..7e9a9344e61f9 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala @@ -136,9 +136,9 @@ object SparkSubmit { args.childArgs = ArrayBuffer(args.primaryResource, args.pyFiles) ++ args.childArgs args.files = mergeFileLists(args.files, args.primaryResource) } - val pyFiles = Option(args.pyFiles).getOrElse("") - args.files = mergeFileLists(args.files, pyFiles) - sysProps("spark.submit.pyFiles") = pyFiles + args.files = mergeFileLists(args.files, args.pyFiles) + // Format python file paths properly before adding them to the PYTHONPATH + sysProps("spark.submit.pyFiles") = PythonRunner.formatPaths(args.pyFiles).mkString(",") } // If we're deploying into YARN, use yarn.Client as a wrapper around the user class @@ -299,13 +299,18 @@ object SparkSubmit { } private def addJarToClasspath(localJar: String, loader: ExecutorURLClassLoader) { - val localJarFile = new File(localJar) - if (!localJarFile.exists()) { - printWarning(s"Jar $localJar does not exist, skipping.") + val uri = Utils.resolveURI(localJar) + uri.getScheme match { + case "file" | "local" => + val file = new File(uri.getPath) + if (file.exists()) { + loader.addURL(file.toURI.toURL) + } else { + printWarning(s"Local jar $file does not exist, skipping.") + } + case _ => + printWarning(s"Skip remote jar $uri.") } - - val url = localJarFile.getAbsoluteFile.toURI.toURL - loader.addURL(url) } /** @@ -318,7 +323,7 @@ object SparkSubmit { /** * Return whether the given primary resource represents a shell. */ - private def isShell(primaryResource: String): Boolean = { + private[spark] def isShell(primaryResource: String): Boolean = { primaryResource == SPARK_SHELL || primaryResource == PYSPARK_SHELL } diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala index 0cc05fb95aef0..bf449afae695f 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala @@ -118,7 +118,7 @@ private[spark] class SparkSubmitArguments(args: Seq[String]) { mainClass = jar.getManifest.getMainAttributes.getValue("Main-Class") } catch { case e: Exception => - SparkSubmit.printErrorAndExit("Failed to read JAR: " + primaryResource) + SparkSubmit.printErrorAndExit("Cannot load main class from JAR: " + primaryResource) return } } @@ -148,6 +148,18 @@ private[spark] class SparkSubmitArguments(args: Seq[String]) { SparkSubmit.printErrorAndExit("--py-files given but primary resource is not a Python script") } + // Require all python files to be local, so we can add them to the PYTHONPATH + if (isPython) { + if (Utils.nonLocalPaths(primaryResource).nonEmpty) { + SparkSubmit.printErrorAndExit(s"Only local python files are supported: $primaryResource") + } + val nonLocalPyFiles = Utils.nonLocalPaths(pyFiles).mkString(",") + if (nonLocalPyFiles.nonEmpty) { + SparkSubmit.printErrorAndExit( + s"Only local additional python files are supported: $nonLocalPyFiles") + } + } + if (master.startsWith("yarn")) { val hasHadoopEnv = sys.env.contains("HADOOP_CONF_DIR") || sys.env.contains("YARN_CONF_DIR") if (!hasHadoopEnv && !Utils.isTesting) { @@ -263,19 +275,19 @@ private[spark] class SparkSubmitArguments(args: Seq[String]) { parse(tail) case ("--files") :: value :: tail => - files = value + files = Utils.resolveURIs(value) parse(tail) case ("--py-files") :: value :: tail => - pyFiles = value + pyFiles = Utils.resolveURIs(value) parse(tail) case ("--archives") :: value :: tail => - archives = value + archives = Utils.resolveURIs(value) parse(tail) case ("--jars") :: value :: tail => - jars = value + jars = Utils.resolveURIs(value) parse(tail) case ("--help" | "-h") :: tail => @@ -296,7 +308,12 @@ private[spark] class SparkSubmitArguments(args: Seq[String]) { val errMessage = s"Unrecognized option '$value'." SparkSubmit.printErrorAndExit(errMessage) case v => - primaryResource = v + primaryResource = + if (!SparkSubmit.isShell(v)) { + Utils.resolveURI(v).toString + } else { + v + } inSparkOpts = false isPython = SparkSubmit.isPython(v) parse(tail) @@ -327,8 +344,8 @@ private[spark] class SparkSubmitArguments(args: Seq[String]) { | --name NAME A name of your application. | --jars JARS Comma-separated list of local jars to include on the driver | and executor classpaths. - | --py-files PY_FILES Comma-separated list of .zip or .egg files to place on the - | PYTHONPATH for Python apps. + | --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place + | on the PYTHONPATH for Python apps. | --files FILES Comma-separated list of files to be placed in the working | directory of each executor. | --properties-file FILE Path to a file from which to load extra properties. If not diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index 0c7cff019fce1..3b1b6df089b8e 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -1086,9 +1086,19 @@ private[spark] object Utils extends Logging { } /** - * Return true if this is Windows. + * Whether the underlying operating system is Windows. */ - def isWindows = SystemUtils.IS_OS_WINDOWS + val isWindows = SystemUtils.IS_OS_WINDOWS + + /** + * Pattern for matching a Windows drive, which contains only a single alphabet character. + */ + val windowsDrive = "([a-zA-Z])".r + + /** + * Format a Windows path such that it can be safely passed to a URI. + */ + def formatWindowsPath(path: String): String = path.replace("\\", "/") /** * Indicates whether Spark is currently running unit tests. @@ -1166,4 +1176,61 @@ private[spark] object Utils extends Logging { true } } + + /** + * Return a well-formed URI for the file described by a user input string. + * + * If the supplied path does not contain a scheme, or is a relative path, it will be + * converted into an absolute path with a file:// scheme. + */ + def resolveURI(path: String, testWindows: Boolean = false): URI = { + + // In Windows, the file separator is a backslash, but this is inconsistent with the URI format + val windows = isWindows || testWindows + val formattedPath = if (windows) formatWindowsPath(path) else path + + val uri = new URI(formattedPath) + if (uri.getPath == null) { + throw new IllegalArgumentException(s"Given path is malformed: $uri") + } + uri.getScheme match { + case windowsDrive(d) if windows => + new URI("file:/" + uri.toString.stripPrefix("/")) + case null => + // Preserve fragments for HDFS file name substitution (denoted by "#") + // For instance, in "abc.py#xyz.py", "xyz.py" is the name observed by the application + val fragment = uri.getFragment + val part = new File(uri.getPath).toURI + new URI(part.getScheme, part.getPath, fragment) + case _ => + uri + } + } + + /** Resolve a comma-separated list of paths. */ + def resolveURIs(paths: String, testWindows: Boolean = false): String = { + if (paths == null || paths.trim.isEmpty) { + "" + } else { + paths.split(",").map { p => Utils.resolveURI(p, testWindows) }.mkString(",") + } + } + + /** Return all non-local paths from a comma-separated list of paths. */ + def nonLocalPaths(paths: String, testWindows: Boolean = false): Array[String] = { + val windows = isWindows || testWindows + if (paths == null || paths.trim.isEmpty) { + Array.empty + } else { + paths.split(",").filter { p => + val formattedPath = if (windows) formatWindowsPath(p) else p + new URI(formattedPath).getScheme match { + case windowsDrive(d) if windows => false + case "local" | "file" | null => false + case _ => true + } + } + } + } + } diff --git a/core/src/test/scala/org/apache/spark/deploy/PythonRunnerSuite.scala b/core/src/test/scala/org/apache/spark/deploy/PythonRunnerSuite.scala new file mode 100644 index 0000000000000..bb6251fb4bfbe --- /dev/null +++ b/core/src/test/scala/org/apache/spark/deploy/PythonRunnerSuite.scala @@ -0,0 +1,61 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy + +import org.scalatest.FunSuite + +class PythonRunnerSuite extends FunSuite { + + // Test formatting a single path to be added to the PYTHONPATH + test("format path") { + assert(PythonRunner.formatPath("spark.py") === "spark.py") + assert(PythonRunner.formatPath("file:/spark.py") === "/spark.py") + assert(PythonRunner.formatPath("file:///spark.py") === "/spark.py") + assert(PythonRunner.formatPath("local:/spark.py") === "/spark.py") + assert(PythonRunner.formatPath("local:///spark.py") === "/spark.py") + assert(PythonRunner.formatPath("C:/a/b/spark.py", testWindows = true) === "C:/a/b/spark.py") + assert(PythonRunner.formatPath("/C:/a/b/spark.py", testWindows = true) === "C:/a/b/spark.py") + assert(PythonRunner.formatPath("file:/C:/a/b/spark.py", testWindows = true) === + "C:/a/b/spark.py") + intercept[IllegalArgumentException] { PythonRunner.formatPath("one:two") } + intercept[IllegalArgumentException] { PythonRunner.formatPath("hdfs:s3:xtremeFS") } + intercept[IllegalArgumentException] { PythonRunner.formatPath("hdfs:/path/to/some.py") } + } + + // Test formatting multiple comma-separated paths to be added to the PYTHONPATH + test("format paths") { + assert(PythonRunner.formatPaths("spark.py") === Array("spark.py")) + assert(PythonRunner.formatPaths("file:/spark.py") === Array("/spark.py")) + assert(PythonRunner.formatPaths("file:/app.py,local:/spark.py") === + Array("/app.py", "/spark.py")) + assert(PythonRunner.formatPaths("me.py,file:/you.py,local:/we.py") === + Array("me.py", "/you.py", "/we.py")) + assert(PythonRunner.formatPaths("C:/a/b/spark.py", testWindows = true) === + Array("C:/a/b/spark.py")) + assert(PythonRunner.formatPaths("/C:/a/b/spark.py", testWindows = true) === + Array("C:/a/b/spark.py")) + assert(PythonRunner.formatPaths("C:/free.py,pie.py", testWindows = true) === + Array("C:/free.py", "pie.py")) + assert(PythonRunner.formatPaths("lovely.py,C:/free.py,file:/d:/fry.py", testWindows = true) === + Array("lovely.py", "C:/free.py", "d:/fry.py")) + intercept[IllegalArgumentException] { PythonRunner.formatPaths("one:two,three") } + intercept[IllegalArgumentException] { PythonRunner.formatPaths("two,three,four:five:six") } + intercept[IllegalArgumentException] { PythonRunner.formatPaths("hdfs:/some.py,foo.py") } + intercept[IllegalArgumentException] { PythonRunner.formatPaths("foo.py,hdfs:/some.py") } + } +} diff --git a/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala b/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala index 6c0deede53784..02427a4a83506 100644 --- a/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala +++ b/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala @@ -91,7 +91,7 @@ class SparkSubmitSuite extends FunSuite with ShouldMatchers { "--jars=one.jar,two.jar,three.jar", "--name=myApp") val appArgs = new SparkSubmitArguments(clArgs) - appArgs.jars should be ("one.jar,two.jar,three.jar") + appArgs.jars should include regex (".*one.jar,.*two.jar,.*three.jar") appArgs.name should be ("myApp") } @@ -125,17 +125,17 @@ class SparkSubmitSuite extends FunSuite with ShouldMatchers { val appArgs = new SparkSubmitArguments(clArgs) val (childArgs, classpath, sysProps, mainClass) = createLaunchEnv(appArgs) val childArgsStr = childArgs.mkString(" ") - childArgsStr should include ("--jar thejar.jar") childArgsStr should include ("--class org.SomeClass") - childArgsStr should include ("--addJars one.jar,two.jar,three.jar") childArgsStr should include ("--executor-memory 5g") childArgsStr should include ("--driver-memory 4g") childArgsStr should include ("--executor-cores 5") childArgsStr should include ("--arg arg1 --arg arg2") childArgsStr should include ("--queue thequeue") - childArgsStr should include ("--files file1.txt,file2.txt") - childArgsStr should include ("--archives archive1.txt,archive2.txt") childArgsStr should include ("--num-executors 6") + childArgsStr should include regex ("--jar .*thejar.jar") + childArgsStr should include regex ("--addJars .*one.jar,.*two.jar,.*three.jar") + childArgsStr should include regex ("--files .*file1.txt,.*file2.txt") + childArgsStr should include regex ("--archives .*archive1.txt,.*archive2.txt") mainClass should be ("org.apache.spark.deploy.yarn.Client") classpath should have length (0) sysProps("spark.app.name") should be ("beauty") @@ -162,18 +162,19 @@ class SparkSubmitSuite extends FunSuite with ShouldMatchers { val (childArgs, classpath, sysProps, mainClass) = createLaunchEnv(appArgs) childArgs.mkString(" ") should be ("arg1 arg2") mainClass should be ("org.SomeClass") - classpath should contain ("thejar.jar") - classpath should contain ("one.jar") - classpath should contain ("two.jar") - classpath should contain ("three.jar") + classpath should have length (4) + classpath(0) should endWith ("thejar.jar") + classpath(1) should endWith ("one.jar") + classpath(2) should endWith ("two.jar") + classpath(3) should endWith ("three.jar") sysProps("spark.app.name") should be ("trill") - sysProps("spark.jars") should be ("one.jar,two.jar,three.jar,thejar.jar") sysProps("spark.executor.memory") should be ("5g") sysProps("spark.executor.cores") should be ("5") sysProps("spark.yarn.queue") should be ("thequeue") - sysProps("spark.yarn.dist.files") should be ("file1.txt,file2.txt") - sysProps("spark.yarn.dist.archives") should be ("archive1.txt,archive2.txt") sysProps("spark.executor.instances") should be ("6") + sysProps("spark.yarn.dist.files") should include regex (".*file1.txt,.*file2.txt") + sysProps("spark.yarn.dist.archives") should include regex (".*archive1.txt,.*archive2.txt") + sysProps("spark.jars") should include regex (".*one.jar,.*two.jar,.*three.jar,.*thejar.jar") sysProps("SPARK_SUBMIT") should be ("true") } @@ -190,11 +191,13 @@ class SparkSubmitSuite extends FunSuite with ShouldMatchers { val appArgs = new SparkSubmitArguments(clArgs) val (childArgs, classpath, sysProps, mainClass) = createLaunchEnv(appArgs) val childArgsStr = childArgs.mkString(" ") - childArgsStr.startsWith("--memory 4g --cores 5 --supervise") should be (true) - childArgsStr should include ("launch spark://h:p thejar.jar org.SomeClass arg1 arg2") + childArgsStr should startWith ("--memory 4g --cores 5 --supervise") + childArgsStr should include regex ("launch spark://h:p .*thejar.jar org.SomeClass arg1 arg2") mainClass should be ("org.apache.spark.deploy.Client") - classpath should have length (0) - sysProps should have size (2) // contains --jar entry and SPARK_SUBMIT + classpath should have size (0) + sysProps should have size (2) + sysProps.keys should contain ("spark.jars") + sysProps.keys should contain ("SPARK_SUBMIT") } test("handles standalone client mode") { @@ -211,7 +214,8 @@ class SparkSubmitSuite extends FunSuite with ShouldMatchers { val (childArgs, classpath, sysProps, mainClass) = createLaunchEnv(appArgs) childArgs.mkString(" ") should be ("arg1 arg2") mainClass should be ("org.SomeClass") - classpath should contain ("thejar.jar") + classpath should have length (1) + classpath(0) should endWith ("thejar.jar") sysProps("spark.executor.memory") should be ("5g") sysProps("spark.cores.max") should be ("5") } @@ -230,7 +234,8 @@ class SparkSubmitSuite extends FunSuite with ShouldMatchers { val (childArgs, classpath, sysProps, mainClass) = createLaunchEnv(appArgs) childArgs.mkString(" ") should be ("arg1 arg2") mainClass should be ("org.SomeClass") - classpath should contain ("thejar.jar") + classpath should have length (1) + classpath(0) should endWith ("thejar.jar") sysProps("spark.executor.memory") should be ("5g") sysProps("spark.cores.max") should be ("5") } diff --git a/core/src/test/scala/org/apache/spark/util/UtilsSuite.scala b/core/src/test/scala/org/apache/spark/util/UtilsSuite.scala index cf9e20d347ddd..0aad882ed76a8 100644 --- a/core/src/test/scala/org/apache/spark/util/UtilsSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/UtilsSuite.scala @@ -20,6 +20,7 @@ package org.apache.spark.util import scala.util.Random import java.io.{File, ByteArrayOutputStream, ByteArrayInputStream, FileOutputStream} +import java.net.URI import java.nio.{ByteBuffer, ByteOrder} import com.google.common.base.Charsets @@ -168,5 +169,68 @@ class UtilsSuite extends FunSuite { assert(result.size.equals(1)) assert(result(0).getCanonicalPath.equals(child1.getCanonicalPath)) } -} + test("resolveURI") { + def assertResolves(before: String, after: String, testWindows: Boolean = false): Unit = { + assume(before.split(",").length == 1) + assert(Utils.resolveURI(before, testWindows) === new URI(after)) + assert(Utils.resolveURI(after, testWindows) === new URI(after)) + assert(new URI(Utils.resolveURIs(before, testWindows)) === new URI(after)) + assert(new URI(Utils.resolveURIs(after, testWindows)) === new URI(after)) + } + val cwd = System.getProperty("user.dir") + assertResolves("hdfs:/root/spark.jar", "hdfs:/root/spark.jar") + assertResolves("hdfs:///root/spark.jar#app.jar", "hdfs:/root/spark.jar#app.jar") + assertResolves("spark.jar", s"file:$cwd/spark.jar") + assertResolves("spark.jar#app.jar", s"file:$cwd/spark.jar#app.jar") + assertResolves("C:/path/to/file.txt", "file:/C:/path/to/file.txt", testWindows = true) + assertResolves("C:\\path\\to\\file.txt", "file:/C:/path/to/file.txt", testWindows = true) + assertResolves("file:/C:/path/to/file.txt", "file:/C:/path/to/file.txt", testWindows = true) + assertResolves("file:///C:/path/to/file.txt", "file:/C:/path/to/file.txt", testWindows = true) + assertResolves("file:/C:/file.txt#alias.txt", "file:/C:/file.txt#alias.txt", testWindows = true) + intercept[IllegalArgumentException] { Utils.resolveURI("file:foo") } + intercept[IllegalArgumentException] { Utils.resolveURI("file:foo:baby") } + + // Test resolving comma-delimited paths + assert(Utils.resolveURIs("jar1,jar2") === s"file:$cwd/jar1,file:$cwd/jar2") + assert(Utils.resolveURIs("file:/jar1,file:/jar2") === "file:/jar1,file:/jar2") + assert(Utils.resolveURIs("hdfs:/jar1,file:/jar2,jar3") === + s"hdfs:/jar1,file:/jar2,file:$cwd/jar3") + assert(Utils.resolveURIs("hdfs:/jar1,file:/jar2,jar3,jar4#jar5") === + s"hdfs:/jar1,file:/jar2,file:$cwd/jar3,file:$cwd/jar4#jar5") + assert(Utils.resolveURIs("hdfs:/jar1,file:/jar2,jar3,C:\\pi.py#py.pi", testWindows = true) === + s"hdfs:/jar1,file:/jar2,file:$cwd/jar3,file:/C:/pi.py#py.pi") + } + + test("nonLocalPaths") { + assert(Utils.nonLocalPaths("spark.jar") === Array.empty) + assert(Utils.nonLocalPaths("file:/spark.jar") === Array.empty) + assert(Utils.nonLocalPaths("file:///spark.jar") === Array.empty) + assert(Utils.nonLocalPaths("local:/spark.jar") === Array.empty) + assert(Utils.nonLocalPaths("local:///spark.jar") === Array.empty) + assert(Utils.nonLocalPaths("hdfs:/spark.jar") === Array("hdfs:/spark.jar")) + assert(Utils.nonLocalPaths("hdfs:///spark.jar") === Array("hdfs:///spark.jar")) + assert(Utils.nonLocalPaths("file:/spark.jar,local:/smart.jar,family.py") === Array.empty) + assert(Utils.nonLocalPaths("local:/spark.jar,file:/smart.jar,family.py") === Array.empty) + assert(Utils.nonLocalPaths("hdfs:/spark.jar,s3:/smart.jar") === + Array("hdfs:/spark.jar", "s3:/smart.jar")) + assert(Utils.nonLocalPaths("hdfs:/spark.jar,s3:/smart.jar,local.py,file:/hello/pi.py") === + Array("hdfs:/spark.jar", "s3:/smart.jar")) + assert(Utils.nonLocalPaths("local.py,hdfs:/spark.jar,file:/hello/pi.py,s3:/smart.jar") === + Array("hdfs:/spark.jar", "s3:/smart.jar")) + + // Test Windows paths + assert(Utils.nonLocalPaths("C:/some/path.jar", testWindows = true) === Array.empty) + assert(Utils.nonLocalPaths("file:/C:/some/path.jar", testWindows = true) === Array.empty) + assert(Utils.nonLocalPaths("file:///C:/some/path.jar", testWindows = true) === Array.empty) + assert(Utils.nonLocalPaths("local:/C:/some/path.jar", testWindows = true) === Array.empty) + assert(Utils.nonLocalPaths("local:///C:/some/path.jar", testWindows = true) === Array.empty) + assert(Utils.nonLocalPaths("hdfs:/a.jar,C:/my.jar,s3:/another.jar", testWindows = true) === + Array("hdfs:/a.jar", "s3:/another.jar")) + assert(Utils.nonLocalPaths("D:/your.jar,hdfs:/a.jar,s3:/another.jar", testWindows = true) === + Array("hdfs:/a.jar", "s3:/another.jar")) + assert(Utils.nonLocalPaths("hdfs:/a.jar,s3:/another.jar,e:/our.jar", testWindows = true) === + Array("hdfs:/a.jar", "s3:/another.jar")) + } + +} diff --git a/python/pyspark/context.py b/python/pyspark/context.py index c9ff82d23b3cf..27b440d73bdc3 100644 --- a/python/pyspark/context.py +++ b/python/pyspark/context.py @@ -159,10 +159,14 @@ def __init__(self, master=None, appName=None, sparkHome=None, pyFiles=None, self.addPyFile(path) # Deploy code dependencies set by spark-submit; these will already have been added - # with SparkContext.addFile, so we just need to add them + # with SparkContext.addFile, so we just need to add them to the PYTHONPATH for path in self._conf.get("spark.submit.pyFiles", "").split(","): if path != "": - self._python_includes.append(os.path.basename(path)) + (dirname, filename) = os.path.split(path) + self._python_includes.append(filename) + sys.path.append(path) + if not dirname in sys.path: + sys.path.append(dirname) # Create a temporary directory inside spark.local.dir: local_dir = self._jvm.org.apache.spark.util.Utils.getLocalDir(self._jsc.sc().conf()) diff --git a/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala b/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala index 5f34362ccd973..e1db4d5395ab9 100644 --- a/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala +++ b/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala @@ -942,7 +942,7 @@ class SparkILoop(in0: Option[BufferedReader], protected val out: JPrintWriter, def createSparkContext(): SparkContext = { val execUri = System.getenv("SPARK_EXECUTOR_URI") - val jars = SparkILoop.getAddedJars.map(new java.io.File(_).getAbsolutePath) + val jars = SparkILoop.getAddedJars val conf = new SparkConf() .setMaster(getMaster()) .setAppName("Spark shell") @@ -997,7 +997,8 @@ object SparkILoop { val propJars = sys.props.get("spark.jars").flatMap { p => if (p == "") None else Some(p) } - propJars.orElse(envJars).map(_.split(",")).getOrElse(Array.empty) + val jars = propJars.orElse(envJars).getOrElse("") + Utils.resolveURIs(jars).split(",").filter(_.nonEmpty) } // Designed primarily for use by test code: take a String with a From 75a03277704f8618a0f1c41aecfb1ebd24a8ac1a Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Sat, 24 May 2014 18:27:00 -0700 Subject: [PATCH 037/118] SPARK-1911: Emphasize that Spark jars should be built with Java 6. This commit requires the user to manually say "yes" when buiding Spark without Java 6. The prompt can be bypassed with a flag (e.g. if the user is scripting around make-distribution). Author: Patrick Wendell Closes #859 from pwendell/java6 and squashes the following commits: 4921133 [Patrick Wendell] Adding Pyspark Notice fee8c9e [Patrick Wendell] SPARK-1911: Emphasize that Spark jars should be built with Java 6. --- make-distribution.sh | 52 ++++++++++++++++++++++++++------------------ 1 file changed, 31 insertions(+), 21 deletions(-) diff --git a/make-distribution.sh b/make-distribution.sh index 1c89027d68bed..ae52b4976dc25 100755 --- a/make-distribution.sh +++ b/make-distribution.sh @@ -46,27 +46,6 @@ set -e FWDIR="$(cd `dirname $0`; pwd)" DISTDIR="$FWDIR/dist" -if [ -z "$JAVA_HOME" ]; then - echo "Error: JAVA_HOME is not set, cannot proceed." - exit -1 -fi - -JAVA_CMD="$JAVA_HOME"/bin/java -JAVA_VERSION=$("$JAVA_CMD" -version 2>&1) -if ! [[ "$JAVA_VERSION" =~ "1.6" ]]; then - echo "***NOTE***: JAVA_HOME is not set to a JDK 6 installation. The resulting" - echo " distribution will not support Java 6. See SPARK-1703." - echo "Output from 'java -version' was:" - echo "$JAVA_VERSION" -fi - -VERSION=$(mvn help:evaluate -Dexpression=project.version 2>/dev/null | grep -v "INFO" | tail -n 1) -if [ $? != 0 ]; then - echo -e "You need Maven installed to build Spark." - echo -e "Download Maven from https://maven.apache.org/" - exit -1; -fi - # Initialize defaults SPARK_HADOOP_VERSION=1.0.4 SPARK_YARN=false @@ -88,6 +67,9 @@ while (( "$#" )); do --with-hive) SPARK_HIVE=true ;; + --skip-java-test) + SKIP_JAVA_TEST=true + ;; --with-tachyon) SPARK_TACHYON=true ;; @@ -102,6 +84,34 @@ while (( "$#" )); do shift done +if [ -z "$JAVA_HOME" ]; then + echo "Error: JAVA_HOME is not set, cannot proceed." + exit -1 +fi + +VERSION=$(mvn help:evaluate -Dexpression=project.version 2>/dev/null | grep -v "INFO" | tail -n 1) +if [ $? != 0 ]; then + echo -e "You need Maven installed to build Spark." + echo -e "Download Maven from https://maven.apache.org/" + exit -1; +fi + +JAVA_CMD="$JAVA_HOME"/bin/java +JAVA_VERSION=$("$JAVA_CMD" -version 2>&1) +if [[ ! "$JAVA_VERSION" =~ "1.6" && -z "$SKIP_JAVA_TEST" ]]; then + echo "***NOTE***: JAVA_HOME is not set to a JDK 6 installation. The resulting" + echo " distribution may not work well with PySpark and will not run" + echo " with Java 6 (See SPARK-1703 and SPARK-1911)." + echo " This test can be disabled by adding --skip-java-test." + echo "Output from 'java -version' was:" + echo "$JAVA_VERSION" + read -p "Would you like to continue anyways? [y,n]: " -r + if [[ ! $REPLY =~ ^[Yy]$ ]]; then + echo "Okay, exiting." + exit 1 + fi +fi + if [ "$NAME" == "none" ]; then NAME=$SPARK_HADOOP_VERSION fi From 4e4831b8facc186cda6ef31040ccdeab48acbbb7 Mon Sep 17 00:00:00 2001 From: Zhen Peng Date: Sat, 24 May 2014 20:40:19 -0700 Subject: [PATCH 038/118] [SPARK-1886] check executor id existence when executor exit Author: Zhen Peng Closes #827 from zhpengg/bugfix-executor-id-not-found and squashes the following commits: cd8bb65 [Zhen Peng] bugfix: check executor id existence when executor exit --- .../apache/spark/deploy/worker/Worker.scala | 22 ++++++++++++------- 1 file changed, 14 insertions(+), 8 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala b/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala index fb9cc116cd08b..8b6747977eb87 100755 --- a/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala +++ b/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala @@ -263,14 +263,20 @@ private[spark] class Worker( } val fullId = appId + "/" + execId if (ExecutorState.isFinished(state)) { - val executor = executors(fullId) - logInfo("Executor " + fullId + " finished with state " + state + - message.map(" message " + _).getOrElse("") + - exitStatus.map(" exitStatus " + _).getOrElse("")) - executors -= fullId - finishedExecutors(fullId) = executor - coresUsed -= executor.cores - memoryUsed -= executor.memory + executors.get(fullId) match { + case Some(executor) => + logInfo("Executor " + fullId + " finished with state " + state + + message.map(" message " + _).getOrElse("") + + exitStatus.map(" exitStatus " + _).getOrElse("")) + executors -= fullId + finishedExecutors(fullId) = executor + coresUsed -= executor.cores + memoryUsed -= executor.memory + case None => + logInfo("Unknown Executor " + fullId + " finished with state " + state + + message.map(" message " + _).getOrElse("") + + exitStatus.map(" exitStatus " + _).getOrElse("")) + } } case KillExecutor(masterUrl, appId, execId) => From 5afe6af0b192ce7e908634992e8752537b1c4ed1 Mon Sep 17 00:00:00 2001 From: Cheng Lian Date: Sat, 24 May 2014 20:42:01 -0700 Subject: [PATCH 039/118] [SPARK-1913][SQL] Bug fix: column pruning error in Parquet support JIRA issue: [SPARK-1913](https://issues.apache.org/jira/browse/SPARK-1913) When scanning Parquet tables, attributes referenced only in predicates that are pushed down are not passed to the `ParquetTableScan` operator and causes exception. Author: Cheng Lian Closes #863 from liancheng/spark-1913 and squashes the following commits: f976b73 [Cheng Lian] Addessed the readability issue commented by @rxin f5b257d [Cheng Lian] Added back comments deleted by mistake ae60ab3 [Cheng Lian] [SPARK-1913] Attributes referenced only in predicates pushed down should remain in ParquetTableScan operator --- .../org/apache/spark/sql/SQLContext.scala | 6 +++++- .../spark/sql/execution/SparkStrategies.scala | 20 ++++++++++--------- .../spark/sql/parquet/ParquetQuerySuite.scala | 6 +++++- .../spark/sql/hive/HiveStrategies.scala | 1 + 4 files changed, 22 insertions(+), 11 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index bfebfa0c28c52..043be58edc91b 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -206,17 +206,21 @@ class SQLContext(@transient val sparkContext: SparkContext) * final desired output requires complex expressions to be evaluated or when columns can be * further eliminated out after filtering has been done. * + * The `prunePushedDownFilters` parameter is used to remove those filters that can be optimized + * away by the filter pushdown optimization. + * * The required attributes for both filtering and expression evaluation are passed to the * provided `scanBuilder` function so that it can avoid unnecessary column materialization. */ def pruneFilterProject( projectList: Seq[NamedExpression], filterPredicates: Seq[Expression], + prunePushedDownFilters: Seq[Expression] => Seq[Expression], scanBuilder: Seq[Attribute] => SparkPlan): SparkPlan = { val projectSet = projectList.flatMap(_.references).toSet val filterSet = filterPredicates.flatMap(_.references).toSet - val filterCondition = filterPredicates.reduceLeftOption(And) + val filterCondition = prunePushedDownFilters(filterPredicates).reduceLeftOption(And) // Right now we still use a projection even if the only evaluation is applying an alias // to a column. Since this is a no-op, it could be avoided. However, using this diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala index 394a59700dbaf..cfa8bdae58b11 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala @@ -141,14 +141,14 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] { case logical.InsertIntoTable(table: ParquetRelation, partition, child, overwrite) => InsertIntoParquetTable(table, planLater(child), overwrite)(sparkContext) :: Nil case PhysicalOperation(projectList, filters: Seq[Expression], relation: ParquetRelation) => { - val remainingFilters = + val prunePushedDownFilters = if (sparkContext.conf.getBoolean(ParquetFilters.PARQUET_FILTER_PUSHDOWN_ENABLED, true)) { - filters.filter { - // Note: filters cannot be pushed down to Parquet if they contain more complex - // expressions than simple "Attribute cmp Literal" comparisons. Here we remove - // all filters that have been pushed down. Note that a predicate such as - // "(A AND B) OR C" can result in "A OR C" being pushed down. - filter => + (filters: Seq[Expression]) => { + filters.filter { filter => + // Note: filters cannot be pushed down to Parquet if they contain more complex + // expressions than simple "Attribute cmp Literal" comparisons. Here we remove + // all filters that have been pushed down. Note that a predicate such as + // "(A AND B) OR C" can result in "A OR C" being pushed down. val recordFilter = ParquetFilters.createFilter(filter) if (!recordFilter.isDefined) { // First case: the pushdown did not result in any record filter. @@ -159,13 +159,15 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] { // still want to keep "A AND B" in the higher-level filter, not just "B". !ParquetFilters.findExpression(recordFilter.get, filter).isDefined } + } } } else { - filters + identity[Seq[Expression]] _ } pruneFilterProject( projectList, - remainingFilters, + filters, + prunePushedDownFilters, ParquetTableScan(_, relation, filters)(sparkContext)) :: Nil } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala index 65f4c17aeee3a..f9731e82e4924 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala @@ -358,5 +358,9 @@ class ParquetQuerySuite extends QueryTest with FunSuite with BeforeAndAfterAll { assert(stringResult(0).getString(2) == "100", "stringvalue incorrect") assert(stringResult(0).getInt(1) === 100) } -} + test("SPARK-1913 regression: columns only referenced by pushed down filters should remain") { + val query = sql(s"SELECT mystring FROM testfiltersource WHERE myint < 10") + assert(query.collect().size === 10) + } +} diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala index b2157074a41bf..8b51957162e04 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala @@ -69,6 +69,7 @@ private[hive] trait HiveStrategies { pruneFilterProject( projectList, otherPredicates, + identity[Seq[Expression]], HiveTableScan(_, relation, pruningPredicates.reduceLeftOption(And))(hiveContext)) :: Nil case _ => Nil From 6e9fb6320bec3371bc9c010ccbc1b915f500486b Mon Sep 17 00:00:00 2001 From: Colin Patrick Mccabe Date: Sat, 24 May 2014 22:39:27 -0700 Subject: [PATCH 040/118] spark-submit: add exec at the end of the script Add an 'exec' at the end of the spark-submit script, to avoid keeping a bash process hanging around while it runs. This makes ps look a little bit nicer. Author: Colin Patrick Mccabe Closes #858 from cmccabe/SPARK-1907 and squashes the following commits: 7023b64 [Colin Patrick Mccabe] spark-submit: add exec at the end of the script --- bin/spark-submit | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/bin/spark-submit b/bin/spark-submit index 63903b17a2902..9e7cecedd0325 100755 --- a/bin/spark-submit +++ b/bin/spark-submit @@ -41,5 +41,5 @@ if [ -n "$DRIVER_MEMORY" ] && [ $DEPLOY_MODE == "client" ]; then export SPARK_DRIVER_MEMORY=$DRIVER_MEMORY fi -$SPARK_HOME/bin/spark-class org.apache.spark.deploy.SparkSubmit "${ORIG_ARGS[@]}" +exec $SPARK_HOME/bin/spark-class org.apache.spark.deploy.SparkSubmit "${ORIG_ARGS[@]}" From 6052db9dc10c996215658485e805200e4f0cf549 Mon Sep 17 00:00:00 2001 From: Kan Zhang Date: Sun, 25 May 2014 00:06:42 -0700 Subject: [PATCH 041/118] [SPARK-1822] SchemaRDD.count() should use query optimizer Author: Kan Zhang Closes #841 from kanzhang/SPARK-1822 and squashes the following commits: 2f8072a [Kan Zhang] [SPARK-1822] Minor style update cf4baa4 [Kan Zhang] [SPARK-1822] Adding Scaladoc e67c910 [Kan Zhang] [SPARK-1822] SchemaRDD.count() should use optimizer --- python/pyspark/sql.py | 14 +++++++++++++- .../sql/catalyst/expressions/aggregates.scala | 6 +++--- .../scala/org/apache/spark/sql/SchemaRDD.scala | 9 +++++++++ .../scala/org/apache/spark/sql/DslQuerySuite.scala | 9 +++++---- .../test/scala/org/apache/spark/sql/TestData.scala | 2 ++ 5 files changed, 32 insertions(+), 8 deletions(-) diff --git a/python/pyspark/sql.py b/python/pyspark/sql.py index bbe69e7d8f89b..f2001afae4ee5 100644 --- a/python/pyspark/sql.py +++ b/python/pyspark/sql.py @@ -268,7 +268,7 @@ def __init__(self, jschema_rdd, sql_ctx): def _jrdd(self): """ Lazy evaluation of PythonRDD object. Only done when a user calls methods defined by the - L{pyspark.rdd.RDD} super class (map, count, etc.). + L{pyspark.rdd.RDD} super class (map, filter, etc.). """ if not hasattr(self, '_lazy_jrdd'): self._lazy_jrdd = self._toPython()._jrdd @@ -321,6 +321,18 @@ def saveAsTable(self, tableName): """ self._jschema_rdd.saveAsTable(tableName) + def count(self): + """ + Return the number of elements in this RDD. + + >>> srdd = sqlCtx.inferSchema(rdd) + >>> srdd.count() + 3L + >>> srdd.count() == srdd.map(lambda x: x).count() + True + """ + return self._jschema_rdd.count() + def _toPython(self): # We have to import the Row class explicitly, so that the reference Pickler has is # pyspark.sql.Row instead of __main__.Row diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala index 5dbaaa3b0ce35..1bcd4e22766a9 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala @@ -151,7 +151,7 @@ case class MaxFunction(expr: Expression, base: AggregateExpression) extends Aggr case class Count(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def references = child.references override def nullable = false - override def dataType = IntegerType + override def dataType = LongType override def toString = s"COUNT($child)" override def asPartial: SplitEvaluation = { @@ -295,12 +295,12 @@ case class AverageFunction(expr: Expression, base: AggregateExpression) case class CountFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. - var count: Int = _ + var count: Long = _ override def update(input: Row): Unit = { val evaluatedExpr = expr.map(_.eval(input)) if (evaluatedExpr.map(_ != null).reduceLeft(_ || _)) { - count += 1 + count += 1L } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala index 2569815ebb209..452da3d02310d 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala @@ -274,6 +274,15 @@ class SchemaRDD( seed: Long) = new SchemaRDD(sqlContext, Sample(fraction, withReplacement, seed, logicalPlan)) + /** + * :: Experimental :: + * Overriding base RDD implementation to leverage query optimizer + */ + @Experimental + override def count(): Long = { + groupBy()(Count(Literal(1))).collect().head.getLong(0) + } + /** * :: Experimental :: * Applies the given Generator, or table generating function, to this relation. diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala index f43e98d614094..233132a2fec69 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala @@ -108,10 +108,7 @@ class DslQuerySuite extends QueryTest { } test("count") { - checkAnswer( - testData2.groupBy()(Count(1)), - testData2.count() - ) + assert(testData2.count() === testData2.map(_ => 1).count()) } test("null count") { @@ -126,6 +123,10 @@ class DslQuerySuite extends QueryTest { ) } + test("zero count") { + assert(testData4.count() === 0) + } + test("inner join where, one match per row") { checkAnswer( upperCaseData.join(lowerCaseData, Inner).where('n === 'N), diff --git a/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala b/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala index 1aca3872524d7..b1eecb4dd3be4 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala @@ -47,6 +47,8 @@ object TestData { (1, null) :: (2, 2) :: Nil) + val testData4 = logical.LocalRelation('a.int, 'b.int) + case class UpperCaseData(N: Int, L: String) val upperCaseData = TestSQLContext.sparkContext.parallelize( From 5c7faecd75ea59454ad3209390ac078e6cf6e4a6 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Sun, 25 May 2014 01:32:15 -0700 Subject: [PATCH 042/118] Added PEP8 style configuration file. This sets the max line length to 100 as a PEP8 exception. Author: Reynold Xin Closes #872 from rxin/pep8 and squashes the following commits: 2f26029 [Reynold Xin] Added PEP8 style configuration file. --- tox.ini | 2 ++ 1 file changed, 2 insertions(+) create mode 100644 tox.ini diff --git a/tox.ini b/tox.ini new file mode 100644 index 0000000000000..2d94b09a90a46 --- /dev/null +++ b/tox.ini @@ -0,0 +1,2 @@ +[pep8] +max-line-length=100 From d66642e3978a76977414c2fdaedebaad35662667 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Sun, 25 May 2014 01:44:49 -0700 Subject: [PATCH 043/118] SPARK-1822: Some minor cleanup work on SchemaRDD.count() Minor cleanup following #841. Author: Reynold Xin Closes #868 from rxin/schema-count and squashes the following commits: 5442651 [Reynold Xin] SPARK-1822: Some minor cleanup work on SchemaRDD.count() --- python/pyspark/sql.py | 5 ++++- .../src/main/scala/org/apache/spark/sql/SchemaRDD.scala | 8 ++++---- .../test/scala/org/apache/spark/sql/DslQuerySuite.scala | 2 +- .../src/test/scala/org/apache/spark/sql/TestData.scala | 2 +- 4 files changed, 10 insertions(+), 7 deletions(-) diff --git a/python/pyspark/sql.py b/python/pyspark/sql.py index f2001afae4ee5..fa4b9c7b688ea 100644 --- a/python/pyspark/sql.py +++ b/python/pyspark/sql.py @@ -323,7 +323,10 @@ def saveAsTable(self, tableName): def count(self): """ - Return the number of elements in this RDD. + Return the number of elements in this RDD. Unlike the base RDD + implementation of count, this implementation leverages the query + optimizer to compute the count on the SchemaRDD, which supports + features such as filter pushdown. >>> srdd = sqlCtx.inferSchema(rdd) >>> srdd.count() diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala index 452da3d02310d..9883ebc0b3c62 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala @@ -276,12 +276,12 @@ class SchemaRDD( /** * :: Experimental :: - * Overriding base RDD implementation to leverage query optimizer + * Return the number of elements in the RDD. Unlike the base RDD implementation of count, this + * implementation leverages the query optimizer to compute the count on the SchemaRDD, which + * supports features such as filter pushdown. */ @Experimental - override def count(): Long = { - groupBy()(Count(Literal(1))).collect().head.getLong(0) - } + override def count(): Long = groupBy()(Count(Literal(1))).collect().head.getLong(0) /** * :: Experimental :: diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala index 233132a2fec69..94ba13b14b33d 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala @@ -124,7 +124,7 @@ class DslQuerySuite extends QueryTest { } test("zero count") { - assert(testData4.count() === 0) + assert(emptyTableData.count() === 0) } test("inner join where, one match per row") { diff --git a/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala b/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala index b1eecb4dd3be4..944f520e43515 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/TestData.scala @@ -47,7 +47,7 @@ object TestData { (1, null) :: (2, 2) :: Nil) - val testData4 = logical.LocalRelation('a.int, 'b.int) + val emptyTableData = logical.LocalRelation('a.int, 'b.int) case class UpperCaseData(N: Int, L: String) val upperCaseData = From 55fddf9cc0fe420d5396b0e730c8413b2f23d636 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Sun, 25 May 2014 01:47:08 -0700 Subject: [PATCH 044/118] Added license header for tox.ini. (cherry picked from commit fa541f32c5b92e6868a9c99cbb2c87115d624d23) Signed-off-by: Reynold Xin --- tox.ini | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/tox.ini b/tox.ini index 2d94b09a90a46..44766e529bf7f 100644 --- a/tox.ini +++ b/tox.ini @@ -1,2 +1,17 @@ +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + [pep8] max-line-length=100 From d79c2b28e17ec0b15198aaedd2e1f403d81f717e Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Sun, 25 May 2014 14:48:27 -0700 Subject: [PATCH 045/118] Fix PEP8 violations in examples/src/main/python. Author: Reynold Xin Closes #870 from rxin/examples-python-pep8 and squashes the following commits: 2829e84 [Reynold Xin] Fix PEP8 violations in examples/src/main/python. --- examples/src/main/python/als.py | 20 +++++++++++-------- examples/src/main/python/kmeans.py | 2 +- .../src/main/python/logistic_regression.py | 4 ++-- examples/src/main/python/pagerank.py | 12 +++++------ examples/src/main/python/pi.py | 2 ++ examples/src/main/python/sort.py | 4 ++-- 6 files changed, 25 insertions(+), 19 deletions(-) diff --git a/examples/src/main/python/als.py b/examples/src/main/python/als.py index f0b46cd28b7aa..1a7c4c51f48cd 100755 --- a/examples/src/main/python/als.py +++ b/examples/src/main/python/als.py @@ -29,22 +29,25 @@ LAMBDA = 0.01 # regularization np.random.seed(42) + def rmse(R, ms, us): diff = R - ms * us.T return np.sqrt(np.sum(np.power(diff, 2)) / M * U) + def update(i, vec, mat, ratings): uu = mat.shape[0] ff = mat.shape[1] - + XtX = mat.T * mat Xty = mat.T * ratings[i, :].T - + for j in range(ff): - XtX[j,j] += LAMBDA * uu - + XtX[j, j] += LAMBDA * uu + return np.linalg.solve(XtX, Xty) + if __name__ == "__main__": """ Usage: als [M] [U] [F] [iterations] [slices]" @@ -57,10 +60,10 @@ def update(i, vec, mat, ratings): slices = int(sys.argv[5]) if len(sys.argv) > 5 else 2 print "Running ALS with M=%d, U=%d, F=%d, iters=%d, slices=%d\n" % \ - (M, U, F, ITERATIONS, slices) + (M, U, F, ITERATIONS, slices) R = matrix(rand(M, F)) * matrix(rand(U, F).T) - ms = matrix(rand(M ,F)) + ms = matrix(rand(M, F)) us = matrix(rand(U, F)) Rb = sc.broadcast(R) @@ -71,8 +74,9 @@ def update(i, vec, mat, ratings): ms = sc.parallelize(range(M), slices) \ .map(lambda x: update(x, msb.value[x, :], usb.value, Rb.value)) \ .collect() - ms = matrix(np.array(ms)[:, :, 0]) # collect() returns a list, so array ends up being - # a 3-d array, we take the first 2 dims for the matrix + # collect() returns a list, so array ends up being + # a 3-d array, we take the first 2 dims for the matrix + ms = matrix(np.array(ms)[:, :, 0]) msb = sc.broadcast(ms) us = sc.parallelize(range(U), slices) \ diff --git a/examples/src/main/python/kmeans.py b/examples/src/main/python/kmeans.py index fc16586c28a46..988fc45baf3bc 100755 --- a/examples/src/main/python/kmeans.py +++ b/examples/src/main/python/kmeans.py @@ -59,7 +59,7 @@ def closestPoint(p, centers): while tempDist > convergeDist: closest = data.map( - lambda p : (closestPoint(p, kPoints), (p, 1))) + lambda p: (closestPoint(p, kPoints), (p, 1))) pointStats = closest.reduceByKey( lambda (x1, y1), (x2, y2): (x1 + x2, y1 + y2)) newPoints = pointStats.map( diff --git a/examples/src/main/python/logistic_regression.py b/examples/src/main/python/logistic_regression.py index 0f22d0b32319e..6c33deabfd6ea 100755 --- a/examples/src/main/python/logistic_regression.py +++ b/examples/src/main/python/logistic_regression.py @@ -60,8 +60,8 @@ def readPointBatch(iterator): # Compute logistic regression gradient for a matrix of data points def gradient(matrix, w): - Y = matrix[:,0] # point labels (first column of input file) - X = matrix[:,1:] # point coordinates + Y = matrix[:, 0] # point labels (first column of input file) + X = matrix[:, 1:] # point coordinates # For each point (x, y), compute gradient function, then sum these up return ((1.0 / (1.0 + np.exp(-Y * X.dot(w))) - 1.0) * Y * X.T).sum(1) diff --git a/examples/src/main/python/pagerank.py b/examples/src/main/python/pagerank.py index d350fa46fa49a..0b96343158d44 100755 --- a/examples/src/main/python/pagerank.py +++ b/examples/src/main/python/pagerank.py @@ -15,9 +15,8 @@ # limitations under the License. # -#!/usr/bin/env python - -import re, sys +import re +import sys from operator import add from pyspark import SparkContext @@ -26,7 +25,8 @@ def computeContribs(urls, rank): """Calculates URL contributions to the rank of other URLs.""" num_urls = len(urls) - for url in urls: yield (url, rank / num_urls) + for url in urls: + yield (url, rank / num_urls) def parseNeighbors(urls): @@ -59,8 +59,8 @@ def parseNeighbors(urls): # Calculates and updates URL ranks continuously using PageRank algorithm. for iteration in xrange(int(sys.argv[2])): # Calculates URL contributions to the rank of other URLs. - contribs = links.join(ranks).flatMap(lambda (url, (urls, rank)): - computeContribs(urls, rank)) + contribs = links.join(ranks).flatMap( + lambda (url, (urls, rank)): computeContribs(urls, rank)) # Re-calculates URL ranks based on neighbor contributions. ranks = contribs.reduceByKey(add).mapValues(lambda rank: rank * 0.85 + 0.15) diff --git a/examples/src/main/python/pi.py b/examples/src/main/python/pi.py index 234720b55fa49..21d94a2cd4b64 100755 --- a/examples/src/main/python/pi.py +++ b/examples/src/main/python/pi.py @@ -29,9 +29,11 @@ sc = SparkContext(appName="PythonPi") slices = int(sys.argv[1]) if len(sys.argv) > 1 else 2 n = 100000 * slices + def f(_): x = random() * 2 - 1 y = random() * 2 - 1 return 1 if x ** 2 + y ** 2 < 1 else 0 + count = sc.parallelize(xrange(1, n+1), slices).map(f).reduce(add) print "Pi is roughly %f" % (4.0 * count / n) diff --git a/examples/src/main/python/sort.py b/examples/src/main/python/sort.py index 4913ee926aa03..41d00c1b79133 100755 --- a/examples/src/main/python/sort.py +++ b/examples/src/main/python/sort.py @@ -27,8 +27,8 @@ sc = SparkContext(appName="PythonSort") lines = sc.textFile(sys.argv[1], 1) sortedCount = lines.flatMap(lambda x: x.split(' ')) \ - .map(lambda x: (int(x), 1)) \ - .sortByKey(lambda x: x) + .map(lambda x: (int(x), 1)) \ + .sortByKey(lambda x: x) # This is just a demo on how to bring all the sorted data back to a single node. # In reality, we wouldn't want to collect all the data to the driver node. output = sortedCount.collect() From 14f0358b2a0a9b92526bdad6d501ab753459eaa0 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Sun, 25 May 2014 16:04:17 -0700 Subject: [PATCH 046/118] Python docstring update for sql.py. Mostly related to the following two rules in PEP8 and PEP257: - Line length < 72 chars. - First line should be a concise description of the function/class. Author: Reynold Xin Closes #869 from rxin/docstring-schemardd and squashes the following commits: 7cf0cbc [Reynold Xin] Updated sql.py for pep8 docstring. 0a4aef9 [Reynold Xin] Merge branch 'master' into docstring-schemardd 6678937 [Reynold Xin] Python docstring update for sql.py. --- python/pyspark/sql.py | 124 +++++++++++++++++++++--------------------- 1 file changed, 63 insertions(+), 61 deletions(-) diff --git a/python/pyspark/sql.py b/python/pyspark/sql.py index fa4b9c7b688ea..b4e9618cc25b5 100644 --- a/python/pyspark/sql.py +++ b/python/pyspark/sql.py @@ -23,14 +23,14 @@ class SQLContext: - """ - Main entry point for SparkSQL functionality. A SQLContext can be used create L{SchemaRDD}s, - register L{SchemaRDD}s as tables, execute sql over tables, cache tables, and read parquet files. + """Main entry point for SparkSQL functionality. + + A SQLContext can be used create L{SchemaRDD}s, register L{SchemaRDD}s as + tables, execute SQL over tables, cache tables, and read parquet files. """ def __init__(self, sparkContext, sqlContext = None): - """ - Create a new SQLContext. + """Create a new SQLContext. @param sparkContext: The SparkContext to wrap. @@ -63,18 +63,20 @@ def __init__(self, sparkContext, sqlContext = None): @property def _ssql_ctx(self): - """ - Accessor for the JVM SparkSQL context. Subclasses can override this property to provide - their own JVM Contexts. + """Accessor for the JVM SparkSQL context. + + Subclasses can override this property to provide their own + JVM Contexts. """ if not hasattr(self, '_scala_SQLContext'): self._scala_SQLContext = self._jvm.SQLContext(self._jsc.sc()) return self._scala_SQLContext def inferSchema(self, rdd): - """ - Infer and apply a schema to an RDD of L{dict}s. We peek at the first row of the RDD to - determine the fields names and types, and then use that to extract all the dictionaries. + """Infer and apply a schema to an RDD of L{dict}s. + + We peek at the first row of the RDD to determine the fields names + and types, and then use that to extract all the dictionaries. >>> srdd = sqlCtx.inferSchema(rdd) >>> srdd.collect() == [{"field1" : 1, "field2" : "row1"}, {"field1" : 2, "field2": "row2"}, @@ -92,9 +94,10 @@ def inferSchema(self, rdd): return SchemaRDD(srdd, self) def registerRDDAsTable(self, rdd, tableName): - """ - Registers the given RDD as a temporary table in the catalog. Temporary tables exist only - during the lifetime of this instance of SQLContext. + """Registers the given RDD as a temporary table in the catalog. + + Temporary tables exist only during the lifetime of this instance of + SQLContext. >>> srdd = sqlCtx.inferSchema(rdd) >>> sqlCtx.registerRDDAsTable(srdd, "table1") @@ -106,8 +109,7 @@ def registerRDDAsTable(self, rdd, tableName): raise ValueError("Can only register SchemaRDD as table") def parquetFile(self, path): - """ - Loads a Parquet file, returning the result as a L{SchemaRDD}. + """Loads a Parquet file, returning the result as a L{SchemaRDD}. >>> import tempfile, shutil >>> parquetFile = tempfile.mkdtemp() @@ -122,8 +124,7 @@ def parquetFile(self, path): return SchemaRDD(jschema_rdd, self) def sql(self, sqlQuery): - """ - Executes a SQL query using Spark, returning the result as a L{SchemaRDD}. + """Return a L{SchemaRDD} representing the result of the given query. >>> srdd = sqlCtx.inferSchema(rdd) >>> sqlCtx.registerRDDAsTable(srdd, "table1") @@ -135,8 +136,7 @@ def sql(self, sqlQuery): return SchemaRDD(self._ssql_ctx.sql(sqlQuery), self) def table(self, tableName): - """ - Returns the specified table as a L{SchemaRDD}. + """Returns the specified table as a L{SchemaRDD}. >>> srdd = sqlCtx.inferSchema(rdd) >>> sqlCtx.registerRDDAsTable(srdd, "table1") @@ -147,23 +147,19 @@ def table(self, tableName): return SchemaRDD(self._ssql_ctx.table(tableName), self) def cacheTable(self, tableName): - """ - Caches the specified table in-memory. - """ + """Caches the specified table in-memory.""" self._ssql_ctx.cacheTable(tableName) def uncacheTable(self, tableName): - """ - Removes the specified table from the in-memory cache. - """ + """Removes the specified table from the in-memory cache.""" self._ssql_ctx.uncacheTable(tableName) class HiveContext(SQLContext): - """ - An instance of the Spark SQL execution engine that integrates with data stored in Hive. - Configuration for Hive is read from hive-site.xml on the classpath. It supports running both SQL - and HiveQL commands. + """A variant of Spark SQL that integrates with data stored in Hive. + + Configuration for Hive is read from hive-site.xml on the classpath. + It supports running both SQL and HiveQL commands. """ @property @@ -193,9 +189,10 @@ def hql(self, hqlQuery): class LocalHiveContext(HiveContext): - """ - Starts up an instance of hive where metadata is stored locally. An in-process metadata data is - created with data stored in ./metadata. Warehouse data is stored in in ./warehouse. + """Starts up an instance of hive where metadata is stored locally. + + An in-process metadata data is created with data stored in ./metadata. + Warehouse data is stored in in ./warehouse. >>> import os >>> hiveCtx = LocalHiveContext(sc) @@ -228,8 +225,10 @@ def _get_hive_ctx(self): # TODO: Investigate if it is more efficient to use a namedtuple. One problem is that named tuples # are custom classes that must be generated per Schema. class Row(dict): - """ - An extended L{dict} that takes a L{dict} in its constructor, and exposes those items as fields. + """A row in L{SchemaRDD}. + + An extended L{dict} that takes a L{dict} in its constructor, and + exposes those items as fields. >>> r = Row({"hello" : "world", "foo" : "bar"}) >>> r.hello @@ -245,13 +244,16 @@ def __init__(self, d): class SchemaRDD(RDD): - """ - An RDD of L{Row} objects that has an associated schema. The underlying JVM object is a SchemaRDD, - not a PythonRDD, so we can utilize the relational query api exposed by SparkSQL. + """An RDD of L{Row} objects that has an associated schema. - For normal L{pyspark.rdd.RDD} operations (map, count, etc.) the L{SchemaRDD} is not operated on - directly, as it's underlying implementation is a RDD composed of Java objects. Instead it is - converted to a PythonRDD in the JVM, on which Python operations can be done. + The underlying JVM object is a SchemaRDD, not a PythonRDD, so we can + utilize the relational query api exposed by SparkSQL. + + For normal L{pyspark.rdd.RDD} operations (map, count, etc.) the + L{SchemaRDD} is not operated on directly, as it's underlying + implementation is a RDD composed of Java objects. Instead it is + converted to a PythonRDD in the JVM, on which Python operations can + be done. """ def __init__(self, jschema_rdd, sql_ctx): @@ -266,8 +268,9 @@ def __init__(self, jschema_rdd, sql_ctx): @property def _jrdd(self): - """ - Lazy evaluation of PythonRDD object. Only done when a user calls methods defined by the + """Lazy evaluation of PythonRDD object. + + Only done when a user calls methods defined by the L{pyspark.rdd.RDD} super class (map, filter, etc.). """ if not hasattr(self, '_lazy_jrdd'): @@ -279,10 +282,10 @@ def _id(self): return self._jrdd.id() def saveAsParquetFile(self, path): - """ - Saves the contents of this L{SchemaRDD} as a parquet file, preserving the schema. Files - that are written out using this method can be read back in as a SchemaRDD using the - L{SQLContext.parquetFile} method. + """Save the contents as a Parquet file, preserving the schema. + + Files that are written out using this method can be read back in as + a SchemaRDD using the L{SQLContext.parquetFile} method. >>> import tempfile, shutil >>> parquetFile = tempfile.mkdtemp() @@ -296,9 +299,10 @@ def saveAsParquetFile(self, path): self._jschema_rdd.saveAsParquetFile(path) def registerAsTable(self, name): - """ - Registers this RDD as a temporary table using the given name. The lifetime of this temporary - table is tied to the L{SQLContext} that was used to create this SchemaRDD. + """Registers this RDD as a temporary table using the given name. + + The lifetime of this temporary table is tied to the L{SQLContext} + that was used to create this SchemaRDD. >>> srdd = sqlCtx.inferSchema(rdd) >>> srdd.registerAsTable("test") @@ -309,24 +313,22 @@ def registerAsTable(self, name): self._jschema_rdd.registerAsTable(name) def insertInto(self, tableName, overwrite = False): - """ - Inserts the contents of this SchemaRDD into the specified table, - optionally overwriting any existing data. + """Inserts the contents of this SchemaRDD into the specified table. + + Optionally overwriting any existing data. """ self._jschema_rdd.insertInto(tableName, overwrite) def saveAsTable(self, tableName): - """ - Creates a new table with the contents of this SchemaRDD. - """ + """Creates a new table with the contents of this SchemaRDD.""" self._jschema_rdd.saveAsTable(tableName) def count(self): - """ - Return the number of elements in this RDD. Unlike the base RDD - implementation of count, this implementation leverages the query - optimizer to compute the count on the SchemaRDD, which supports - features such as filter pushdown. + """Return the number of elements in this RDD. + + Unlike the base RDD implementation of count, this implementation + leverages the query optimizer to compute the count on the SchemaRDD, + which supports features such as filter pushdown. >>> srdd = sqlCtx.inferSchema(rdd) >>> srdd.count() From d33d3c61ae9e4551aed0217e525a109e678298f2 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Sun, 25 May 2014 17:15:01 -0700 Subject: [PATCH 047/118] Fix PEP8 violations in Python mllib. Author: Reynold Xin Closes #871 from rxin/mllib-pep8 and squashes the following commits: 848416f [Reynold Xin] Fixed a typo in the previous cleanup (c -> sc). a8db4cd [Reynold Xin] Fix PEP8 violations in Python mllib. --- python/pyspark/mllib/_common.py | 42 +++++++++++++------------- python/pyspark/mllib/classification.py | 26 ++++++++-------- python/pyspark/mllib/clustering.py | 15 +++++---- python/pyspark/mllib/linalg.py | 13 ++++---- python/pyspark/mllib/recommendation.py | 15 +++++---- python/pyspark/mllib/regression.py | 24 ++++++--------- python/pyspark/mllib/tests.py | 27 ++++++----------- python/pyspark/mllib/util.py | 4 +-- 8 files changed, 78 insertions(+), 88 deletions(-) diff --git a/python/pyspark/mllib/_common.py b/python/pyspark/mllib/_common.py index e6f0953810ed7..802a27a8da14d 100644 --- a/python/pyspark/mllib/_common.py +++ b/python/pyspark/mllib/_common.py @@ -56,7 +56,8 @@ # # Sparse double vector format: # -# [1-byte 2] [4-byte length] [4-byte nonzeros] [nonzeros*4 bytes of indices] [nonzeros*8 bytes of values] +# [1-byte 2] [4-byte length] [4-byte nonzeros] [nonzeros*4 bytes of indices] \ +# [nonzeros*8 bytes of values] # # Double matrix format: # @@ -110,18 +111,18 @@ def _serialize_double_vector(v): return _serialize_sparse_vector(v) else: raise TypeError("_serialize_double_vector called on a %s; " - "wanted ndarray or SparseVector" % type(v)) + "wanted ndarray or SparseVector" % type(v)) def _serialize_dense_vector(v): """Serialize a dense vector given as a NumPy array.""" if v.ndim != 1: raise TypeError("_serialize_double_vector called on a %ddarray; " - "wanted a 1darray" % v.ndim) + "wanted a 1darray" % v.ndim) if v.dtype != float64: if numpy.issubdtype(v.dtype, numpy.complex): raise TypeError("_serialize_double_vector called on an ndarray of %s; " - "wanted ndarray of float64" % v.dtype) + "wanted ndarray of float64" % v.dtype) v = v.astype(float64) length = v.shape[0] ba = bytearray(5 + 8 * length) @@ -158,10 +159,10 @@ def _deserialize_double_vector(ba): """ if type(ba) != bytearray: raise TypeError("_deserialize_double_vector called on a %s; " - "wanted bytearray" % type(ba)) + "wanted bytearray" % type(ba)) if len(ba) < 5: raise TypeError("_deserialize_double_vector called on a %d-byte array, " - "which is too short" % len(ba)) + "which is too short" % len(ba)) if ba[0] == DENSE_VECTOR_MAGIC: return _deserialize_dense_vector(ba) elif ba[0] == SPARSE_VECTOR_MAGIC: @@ -175,7 +176,7 @@ def _deserialize_dense_vector(ba): """Deserialize a dense vector into a numpy array.""" if len(ba) < 5: raise TypeError("_deserialize_dense_vector called on a %d-byte array, " - "which is too short" % len(ba)) + "which is too short" % len(ba)) length = ndarray(shape=[1], buffer=ba, offset=1, dtype=int32)[0] if len(ba) != 8 * length + 5: raise TypeError("_deserialize_dense_vector called on bytearray " @@ -187,7 +188,7 @@ def _deserialize_sparse_vector(ba): """Deserialize a sparse vector into a MLlib SparseVector object.""" if len(ba) < 9: raise TypeError("_deserialize_sparse_vector called on a %d-byte array, " - "which is too short" % len(ba)) + "which is too short" % len(ba)) header = ndarray(shape=[2], buffer=ba, offset=1, dtype=int32) size = header[0] nonzeros = header[1] @@ -205,7 +206,7 @@ def _serialize_double_matrix(m): if m.dtype != float64: if numpy.issubdtype(m.dtype, numpy.complex): raise TypeError("_serialize_double_matrix called on an ndarray of %s; " - "wanted ndarray of float64" % m.dtype) + "wanted ndarray of float64" % m.dtype) m = m.astype(float64) rows = m.shape[0] cols = m.shape[1] @@ -225,10 +226,10 @@ def _deserialize_double_matrix(ba): """Deserialize a double matrix from a mutually understood format.""" if type(ba) != bytearray: raise TypeError("_deserialize_double_matrix called on a %s; " - "wanted bytearray" % type(ba)) + "wanted bytearray" % type(ba)) if len(ba) < 9: raise TypeError("_deserialize_double_matrix called on a %d-byte array, " - "which is too short" % len(ba)) + "which is too short" % len(ba)) if ba[0] != DENSE_MATRIX_MAGIC: raise TypeError("_deserialize_double_matrix called on bytearray " "with wrong magic") @@ -267,7 +268,7 @@ def _copyto(array, buffer, offset, shape, dtype): def _get_unmangled_rdd(data, serializer): dataBytes = data.map(serializer) dataBytes._bypass_serializer = True - dataBytes.cache() # TODO: users should unpersist() this later! + dataBytes.cache() # TODO: users should unpersist() this later! return dataBytes @@ -293,14 +294,14 @@ def _linear_predictor_typecheck(x, coeffs): if type(x) == ndarray: if x.ndim == 1: if x.shape != coeffs.shape: - raise RuntimeError("Got array of %d elements; wanted %d" - % (numpy.shape(x)[0], coeffs.shape[0])) + raise RuntimeError("Got array of %d elements; wanted %d" % ( + numpy.shape(x)[0], coeffs.shape[0])) else: raise RuntimeError("Bulk predict not yet supported.") elif type(x) == SparseVector: if x.size != coeffs.shape[0]: - raise RuntimeError("Got sparse vector of size %d; wanted %d" - % (x.size, coeffs.shape[0])) + raise RuntimeError("Got sparse vector of size %d; wanted %d" % ( + x.size, coeffs.shape[0])) elif (type(x) == RDD): raise RuntimeError("Bulk predict not yet supported.") else: @@ -315,7 +316,7 @@ def _get_initial_weights(initial_weights, data): if type(initial_weights) == ndarray: if initial_weights.ndim != 1: raise TypeError("At least one data element has " - + initial_weights.ndim + " dimensions, which is not 1") + + initial_weights.ndim + " dimensions, which is not 1") initial_weights = numpy.zeros([initial_weights.shape[0]]) elif type(initial_weights) == SparseVector: initial_weights = numpy.zeros([initial_weights.size]) @@ -333,10 +334,10 @@ def _regression_train_wrapper(sc, train_func, klass, data, initial_weights): raise RuntimeError("JVM call result had unexpected length") elif type(ans[0]) != bytearray: raise RuntimeError("JVM call result had first element of type " - + type(ans[0]).__name__ + " which is not bytearray") + + type(ans[0]).__name__ + " which is not bytearray") elif type(ans[1]) != float: raise RuntimeError("JVM call result had second element of type " - + type(ans[0]).__name__ + " which is not float") + + type(ans[0]).__name__ + " which is not float") return klass(_deserialize_double_vector(ans[0]), ans[1]) @@ -450,8 +451,7 @@ def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) - (failure_count, test_count) = doctest.testmod(globs=globs, - optionflags=doctest.ELLIPSIS) + (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) diff --git a/python/pyspark/mllib/classification.py b/python/pyspark/mllib/classification.py index 6772e4337ef39..1c0c536c4fb3d 100644 --- a/python/pyspark/mllib/classification.py +++ b/python/pyspark/mllib/classification.py @@ -29,6 +29,7 @@ from pyspark.mllib.regression import LabeledPoint, LinearModel from math import exp, log + class LogisticRegressionModel(LinearModel): """A linear binary classification model derived from logistic regression. @@ -68,14 +69,14 @@ def predict(self, x): class LogisticRegressionWithSGD(object): @classmethod - def train(cls, data, iterations=100, step=1.0, - miniBatchFraction=1.0, initialWeights=None): + def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0, initialWeights=None): """Train a logistic regression model on the given data.""" sc = data.context - return _regression_train_wrapper(sc, lambda d, i: - sc._jvm.PythonMLLibAPI().trainLogisticRegressionModelWithSGD(d._jrdd, - iterations, step, miniBatchFraction, i), - LogisticRegressionModel, data, initialWeights) + train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainLogisticRegressionModelWithSGD( + d._jrdd, iterations, step, miniBatchFraction, i) + return _regression_train_wrapper(sc, train_func, LogisticRegressionModel, data, + initialWeights) + class SVMModel(LinearModel): """A support vector machine. @@ -106,16 +107,17 @@ def predict(self, x): margin = _dot(x, self._coeff) + self._intercept return 1 if margin >= 0 else 0 + class SVMWithSGD(object): @classmethod def train(cls, data, iterations=100, step=1.0, regParam=1.0, miniBatchFraction=1.0, initialWeights=None): """Train a support vector machine on the given data.""" sc = data.context - return _regression_train_wrapper(sc, lambda d, i: - sc._jvm.PythonMLLibAPI().trainSVMModelWithSGD(d._jrdd, - iterations, step, regParam, miniBatchFraction, i), - SVMModel, data, initialWeights) + train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainSVMModelWithSGD( + d._jrdd, iterations, step, regParam, miniBatchFraction, i) + return _regression_train_wrapper(sc, train_func, SVMModel, data, initialWeights) + class NaiveBayesModel(object): """ @@ -156,6 +158,7 @@ def predict(self, x): """Return the most likely class for a data vector x""" return self.labels[numpy.argmax(self.pi + _dot(x, self.theta.transpose()))] + class NaiveBayes(object): @classmethod def train(cls, data, lambda_=1.0): @@ -186,8 +189,7 @@ def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) - (failure_count, test_count) = doctest.testmod(globs=globs, - optionflags=doctest.ELLIPSIS) + (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) diff --git a/python/pyspark/mllib/clustering.py b/python/pyspark/mllib/clustering.py index f65088c9170e0..b380e8f6c8725 100644 --- a/python/pyspark/mllib/clustering.py +++ b/python/pyspark/mllib/clustering.py @@ -30,7 +30,8 @@ class KMeansModel(object): """A clustering model derived from the k-means method. >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2) - >>> model = KMeans.train(sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random") + >>> model = KMeans.train( + ... sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random") >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) True >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0])) @@ -76,18 +77,17 @@ def predict(self, x): class KMeans(object): @classmethod - def train(cls, data, k, maxIterations=100, runs=1, - initializationMode="k-means||"): + def train(cls, data, k, maxIterations=100, runs=1, initializationMode="k-means||"): """Train a k-means clustering model.""" sc = data.context dataBytes = _get_unmangled_double_vector_rdd(data) - ans = sc._jvm.PythonMLLibAPI().trainKMeansModel(dataBytes._jrdd, - k, maxIterations, runs, initializationMode) + ans = sc._jvm.PythonMLLibAPI().trainKMeansModel( + dataBytes._jrdd, k, maxIterations, runs, initializationMode) if len(ans) != 1: raise RuntimeError("JVM call result had unexpected length") elif type(ans[0]) != bytearray: raise RuntimeError("JVM call result had first element of type " - + type(ans[0]) + " which is not bytearray") + + type(ans[0]) + " which is not bytearray") matrix = _deserialize_double_matrix(ans[0]) return KMeansModel([row for row in matrix]) @@ -96,8 +96,7 @@ def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) - (failure_count, test_count) = doctest.testmod(globs=globs, - optionflags=doctest.ELLIPSIS) + (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) diff --git a/python/pyspark/mllib/linalg.py b/python/pyspark/mllib/linalg.py index 7511ca7573ddb..276684272068b 100644 --- a/python/pyspark/mllib/linalg.py +++ b/python/pyspark/mllib/linalg.py @@ -54,7 +54,7 @@ def __init__(self, size, *args): if len(args) == 1: pairs = args[0] if type(pairs) == dict: - pairs = pairs.items() + pairs = pairs.items() pairs = sorted(pairs) self.indices = array([p[0] for p in pairs], dtype=int32) self.values = array([p[1] for p in pairs], dtype=float64) @@ -88,7 +88,7 @@ def dot(self, other): result += self.values[i] * other[self.indices[i]] return result elif other.ndim == 2: - results = [self.dot(other[:,i]) for i in xrange(other.shape[1])] + results = [self.dot(other[:, i]) for i in xrange(other.shape[1])] return array(results) else: raise Exception("Cannot call dot with %d-dimensional array" % other.ndim) @@ -135,7 +135,7 @@ def squared_distance(self, other): return result else: raise Exception("Cannot call squared_distance with %d-dimensional array" % - other.ndim) + other.ndim) else: result = 0.0 i, j = 0, 0 @@ -184,15 +184,14 @@ def __eq__(self, other): """ return (isinstance(other, self.__class__) - and other.size == self.size - and array_equal(other.indices, self.indices) - and array_equal(other.values, self.values)) + and other.size == self.size + and array_equal(other.indices, self.indices) + and array_equal(other.values, self.values)) def __ne__(self, other): return not self.__eq__(other) - class Vectors(object): """ Factory methods for working with vectors. Note that dense vectors diff --git a/python/pyspark/mllib/recommendation.py b/python/pyspark/mllib/recommendation.py index f4a83f0209e27..6c385042ffa5f 100644 --- a/python/pyspark/mllib/recommendation.py +++ b/python/pyspark/mllib/recommendation.py @@ -24,6 +24,7 @@ _serialize_tuple, RatingDeserializer from pyspark.rdd import RDD + class MatrixFactorizationModel(object): """A matrix factorisation model trained by regularized alternating least-squares. @@ -55,32 +56,34 @@ def predictAll(self, usersProducts): return RDD(self._java_model.predict(usersProductsJRDD._jrdd), self._context, RatingDeserializer()) + class ALS(object): @classmethod def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1): sc = ratings.context ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating) - mod = sc._jvm.PythonMLLibAPI().trainALSModel(ratingBytes._jrdd, - rank, iterations, lambda_, blocks) + mod = sc._jvm.PythonMLLibAPI().trainALSModel( + ratingBytes._jrdd, rank, iterations, lambda_, blocks) return MatrixFactorizationModel(sc, mod) @classmethod def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01): sc = ratings.context ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating) - mod = sc._jvm.PythonMLLibAPI().trainImplicitALSModel(ratingBytes._jrdd, - rank, iterations, lambda_, blocks, alpha) + mod = sc._jvm.PythonMLLibAPI().trainImplicitALSModel( + ratingBytes._jrdd, rank, iterations, lambda_, blocks, alpha) return MatrixFactorizationModel(sc, mod) + def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) - (failure_count, test_count) = doctest.testmod(globs=globs, - optionflags=doctest.ELLIPSIS) + (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) + if __name__ == "__main__": _test() diff --git a/python/pyspark/mllib/regression.py b/python/pyspark/mllib/regression.py index 266b31d3fab0e..bc7de6d2e8958 100644 --- a/python/pyspark/mllib/regression.py +++ b/python/pyspark/mllib/regression.py @@ -113,10 +113,9 @@ def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0, initialWeights=None): """Train a linear regression model on the given data.""" sc = data.context - return _regression_train_wrapper(sc, lambda d, i: - sc._jvm.PythonMLLibAPI().trainLinearRegressionModelWithSGD( - d._jrdd, iterations, step, miniBatchFraction, i), - LinearRegressionModel, data, initialWeights) + train_f = lambda d, i: sc._jvm.PythonMLLibAPI().trainLinearRegressionModelWithSGD( + d._jrdd, iterations, step, miniBatchFraction, i) + return _regression_train_wrapper(sc, train_f, LinearRegressionModel, data, initialWeights) class LassoModel(LinearRegressionModelBase): @@ -157,10 +156,9 @@ def train(cls, data, iterations=100, step=1.0, regParam=1.0, miniBatchFraction=1.0, initialWeights=None): """Train a Lasso regression model on the given data.""" sc = data.context - return _regression_train_wrapper(sc, lambda d, i: - sc._jvm.PythonMLLibAPI().trainLassoModelWithSGD(d._jrdd, - iterations, step, regParam, miniBatchFraction, i), - LassoModel, data, initialWeights) + train_f = lambda d, i: sc._jvm.PythonMLLibAPI().trainLassoModelWithSGD( + d._jrdd, iterations, step, regParam, miniBatchFraction, i) + return _regression_train_wrapper(sc, train_f, LassoModel, data, initialWeights) class RidgeRegressionModel(LinearRegressionModelBase): @@ -201,18 +199,16 @@ def train(cls, data, iterations=100, step=1.0, regParam=1.0, miniBatchFraction=1.0, initialWeights=None): """Train a ridge regression model on the given data.""" sc = data.context - return _regression_train_wrapper(sc, lambda d, i: - sc._jvm.PythonMLLibAPI().trainRidgeModelWithSGD(d._jrdd, - iterations, step, regParam, miniBatchFraction, i), - RidgeRegressionModel, data, initialWeights) + train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainRidgeModelWithSGD( + d._jrdd, iterations, step, regParam, miniBatchFraction, i) + return _regression_train_wrapper(sc, train_func, RidgeRegressionModel, data, initialWeights) def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) - (failure_count, test_count) = doctest.testmod(globs=globs, - optionflags=doctest.ELLIPSIS) + (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py index 1ee96bb4af37b..37ccf1d590743 100644 --- a/python/pyspark/mllib/tests.py +++ b/python/pyspark/mllib/tests.py @@ -23,7 +23,7 @@ import unittest from pyspark.mllib._common import _convert_vector, _serialize_double_vector, \ - _deserialize_double_vector, _dot, _squared_distance + _deserialize_double_vector, _dot, _squared_distance from pyspark.mllib.linalg import SparseVector from pyspark.mllib.regression import LabeledPoint from pyspark.tests import PySparkTestCase @@ -46,12 +46,9 @@ def test_serialize(self): self.assertTrue(sv is _convert_vector(sv)) self.assertTrue(dv is _convert_vector(dv)) self.assertTrue(array_equal(dv, _convert_vector(lst))) - self.assertEquals(sv, - _deserialize_double_vector(_serialize_double_vector(sv))) - self.assertTrue(array_equal(dv, - _deserialize_double_vector(_serialize_double_vector(dv)))) - self.assertTrue(array_equal(dv, - _deserialize_double_vector(_serialize_double_vector(lst)))) + self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(sv))) + self.assertTrue(array_equal(dv, _deserialize_double_vector(_serialize_double_vector(dv)))) + self.assertTrue(array_equal(dv, _deserialize_double_vector(_serialize_double_vector(lst)))) def test_dot(self): sv = SparseVector(4, {1: 1, 3: 2}) @@ -132,7 +129,7 @@ def test_classification(self): def test_regression(self): from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \ - RidgeRegressionWithSGD + RidgeRegressionWithSGD data = [ LabeledPoint(-1.0, [0, -1]), LabeledPoint(1.0, [0, 1]), @@ -179,14 +176,10 @@ def test_serialize(self): self.assertEquals(sv, _convert_vector(lil.tocoo())) self.assertEquals(sv, _convert_vector(lil.tocsr())) self.assertEquals(sv, _convert_vector(lil.todok())) - self.assertEquals(sv, - _deserialize_double_vector(_serialize_double_vector(lil))) - self.assertEquals(sv, - _deserialize_double_vector(_serialize_double_vector(lil.tocsc()))) - self.assertEquals(sv, - _deserialize_double_vector(_serialize_double_vector(lil.tocsr()))) - self.assertEquals(sv, - _deserialize_double_vector(_serialize_double_vector(lil.todok()))) + self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil))) + self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil.tocsc()))) + self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil.tocsr()))) + self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil.todok()))) def test_dot(self): from scipy.sparse import lil_matrix @@ -265,7 +258,7 @@ def test_classification(self): def test_regression(self): from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \ - RidgeRegressionWithSGD + RidgeRegressionWithSGD data = [ LabeledPoint(-1.0, self.scipy_matrix(2, {1: -1.0})), LabeledPoint(1.0, self.scipy_matrix(2, {1: 1.0})), diff --git a/python/pyspark/mllib/util.py b/python/pyspark/mllib/util.py index 50d0cdd087625..0e5f4520b9402 100644 --- a/python/pyspark/mllib/util.py +++ b/python/pyspark/mllib/util.py @@ -21,6 +21,7 @@ from pyspark.mllib.regression import LabeledPoint from pyspark.mllib._common import _convert_vector + class MLUtils: """ Helper methods to load, save and pre-process data used in MLlib. @@ -44,7 +45,6 @@ def _parse_libsvm_line(line, multiclass): values[i] = float(value) return label, indices, values - @staticmethod def _convert_labeled_point_to_libsvm(p): """Converts a LabeledPoint to a string in LIBSVM format.""" @@ -62,7 +62,6 @@ def _convert_labeled_point_to_libsvm(p): " but got " % type(v)) return " ".join(items) - @staticmethod def loadLibSVMFile(sc, path, multiclass=False, numFeatures=-1, minPartitions=None): """ @@ -135,7 +134,6 @@ def loadLibSVMFile(sc, path, multiclass=False, numFeatures=-1, minPartitions=Non numFeatures = parsed.map(lambda x: 0 if x[1].size == 0 else x[1][-1]).reduce(max) + 1 return parsed.map(lambda x: LabeledPoint(x[0], Vectors.sparse(numFeatures, x[1], x[2]))) - @staticmethod def saveAsLibSVMFile(data, dir): """ From 0659529614c804e0c04efc59cb67dab3a6cdc9d9 Mon Sep 17 00:00:00 2001 From: Andrew Ash Date: Sun, 25 May 2014 17:15:47 -0700 Subject: [PATCH 048/118] SPARK-1903 Document Spark's network connections https://issues.apache.org/jira/browse/SPARK-1903 Author: Andrew Ash Closes #856 from ash211/SPARK-1903 and squashes the following commits: 6e7782a [Andrew Ash] Add the technology used on each port 1d9b5d3 [Andrew Ash] Document port for history server 56193ee [Andrew Ash] spark.ui.port becomes worker.ui.port and master.ui.port a774c07 [Andrew Ash] Wording in network section 90e8237 [Andrew Ash] Use real :toc instead of the hand-written one edaa337 [Andrew Ash] Master -> Standalone Cluster Master 57e8869 [Andrew Ash] Port -> Default Port 3d4d289 [Andrew Ash] Title to title case c7d42d9 [Andrew Ash] [WIP] SPARK-1903 Add initial port listing for documentation a416ae9 [Andrew Ash] Word wrap to 100 lines --- docs/README.md | 43 +++++-- docs/configuration.md | 268 ++++++++++++++++++++++++++++++------------ 2 files changed, 222 insertions(+), 89 deletions(-) diff --git a/docs/README.md b/docs/README.md index f1eb644f93406..fd7ba4e0d72ea 100644 --- a/docs/README.md +++ b/docs/README.md @@ -1,23 +1,31 @@ Welcome to the Spark documentation! -This readme will walk you through navigating and building the Spark documentation, which is included here with the Spark source code. You can also find documentation specific to release versions of Spark at http://spark.apache.org/documentation.html. +This readme will walk you through navigating and building the Spark documentation, which is included +here with the Spark source code. You can also find documentation specific to release versions of +Spark at http://spark.apache.org/documentation.html. -Read on to learn more about viewing documentation in plain text (i.e., markdown) or building the documentation yourself. Why build it yourself? So that you have the docs that corresponds to whichever version of Spark you currently have checked out of revision control. +Read on to learn more about viewing documentation in plain text (i.e., markdown) or building the +documentation yourself. Why build it yourself? So that you have the docs that corresponds to +whichever version of Spark you currently have checked out of revision control. ## Generating the Documentation HTML -We include the Spark documentation as part of the source (as opposed to using a hosted wiki, such as the github wiki, as the definitive documentation) to enable the documentation to evolve along with the source code and be captured by revision control (currently git). This way the code automatically includes the version of the documentation that is relevant regardless of which version or release you have checked out or downloaded. +We include the Spark documentation as part of the source (as opposed to using a hosted wiki, such as +the github wiki, as the definitive documentation) to enable the documentation to evolve along with +the source code and be captured by revision control (currently git). This way the code automatically +includes the version of the documentation that is relevant regardless of which version or release +you have checked out or downloaded. -In this directory you will find textfiles formatted using Markdown, with an ".md" suffix. You can read those text files directly if you want. Start with index.md. +In this directory you will find textfiles formatted using Markdown, with an ".md" suffix. You can +read those text files directly if you want. Start with index.md. -The markdown code can be compiled to HTML using the -[Jekyll tool](http://jekyllrb.com). +The markdown code can be compiled to HTML using the [Jekyll tool](http://jekyllrb.com). To use the `jekyll` command, you will need to have Jekyll installed. The easiest way to do this is via a Ruby Gem, see the [jekyll installation instructions](http://jekyllrb.com/docs/installation). If not already installed, you need to install `kramdown` with `sudo gem install kramdown`. -Execute `jekyll` from the `docs/` directory. Compiling the site with Jekyll will create a directory called -`_site` containing index.html as well as the rest of the compiled files. +Execute `jekyll` from the `docs/` directory. Compiling the site with Jekyll will create a directory +called `_site` containing index.html as well as the rest of the compiled files. You can modify the default Jekyll build as follows: @@ -30,9 +38,11 @@ You can modify the default Jekyll build as follows: ## Pygments -We also use pygments (http://pygments.org) for syntax highlighting in documentation markdown pages, so you will also need to install that (it requires Python) by running `sudo easy_install Pygments`. +We also use pygments (http://pygments.org) for syntax highlighting in documentation markdown pages, +so you will also need to install that (it requires Python) by running `sudo easy_install Pygments`. -To mark a block of code in your markdown to be syntax highlighted by jekyll during the compile phase, use the following sytax: +To mark a block of code in your markdown to be syntax highlighted by jekyll during the compile +phase, use the following sytax: {% highlight scala %} // Your scala code goes here, you can replace scala with many other @@ -43,8 +53,15 @@ To mark a block of code in your markdown to be syntax highlighted by jekyll duri You can build just the Spark scaladoc by running `sbt/sbt doc` from the SPARK_PROJECT_ROOT directory. -Similarly, you can build just the PySpark epydoc by running `epydoc --config epydoc.conf` from the SPARK_PROJECT_ROOT/pyspark directory. Documentation is only generated for classes that are listed as public in `__init__.py`. +Similarly, you can build just the PySpark epydoc by running `epydoc --config epydoc.conf` from the +SPARK_PROJECT_ROOT/pyspark directory. Documentation is only generated for classes that are listed as +public in `__init__.py`. -When you run `jekyll` in the `docs` directory, it will also copy over the scaladoc for the various Spark subprojects into the `docs` directory (and then also into the `_site` directory). We use a jekyll plugin to run `sbt/sbt doc` before building the site so if you haven't run it (recently) it may take some time as it generates all of the scaladoc. The jekyll plugin also generates the PySpark docs using [epydoc](http://epydoc.sourceforge.net/). +When you run `jekyll` in the `docs` directory, it will also copy over the scaladoc for the various +Spark subprojects into the `docs` directory (and then also into the `_site` directory). We use a +jekyll plugin to run `sbt/sbt doc` before building the site so if you haven't run it (recently) it +may take some time as it generates all of the scaladoc. The jekyll plugin also generates the +PySpark docs using [epydoc](http://epydoc.sourceforge.net/). -NOTE: To skip the step of building and copying over the Scala and Python API docs, run `SKIP_API=1 jekyll`. +NOTE: To skip the step of building and copying over the Scala and Python API docs, run `SKIP_API=1 +jekyll`. diff --git a/docs/configuration.md b/docs/configuration.md index 4d41c36e38e26..e5d955f23fe32 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -3,15 +3,10 @@ layout: global title: Spark Configuration --- -Spark provides three locations to configure the system: - -* [Spark properties](#spark-properties) control most application parameters and can be set by - passing a [SparkConf](api/scala/index.html#org.apache.spark.SparkConf) object to SparkContext, - or through the `conf/spark-defaults.conf` properties file. -* [Environment variables](#environment-variables) can be used to set per-machine settings, such as - the IP address, through the `conf/spark-env.sh` script on each node. -* [Logging](#configuring-logging) can be configured through `log4j.properties`. +* This will become a table of contents (this text will be scraped). +{:toc} +Spark provides several locations to configure the system: # Spark Properties @@ -65,7 +60,8 @@ there are at least five properties that you will commonly want to control:
spark.executor.memory 512m - Amount of memory to use per executor process, in the same format as JVM memory strings (e.g. 512m, 2g). + Amount of memory to use per executor process, in the same format as JVM memory strings (e.g. + 512m, 2g).
spark.local.dir /tmp - Directory to use for "scratch" space in Spark, including map output files and RDDs that get stored - on disk. This should be on a fast, local disk in your system. It can also be a comma-separated - list of multiple directories on different disks. + Directory to use for "scratch" space in Spark, including map output files and RDDs that get + stored on disk. This should be on a fast, local disk in your system. It can also be a + comma-separated list of multiple directories on different disks. NOTE: In Spark 1.0 and later this will be overriden by SPARK_LOCAL_DIRS (Standalone, Mesos) or LOCAL_DIRS (YARN) envrionment variables set by the cluster manager. @@ -130,8 +126,8 @@ Apart from these, the following properties are also available, and may be useful - Default number of tasks to use across the cluster for distributed shuffle operations (groupByKey, - reduceByKey, etc) when not set by user. + Default number of tasks to use across the cluster for distributed shuffle operations + (groupByKey, reduceByKey, etc) when not set by user.
spark.tachyonStore.baseDir System.getProperty("java.io.tmpdir") - Directories of the Tachyon File System that store RDDs. The Tachyon file system's URL is set by spark.tachyonStore.url. - It can also be a comma-separated list of multiple directories on Tachyon file system. + Directories of the Tachyon File System that store RDDs. The Tachyon file system's URL is set by + spark.tachyonStore.url. It can also be a comma-separated list of multiple + directories on Tachyon file system.
spark.mesos.coarse false - If set to "true", runs over Mesos clusters in - "coarse-grained" sharing mode, - where Spark acquires one long-lived Mesos task on each machine instead of one Mesos task per Spark task. + If set to "true", runs over Mesos clusters in "coarse-grained" sharing mode, where Spark + acquires one long-lived Mesos task on each machine instead of one Mesos task per Spark task. This gives lower-latency scheduling for short queries, but leaves resources in use for the whole duration of the Spark job. spark.io.compression.codec org.apache.spark.io.
LZFCompressionCodec
- The codec used to compress internal data such as RDD partitions and shuffle outputs. By default, Spark provides two - codecs: org.apache.spark.io.LZFCompressionCodec and org.apache.spark.io.SnappyCompressionCodec. + The codec used to compress internal data such as RDD partitions and shuffle outputs. By default, + Spark provides two codecs: org.apache.spark.io.LZFCompressionCodec and + org.apache.spark.io.SnappyCompressionCodec.
spark.io.compression.snappy.block.size 32768 - Block size (in bytes) used in Snappy compression, in the case when Snappy compression codec is used. + Block size (in bytes) used in Snappy compression, in the case when Snappy compression codec is + used.
spark.scheduler.revive.interval 1000 - The interval length for the scheduler to revive the worker resource offers to run tasks. (in milliseconds) + The interval length for the scheduler to revive the worker resource offers to run tasks. (in + milliseconds)
48 Maximum size (in megabytes) of map outputs to fetch simultaneously from each reduce task. Since - each output requires us to create a buffer to receive it, this represents a fixed memory overhead - per reduce task, so keep it small unless you have a large amount of memory. + each output requires us to create a buffer to receive it, this represents a fixed memory + overhead per reduce task, so keep it small unless you have a large amount of memory.
spark.kryoserializer.buffer.mb 2 - Maximum object size to allow within Kryo (the library needs to create a buffer at least as - large as the largest single object you'll serialize). Increase this if you get a "buffer limit - exceeded" exception inside Kryo. Note that there will be one buffer per core on each worker. + Maximum object size to allow within Kryo (the library needs to create a buffer at least as large + as the largest single object you'll serialize). Increase this if you get a "buffer limit + exceeded" exception inside Kryo. Note that there will be one buffer per core on each + worker.
spark.worker.cleanup.enabled false - Enable periodic cleanup of worker / application directories. Note that this only affects standalone - mode, as YARN works differently. Applications directories are cleaned up regardless of whether - the application is still running. + Enable periodic cleanup of worker / application directories. Note that this only affects + standalone mode, as YARN works differently. Applications directories are cleaned up regardless + of whether the application is still running.
spark.worker.cleanup.appDataTtl 7 * 24 * 3600 (7 days) - The number of seconds to retain application work directories on each worker. This is a Time To Live - and should depend on the amount of available disk space you have. Application logs and jars are - downloaded to each application work dir. Over time, the work dirs can quickly fill up disk space, - especially if you run jobs very frequently. + The number of seconds to retain application work directories on each worker. This is a Time To + Live and should depend on the amount of available disk space you have. Application logs and + jars are downloaded to each application work dir. Over time, the work dirs can quickly fill up + disk space, especially if you run jobs very frequently.
spark.akka.heartbeat.pauses 600 - This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). Acceptable heart beat pause in seconds for akka. This can be used to control sensitivity to gc pauses. Tune this in combination of `spark.akka.heartbeat.interval` and `spark.akka.failure-detector.threshold` if you need to. + This is set to a larger value to disable failure detector that comes inbuilt akka. It can be + enabled again, if you plan to use this feature (Not recommended). Acceptable heart beat pause + in seconds for akka. This can be used to control sensitivity to gc pauses. Tune this in + combination of `spark.akka.heartbeat.interval` and `spark.akka.failure-detector.threshold` if + you need to.
spark.akka.failure-detector.threshold 300.0 - This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). This maps to akka's `akka.remote.transport-failure-detector.threshold`. Tune this in combination of `spark.akka.heartbeat.pauses` and `spark.akka.heartbeat.interval` if you need to. + This is set to a larger value to disable failure detector that comes inbuilt akka. It can be + enabled again, if you plan to use this feature (Not recommended). This maps to akka's + `akka.remote.transport-failure-detector.threshold`. Tune this in combination of + `spark.akka.heartbeat.pauses` and `spark.akka.heartbeat.interval` if you need to.
spark.akka.heartbeat.interval 1000 - This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). A larger interval value in seconds reduces network overhead and a smaller value ( ~ 1 s) might be more informative for akka's failure detector. Tune this in combination of `spark.akka.heartbeat.pauses` and `spark.akka.failure-detector.threshold` if you need to. Only positive use case for using failure detector can be, a sensistive failure detector can help evict rogue executors really quick. However this is usually not the case as gc pauses and network lags are expected in a real spark cluster. Apart from that enabling this leads to a lot of exchanges of heart beats between nodes leading to flooding the network with those. + This is set to a larger value to disable failure detector that comes inbuilt akka. It can be + enabled again, if you plan to use this feature (Not recommended). A larger interval value in + seconds reduces network overhead and a smaller value ( ~ 1 s) might be more informative for + akka's failure detector. Tune this in combination of `spark.akka.heartbeat.pauses` and + `spark.akka.failure-detector.threshold` if you need to. Only positive use case for using failure + detector can be, a sensistive failure detector can help evict rogue executors really quick. + However this is usually not the case as gc pauses and network lags are expected in a real spark + cluster. Apart from that enabling this leads to a lot of exchanges of heart beats between nodes + leading to flooding the network with those.
spark.cleaner.ttl (infinite) - Duration (seconds) of how long Spark will remember any metadata (stages generated, tasks generated, etc.). - Periodic cleanups will ensure that metadata older than this duration will be forgotten. This is - useful for running Spark for many hours / days (for example, running 24/7 in case of Spark Streaming - applications). Note that any RDD that persists in memory for more than this duration will be cleared as well. + Duration (seconds) of how long Spark will remember any metadata (stages generated, tasks + generated, etc.). Periodic cleanups will ensure that metadata older than this duration will be + forgotten. This is useful for running Spark for many hours / days (for example, running 24/7 in + case of Spark Streaming applications). Note that any RDD that persists in memory for more than + this duration will be cleared as well.
4096 Size of each piece of a block in kilobytes for TorrentBroadcastFactory. - Too large a value decreases parallelism during broadcast (makes it slower); however, if it is too small, BlockManager might take a performance hit. + Too large a value decreases parallelism during broadcast (makes it slower); however, if it is + too small, BlockManager might take a performance hit.
spark.shuffle.consolidateFiles false - If set to "true", consolidates intermediate files created during a shuffle. Creating fewer files can improve filesystem performance for shuffles with large numbers of reduce tasks. It is recommended to set this to "true" when using ext4 or xfs filesystems. On ext3, this option might degrade performance on machines with many (>8) cores due to filesystem limitations. + If set to "true", consolidates intermediate files created during a shuffle. Creating fewer files + can improve filesystem performance for shuffles with large numbers of reduce tasks. It is + recommended to set this to "true" when using ext4 or xfs filesystems. On ext3, this option might + degrade performance on machines with many (>8) cores due to filesystem limitations.
spark.shuffle.spill true - If set to "true", limits the amount of memory used during reduces by spilling data out to disk. This spilling - threshold is specified by spark.shuffle.memoryFraction. + If set to "true", limits the amount of memory used during reduces by spilling data out to disk. + This spilling threshold is specified by spark.shuffle.memoryFraction.
spark.speculation false - If set to "true", performs speculative execution of tasks. This means if one or more tasks are running slowly in a stage, they will be re-launched. + If set to "true", performs speculative execution of tasks. This means if one or more tasks are + running slowly in a stage, they will be re-launched.
spark.eventLog.enabled false - Whether to log spark events, useful for reconstructing the Web UI after the application has finished. + Whether to log spark events, useful for reconstructing the Web UI after the application has + finished.
file:///tmp/spark-events Base directory in which spark events are logged, if spark.eventLog.enabled is true. - Within this base directory, Spark creates a sub-directory for each application, and logs the events - specific to the application in this directory. + Within this base directory, Spark creates a sub-directory for each application, and logs the + events specific to the application in this directory.
spark.deploy.spreadOut true - Whether the standalone cluster manager should spread applications out across nodes or try - to consolidate them onto as few nodes as possible. Spreading out is usually better for - data locality in HDFS, but consolidating is more efficient for compute-intensive workloads.
- Note: this setting needs to be configured in the standalone cluster master, not in individual - applications; you can set it through SPARK_MASTER_OPTS in spark-env.sh. + Whether the standalone cluster manager should spread applications out across nodes or try to + consolidate them onto as few nodes as possible. Spreading out is usually better for data + locality in HDFS, but consolidating is more efficient for compute-intensive workloads.
+ Note: this setting needs to be configured in the standalone cluster master, not in + individual applications; you can set it through SPARK_MASTER_OPTS in + spark-env.sh.
spark.deploy.defaultCores (infinite) - Default number of cores to give to applications in Spark's standalone mode if they don't - set spark.cores.max. If not set, applications always get all available - cores unless they configure spark.cores.max themselves. - Set this lower on a shared cluster to prevent users from grabbing - the whole cluster by default.
- Note: this setting needs to be configured in the standalone cluster master, not in individual - applications; you can set it through SPARK_MASTER_OPTS in spark-env.sh. + Default number of cores to give to applications in Spark's standalone mode if they don't set + spark.cores.max. If not set, applications always get all available cores unless + they configure spark.cores.max themselves. Set this lower on a shared cluster to + prevent users from grabbing the whole cluster by default.
Note: this setting needs + to be configured in the standalone cluster master, not in individual applications; you can set + it through SPARK_MASTER_OPTS in spark-env.sh.
spark.files.overwrite false - Whether to overwrite files added through SparkContext.addFile() when the target file exists and its contents do not match those of the source. + Whether to overwrite files added through SparkContext.addFile() when the target file exists and + its contents do not match those of the source.
spark.authenticate false - Whether spark authenticates its internal connections. See spark.authenticate.secret if not - running on Yarn. + Whether spark authenticates its internal connections. See spark.authenticate.secret + if not running on Yarn.
-In addition to the above, there are also options for setting up the Spark [standalone cluster scripts](spark-standalone.html#cluster-launch-scripts), such as number of cores to use on each machine and maximum memory. +In addition to the above, there are also options for setting up the Spark [standalone cluster +scripts](spark-standalone.html#cluster-launch-scripts), such as number of cores to use on each +machine and maximum memory. -Since `spark-env.sh` is a shell script, some of these can be set programmatically -- for example, you might -compute `SPARK_LOCAL_IP` by looking up the IP of a specific network interface. +Since `spark-env.sh` is a shell script, some of these can be set programmatically -- for example, +you might compute `SPARK_LOCAL_IP` by looking up the IP of a specific network interface. # Configuring Logging -Spark uses [log4j](http://logging.apache.org/log4j/) for logging. You can configure it by adding a `log4j.properties` -file in the `conf` directory. One way to start is to copy the existing `log4j.properties.template` located there. +Spark uses [log4j](http://logging.apache.org/log4j/) for logging. You can configure it by adding a +`log4j.properties` file in the `conf` directory. One way to start is to copy the existing +`log4j.properties.template` located there. + +# Configuring Ports for Network Security + +Spark makes heavy use of the network, and some environments have strict requirements for using tight +firewall settings. Below are the primary ports that Spark uses for its communication and how to +configure those ports. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FromToDefault PortPurposeConfiguration + SettingNotes
BrowserStandalone Cluster Master8080Web UImaster.ui.portJetty-based
BrowserWorker8081Web UIworker.ui.portJetty-based
BrowserDriver4040Web UIspark.ui.portJetty-based
BrowserHistory Server18080Web UIspark.history.ui.portJetty-based
ApplicationStandalone Cluster Master7077Submit job to clusterspark.driver.portAkka-based. Set to "0" to choose a port randomly
WorkerStandalone Cluster Master7077Join clusterspark.driver.portAkka-based. Set to "0" to choose a port randomly
ApplicationWorker(random)Join clusterSPARK_WORKER_PORT (standalone cluster)Akka-based
Driver and other WorkersWorker(random) +
    +
  • File server for file and jars
  • +
  • Http Broadcast
  • +
  • Class file server (Spark Shell only)
  • +
+
NoneJetty-based. Each of these services starts on a random port that cannot be configured
From c3576ffcd7910e38928f233a824dd9e037cde05f Mon Sep 17 00:00:00 2001 From: Aaron Davidson Date: Sun, 25 May 2014 18:37:44 -0700 Subject: [PATCH 049/118] [SQL] Minor: Introduce SchemaRDD#aggregate() for simple aggregations ```scala rdd.aggregate(Sum('val)) ``` is just shorthand for ```scala rdd.groupBy()(Sum('val)) ``` but seems be more natural than doing a groupBy with no grouping expressions when you really just want an aggregation over all rows. Did not add a JavaSchemaRDD or Python API, as these seem to be lacking several other methods like groupBy() already -- leaving that cleanup for future patches. Author: Aaron Davidson Closes #874 from aarondav/schemardd and squashes the following commits: e9e68ee [Aaron Davidson] Add comment db6afe2 [Aaron Davidson] Introduce SchemaRDD#aggregate() for simple aggregations --- .../scala/org/apache/spark/sql/SchemaRDD.scala | 18 ++++++++++++++++-- .../org/apache/spark/sql/DslQuerySuite.scala | 8 ++++++++ 2 files changed, 24 insertions(+), 2 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala index 9883ebc0b3c62..e855f36256bc5 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala @@ -59,7 +59,7 @@ import java.util.{Map => JMap} * // Importing the SQL context gives access to all the SQL functions and implicit conversions. * import sqlContext._ * - * val rdd = sc.parallelize((1 to 100).map(i => Record(i, s"val_\$i"))) + * val rdd = sc.parallelize((1 to 100).map(i => Record(i, s"val_$i"))) * // Any RDD containing case classes can be registered as a table. The schema of the table is * // automatically inferred using scala reflection. * rdd.registerAsTable("records") @@ -204,6 +204,20 @@ class SchemaRDD( new SchemaRDD(sqlContext, Aggregate(groupingExprs, aliasedExprs, logicalPlan)) } + /** + * Performs an aggregation over all Rows in this RDD. + * This is equivalent to a groupBy with no grouping expressions. + * + * {{{ + * schemaRDD.aggregate(Sum('sales) as 'totalSales) + * }}} + * + * @group Query + */ + def aggregate(aggregateExprs: Expression*): SchemaRDD = { + groupBy()(aggregateExprs: _*) + } + /** * Applies a qualifier to the attributes of this relation. Can be used to disambiguate attributes * with the same name, for example, when performing self-joins. @@ -281,7 +295,7 @@ class SchemaRDD( * supports features such as filter pushdown. */ @Experimental - override def count(): Long = groupBy()(Count(Literal(1))).collect().head.getLong(0) + override def count(): Long = aggregate(Count(Literal(1))).collect().head.getLong(0) /** * :: Experimental :: diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala index 94ba13b14b33d..692569a73ffcf 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala @@ -39,6 +39,14 @@ class DslQuerySuite extends QueryTest { testData2.groupBy('a)('a, Sum('b)), Seq((1,3),(2,3),(3,3)) ) + checkAnswer( + testData2.groupBy('a)('a, Sum('b) as 'totB).aggregate(Sum('totB)), + 9 + ) + checkAnswer( + testData2.aggregate(Sum('b)), + 9 + ) } test("select *") { From b6d22af040073cd611b0fcfdf8a5259c0dfd854c Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Sun, 25 May 2014 20:13:32 -0700 Subject: [PATCH 050/118] HOTFIX: Add no-arg SparkContext constructor in Java Self explanatory. Author: Patrick Wendell Closes #878 from pwendell/java-constructor and squashes the following commits: 2cc1605 [Patrick Wendell] HOTFIX: Add no-arg SparkContext constructor in Java --- .../scala/org/apache/spark/api/java/JavaSparkContext.scala | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala b/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala index a7cfee6d01711..1e0493c4855e0 100644 --- a/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala +++ b/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala @@ -41,6 +41,12 @@ import org.apache.spark.rdd.RDD * [[org.apache.spark.api.java.JavaRDD]]s and works with Java collections instead of Scala ones. */ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWorkaround { + /** + * Create a JavaSparkContext that loads settings from system properties (for instance, when + * launching with ./bin/spark-submit). + */ + def this() = this(new SparkContext()) + /** * @param conf a [[org.apache.spark.SparkConf]] object specifying Spark parameters */ From d6395d86f90d1c47c5b6ad17c618b56e00b7fc85 Mon Sep 17 00:00:00 2001 From: Takuya UESHIN Date: Mon, 26 May 2014 00:17:20 -0700 Subject: [PATCH 051/118] [SPARK-1914] [SQL] Simplify CountFunction not to traverse to evaluate all child expressions. `CountFunction` should count up only if the child's evaluated value is not null. Because it traverses to evaluate all child expressions, even if the child is null, it counts up if one of the all children is not null. Author: Takuya UESHIN Closes #861 from ueshin/issues/SPARK-1914 and squashes the following commits: 3b37315 [Takuya UESHIN] Merge branch 'master' into issues/SPARK-1914 2afa238 [Takuya UESHIN] Simplify CountFunction not to traverse to evaluate all child expressions. --- .../apache/spark/sql/catalyst/expressions/aggregates.scala | 4 ++-- .../src/test/scala/org/apache/spark/sql/DslQuerySuite.scala | 5 +++++ 2 files changed, 7 insertions(+), 2 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala index 1bcd4e22766a9..79937b129aeae 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala @@ -298,8 +298,8 @@ case class CountFunction(expr: Expression, base: AggregateExpression) extends Ag var count: Long = _ override def update(input: Row): Unit = { - val evaluatedExpr = expr.map(_.eval(input)) - if (evaluatedExpr.map(_ != null).reduceLeft(_ || _)) { + val evaluatedExpr = expr.eval(input) + if (evaluatedExpr != null) { count += 1L } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala index 692569a73ffcf..8197e8a18d447 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala @@ -125,6 +125,11 @@ class DslQuerySuite extends QueryTest { Seq((1,0), (2, 1)) ) + checkAnswer( + testData3.groupBy('a)('a, Count('a + 'b)), + Seq((1,0), (2, 1)) + ) + checkAnswer( testData3.groupBy()(Count('a), Count('b), Count(1), CountDistinct('a :: Nil), CountDistinct('b :: Nil)), (2, 1, 2, 2, 1) :: Nil From bee6c4f4a155f625495212c17b58dc76f525f312 Mon Sep 17 00:00:00 2001 From: witgo Date: Mon, 26 May 2014 13:16:35 -0700 Subject: [PATCH 052/118] Fix scalastyle warnings in yarn alpha Author: witgo Closes #884 from witgo/scalastyle and squashes the following commits: 4b08ae4 [witgo] Fix scalastyle warnings in yarn alpha --- dev/scalastyle | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/dev/scalastyle b/dev/scalastyle index a972811ba8ed6..0e8fd5cc8d64c 100755 --- a/dev/scalastyle +++ b/dev/scalastyle @@ -19,7 +19,8 @@ echo -e "q\n" | SPARK_HIVE=true sbt/sbt scalastyle > scalastyle.txt # Check style with YARN alpha built too -echo -e "q\n" | SPARK_YARN=true sbt/sbt yarn/scalastyle >> scalastyle.txt +echo -e "q\n" | SPARK_HADOOP_VERSION=0.23.9 SPARK_YARN=true sbt/sbt yarn-alpha/scalastyle \ + >> scalastyle.txt # Check style with YARN built too echo -e "q\n" | SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt yarn/scalastyle \ >> scalastyle.txt From cb7fe5034826844f1b50fbe8b92646317b66f21c Mon Sep 17 00:00:00 2001 From: zsxwing Date: Mon, 26 May 2014 14:34:58 -0700 Subject: [PATCH 053/118] SPARK-1925: Replace '&' with '&&' JIRA: https://issues.apache.org/jira/browse/SPARK-1925 Author: zsxwing Closes #879 from zsxwing/SPARK-1925 and squashes the following commits: 5cf5a6d [zsxwing] SPARK-1925: Replace '&' with '&&' --- .../main/scala/org/apache/spark/mllib/tree/DecisionTree.scala | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala index 0fe30a3e7040b..3b13e52a7b445 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala @@ -401,7 +401,7 @@ object DecisionTree extends Serializable with Logging { */ def isSampleValid(parentFilters: List[Filter], labeledPoint: LabeledPoint): Boolean = { // leaf - if ((level > 0) & (parentFilters.length == 0)) { + if ((level > 0) && (parentFilters.length == 0)) { return false } @@ -454,7 +454,7 @@ object DecisionTree extends Serializable with Logging { val bin = binForFeatures(mid) val lowThreshold = bin.lowSplit.threshold val highThreshold = bin.highSplit.threshold - if ((lowThreshold < feature) & (highThreshold >= feature)){ + if ((lowThreshold < feature) && (highThreshold >= feature)){ return mid } else if (lowThreshold >= feature) { From 56c771cb2d00a5843c391ae6561536ee46e535d4 Mon Sep 17 00:00:00 2001 From: Ankur Dave Date: Mon, 26 May 2014 16:10:22 -0700 Subject: [PATCH 054/118] [SPARK-1931] Reconstruct routing tables in Graph.partitionBy 905173df57b90f90ebafb22e43f55164445330e6 introduced a bug in partitionBy where, after repartitioning the edges, it reuses the VertexRDD without updating the routing tables to reflect the new edge layout. Subsequent accesses of the triplets contain nulls for many vertex properties. This commit adds a test for this bug and fixes it by introducing `VertexRDD#withEdges` and calling it in `partitionBy`. Author: Ankur Dave Closes #885 from ankurdave/SPARK-1931 and squashes the following commits: 3930cdd [Ankur Dave] Note how to set up VertexRDD for efficient joins 9bdbaa4 [Ankur Dave] [SPARK-1931] Reconstruct routing tables in Graph.partitionBy --- .../scala/org/apache/spark/graphx/VertexRDD.scala | 12 ++++++++++++ .../org/apache/spark/graphx/impl/GraphImpl.scala | 13 +++++++++---- .../scala/org/apache/spark/graphx/GraphSuite.scala | 10 ++++++++++ 3 files changed, 31 insertions(+), 4 deletions(-) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala index 8c62897037b6d..8b910fbc5a423 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala @@ -300,6 +300,18 @@ class VertexRDD[@specialized VD: ClassTag]( def reverseRoutingTables(): VertexRDD[VD] = this.mapVertexPartitions(vPart => vPart.withRoutingTable(vPart.routingTable.reverse)) + /** Prepares this VertexRDD for efficient joins with the given EdgeRDD. */ + def withEdges(edges: EdgeRDD[_, _]): VertexRDD[VD] = { + val routingTables = VertexRDD.createRoutingTables(edges, this.partitioner.get) + val vertexPartitions = partitionsRDD.zipPartitions(routingTables, true) { + (partIter, routingTableIter) => + val routingTable = + if (routingTableIter.hasNext) routingTableIter.next() else RoutingTablePartition.empty + partIter.map(_.withRoutingTable(routingTable)) + } + new VertexRDD(vertexPartitions) + } + /** Generates an RDD of vertex attributes suitable for shipping to the edge partitions. */ private[graphx] def shipVertexAttributes( shipSrc: Boolean, shipDst: Boolean): RDD[(PartitionID, VertexAttributeBlock[VD])] = { diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala index 2f2d0e03fd7b5..1649b244d2881 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala @@ -88,8 +88,8 @@ class GraphImpl[VD: ClassTag, ED: ClassTag] protected ( } val edgePartition = builder.toEdgePartition Iterator((pid, edgePartition)) - }, preservesPartitioning = true)) - GraphImpl.fromExistingRDDs(vertices, newEdges) + }, preservesPartitioning = true)).cache() + GraphImpl.fromExistingRDDs(vertices.withEdges(newEdges), newEdges) } override def reverse: Graph[VD, ED] = { @@ -277,7 +277,11 @@ object GraphImpl { GraphImpl(vertexRDD, edgeRDD) } - /** Create a graph from a VertexRDD and an EdgeRDD with arbitrary replicated vertices. */ + /** + * Create a graph from a VertexRDD and an EdgeRDD with arbitrary replicated vertices. The + * VertexRDD must already be set up for efficient joins with the EdgeRDD by calling + * `VertexRDD.withEdges` or an appropriate VertexRDD constructor. + */ def apply[VD: ClassTag, ED: ClassTag]( vertices: VertexRDD[VD], edges: EdgeRDD[ED, _]): GraphImpl[VD, ED] = { @@ -290,7 +294,8 @@ object GraphImpl { /** * Create a graph from a VertexRDD and an EdgeRDD with the same replicated vertex type as the - * vertices. + * vertices. The VertexRDD must already be set up for efficient joins with the EdgeRDD by calling + * `VertexRDD.withEdges` or an appropriate VertexRDD constructor. */ def fromExistingRDDs[VD: ClassTag, ED: ClassTag]( vertices: VertexRDD[VD], diff --git a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala index 7b9bac5d9c8ea..abc25d0671133 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala @@ -133,6 +133,16 @@ class GraphSuite extends FunSuite with LocalSparkContext { Iterator((part.srcIds ++ part.dstIds).toSet) }.collect assert(verts.exists(id => partitionSetsUnpartitioned.count(_.contains(id)) > bound)) + + // Forming triplets view + val g = Graph( + sc.parallelize(List((0L, "a"), (1L, "b"), (2L, "c"))), + sc.parallelize(List(Edge(0L, 1L, 1), Edge(0L, 2L, 1)), 2)) + assert(g.triplets.collect.map(_.toTuple).toSet === + Set(((0L, "a"), (1L, "b"), 1), ((0L, "a"), (2L, "c"), 1))) + val gPart = g.partitionBy(EdgePartition2D) + assert(gPart.triplets.collect.map(_.toTuple).toSet === + Set(((0L, "a"), (1L, "b"), 1), ((0L, "a"), (2L, "c"), 1))) } } From 8d271c90fa496cb24e2b7362ef0497563591b97d Mon Sep 17 00:00:00 2001 From: Zhen Peng Date: Mon, 26 May 2014 21:30:25 -0700 Subject: [PATCH 055/118] SPARK-1929 DAGScheduler suspended by local task OOM DAGScheduler does not handle local task OOM properly, and will wait for the job result forever. Author: Zhen Peng Closes #883 from zhpengg/bugfix-dag-scheduler-oom and squashes the following commits: 76f7eda [Zhen Peng] remove redundant memory allocations aa63161 [Zhen Peng] SPARK-1929 DAGScheduler suspended by local task OOM --- .../org/apache/spark/scheduler/DAGScheduler.scala | 6 +++++- .../apache/spark/scheduler/DAGSchedulerSuite.scala | 14 ++++++++++++++ 2 files changed, 19 insertions(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala index ff411e24a3d85..c70aa0e6e4523 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala @@ -17,7 +17,7 @@ package org.apache.spark.scheduler -import java.io.NotSerializableException +import java.io.{NotSerializableException, PrintWriter, StringWriter} import java.util.Properties import java.util.concurrent.atomic.AtomicInteger @@ -580,6 +580,10 @@ class DAGScheduler( case e: Exception => jobResult = JobFailed(e) job.listener.jobFailed(e) + case oom: OutOfMemoryError => + val exception = new SparkException("job failed for Out of memory exception", oom) + jobResult = JobFailed(exception) + job.listener.jobFailed(exception) } finally { val s = job.finalStage stageIdToJobIds -= s.id // clean up data structures that were populated for a local job, diff --git a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala index d172dd1ac8e1b..81e64c1846ed5 100644 --- a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala +++ b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala @@ -256,6 +256,20 @@ class DAGSchedulerSuite extends TestKit(ActorSystem("DAGSchedulerSuite")) with F assertDataStructuresEmpty } + test("local job oom") { + val rdd = new MyRDD(sc, Nil) { + override def compute(split: Partition, context: TaskContext): Iterator[(Int, Int)] = + throw new java.lang.OutOfMemoryError("test local job oom") + override def getPartitions = Array( new Partition { override def index = 0 } ) + override def getPreferredLocations(split: Partition) = Nil + override def toString = "DAGSchedulerSuite Local RDD" + } + val jobId = scheduler.nextJobId.getAndIncrement() + runEvent(JobSubmitted(jobId, rdd, jobComputeFunc, Array(0), true, null, jobListener)) + assert(results.size == 0) + assertDataStructuresEmpty + } + test("run trivial job w/ dependency") { val baseRdd = makeRdd(1, Nil) val finalRdd = makeRdd(1, List(new OneToOneDependency(baseRdd))) From ef690e1f69cb8e2e03bb0c43e3ccb2c54c995df7 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Mon, 26 May 2014 21:31:27 -0700 Subject: [PATCH 056/118] Fixed the error message for OutOfMemoryError in DAGScheduler. --- .../main/scala/org/apache/spark/scheduler/DAGScheduler.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala index c70aa0e6e4523..ccff6a3d1aebc 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala @@ -581,7 +581,7 @@ class DAGScheduler( jobResult = JobFailed(e) job.listener.jobFailed(e) case oom: OutOfMemoryError => - val exception = new SparkException("job failed for Out of memory exception", oom) + val exception = new SparkException("Local job aborted due to out of memory error", oom) jobResult = JobFailed(exception) job.listener.jobFailed(exception) } finally { From 9ed37190f45fd9e6aa0f2c73b66d317732a53eb8 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Mon, 26 May 2014 21:40:52 -0700 Subject: [PATCH 057/118] Updated dev Python scripts to make them PEP8 compliant. Author: Reynold Xin Closes #875 from rxin/pep8-dev-scripts and squashes the following commits: 04b084f [Reynold Xin] Made dev Python scripts PEP8 compliant. --- dev/audit-release/audit_release.py | 225 ++++++------ dev/create-release/generate-changelist.py | 160 ++++----- dev/merge_spark_pr.py | 402 +++++++++++----------- 3 files changed, 408 insertions(+), 379 deletions(-) diff --git a/dev/audit-release/audit_release.py b/dev/audit-release/audit_release.py index 8c7573b91f688..230e900ecd4de 100755 --- a/dev/audit-release/audit_release.py +++ b/dev/audit-release/audit_release.py @@ -30,18 +30,18 @@ import time import urllib2 -## Fill in release details here: +# Fill in release details here: RELEASE_URL = "http://people.apache.org/~pwendell/spark-1.0.0-rc1/" RELEASE_KEY = "9E4FE3AF" RELEASE_REPOSITORY = "https://repository.apache.org/content/repositories/orgapachespark-1006/" RELEASE_VERSION = "1.0.0" SCALA_VERSION = "2.10.4" SCALA_BINARY_VERSION = "2.10" -## +# LOG_FILE_NAME = "spark_audit_%s" % time.strftime("%h_%m_%Y_%I_%M_%S") LOG_FILE = open(LOG_FILE_NAME, 'w') -WORK_DIR = "/tmp/audit_%s" % int(time.time()) +WORK_DIR = "/tmp/audit_%s" % int(time.time()) MAVEN_CMD = "mvn" GPG_CMD = "gpg" @@ -50,54 +50,62 @@ # Track failures failures = [] + def clean_work_files(): - print "OK to delete scratch directory '%s'? (y/N): " % WORK_DIR - response = raw_input() - if response == "y": - shutil.rmtree(WORK_DIR) - print "Should I delete the log output file '%s'? (y/N): " % LOG_FILE_NAME - response = raw_input() - if response == "y": - os.unlink(LOG_FILE_NAME) + print "OK to delete scratch directory '%s'? (y/N): " % WORK_DIR + response = raw_input() + if response == "y": + shutil.rmtree(WORK_DIR) + print "Should I delete the log output file '%s'? (y/N): " % LOG_FILE_NAME + response = raw_input() + if response == "y": + os.unlink(LOG_FILE_NAME) + def run_cmd(cmd, exit_on_failure=True): - print >> LOG_FILE, "Running command: %s" % cmd - ret = subprocess.call(cmd, shell=True, stdout=LOG_FILE, stderr=LOG_FILE) - if ret != 0 and exit_on_failure: - print "Command failed: %s" % cmd - clean_work_files() - sys.exit(-1) - return ret + print >> LOG_FILE, "Running command: %s" % cmd + ret = subprocess.call(cmd, shell=True, stdout=LOG_FILE, stderr=LOG_FILE) + if ret != 0 and exit_on_failure: + print "Command failed: %s" % cmd + clean_work_files() + sys.exit(-1) + return ret + def run_cmd_with_output(cmd): - print >> sys.stderr, "Running command: %s" % cmd - return subprocess.check_output(cmd, shell=True, stderr=LOG_FILE) + print >> sys.stderr, "Running command: %s" % cmd + return subprocess.check_output(cmd, shell=True, stderr=LOG_FILE) + def test(bool, str): - if bool: - return passed(str) - failed(str) + if bool: + return passed(str) + failed(str) + def passed(str): - print "[PASSED] %s" % str + print "[PASSED] %s" % str + def failed(str): - failures.append(str) - print "[**FAILED**] %s" % str + failures.append(str) + print "[**FAILED**] %s" % str + def get_url(url): - return urllib2.urlopen(url).read() + return urllib2.urlopen(url).read() + original_dir = os.getcwd() -# For each of these modules, we'll test an 'empty' application in sbt and +# For each of these modules, we'll test an 'empty' application in sbt and # maven that links against them. This will catch issues with messed up # dependencies within those projects. modules = [ - "spark-core", "spark-bagel", "spark-mllib", "spark-streaming", "spark-repl", - "spark-graphx", "spark-streaming-flume", "spark-streaming-kafka", - "spark-streaming-mqtt", "spark-streaming-twitter", "spark-streaming-zeromq", - "spark-catalyst", "spark-sql", "spark-hive" + "spark-core", "spark-bagel", "spark-mllib", "spark-streaming", "spark-repl", + "spark-graphx", "spark-streaming-flume", "spark-streaming-kafka", + "spark-streaming-mqtt", "spark-streaming-twitter", "spark-streaming-zeromq", + "spark-catalyst", "spark-sql", "spark-hive" ] modules = map(lambda m: "%s_%s" % (m, SCALA_BINARY_VERSION), modules) @@ -106,54 +114,57 @@ def get_url(url): cache_ivy_spark = "~/.ivy2/cache/org.apache.spark" local_maven_kafka = "~/.m2/repository/org/apache/kafka" local_maven_kafka = "~/.m2/repository/org/apache/spark" + + def ensure_path_not_present(x): - if os.path.exists(os.path.expanduser(x)): - print "Please remove %s, it can interfere with testing published artifacts." % x - sys.exit(-1) + if os.path.exists(os.path.expanduser(x)): + print "Please remove %s, it can interfere with testing published artifacts." % x + sys.exit(-1) + map(ensure_path_not_present, [local_ivy_spark, cache_ivy_spark, local_maven_kafka]) -# SBT build tests +# SBT build tests os.chdir("blank_sbt_build") os.environ["SPARK_VERSION"] = RELEASE_VERSION os.environ["SCALA_VERSION"] = SCALA_VERSION os.environ["SPARK_RELEASE_REPOSITORY"] = RELEASE_REPOSITORY os.environ["SPARK_AUDIT_MASTER"] = "local" for module in modules: - os.environ["SPARK_MODULE"] = module - ret = run_cmd("sbt clean update", exit_on_failure=False) - test(ret == 0, "sbt build against '%s' module" % module) + os.environ["SPARK_MODULE"] = module + ret = run_cmd("sbt clean update", exit_on_failure=False) + test(ret == 0, "sbt build against '%s' module" % module) os.chdir(original_dir) # SBT application tests for app in ["sbt_app_core", "sbt_app_graphx", "sbt_app_streaming", "sbt_app_sql", "sbt_app_hive"]: - os.chdir(app) - ret = run_cmd("sbt clean run", exit_on_failure=False) - test(ret == 0, "sbt application (%s)" % app) - os.chdir(original_dir) + os.chdir(app) + ret = run_cmd("sbt clean run", exit_on_failure=False) + test(ret == 0, "sbt application (%s)" % app) + os.chdir(original_dir) # Maven build tests os.chdir("blank_maven_build") for module in modules: - cmd = ('%s --update-snapshots -Dspark.release.repository="%s" -Dspark.version="%s" ' - '-Dspark.module="%s" clean compile' % - (MAVEN_CMD, RELEASE_REPOSITORY, RELEASE_VERSION, module)) - ret = run_cmd(cmd, exit_on_failure=False) - test(ret == 0, "maven build against '%s' module" % module) + cmd = ('%s --update-snapshots -Dspark.release.repository="%s" -Dspark.version="%s" ' + '-Dspark.module="%s" clean compile' % + (MAVEN_CMD, RELEASE_REPOSITORY, RELEASE_VERSION, module)) + ret = run_cmd(cmd, exit_on_failure=False) + test(ret == 0, "maven build against '%s' module" % module) os.chdir(original_dir) os.chdir("maven_app_core") mvn_exec_cmd = ('%s --update-snapshots -Dspark.release.repository="%s" -Dspark.version="%s" ' '-Dscala.binary.version="%s" clean compile ' - 'exec:java -Dexec.mainClass="SimpleApp"' % - (MAVEN_CMD, RELEASE_REPOSITORY, RELEASE_VERSION, SCALA_BINARY_VERSION)) + 'exec:java -Dexec.mainClass="SimpleApp"' % + (MAVEN_CMD, RELEASE_REPOSITORY, RELEASE_VERSION, SCALA_BINARY_VERSION)) ret = run_cmd(mvn_exec_cmd, exit_on_failure=False) test(ret == 0, "maven application (core)") os.chdir(original_dir) # Binary artifact tests if os.path.exists(WORK_DIR): - print "Working directory '%s' already exists" % WORK_DIR - sys.exit(-1) + print "Working directory '%s' already exists" % WORK_DIR + sys.exit(-1) os.mkdir(WORK_DIR) os.chdir(WORK_DIR) @@ -162,66 +173,66 @@ def ensure_path_not_present(x): artifacts = r.findall(index_page) for artifact in artifacts: - print "==== Verifying download integrity for artifact: %s ====" % artifact - - artifact_url = "%s/%s" % (RELEASE_URL, artifact) - run_cmd("wget %s" % artifact_url) - - key_file = "%s.asc" % artifact - run_cmd("wget %s/%s" % (RELEASE_URL, key_file)) - - run_cmd("wget %s%s" % (artifact_url, ".sha")) - - # Verify signature - run_cmd("%s --keyserver pgp.mit.edu --recv-key %s" % (GPG_CMD, RELEASE_KEY)) - run_cmd("%s %s" % (GPG_CMD, key_file)) - passed("Artifact signature verified.") - - # Verify md5 - my_md5 = run_cmd_with_output("%s --print-md MD5 %s" % (GPG_CMD, artifact)).strip() - release_md5 = get_url("%s.md5" % artifact_url).strip() - test(my_md5 == release_md5, "Artifact MD5 verified.") - - # Verify sha - my_sha = run_cmd_with_output("%s --print-md SHA512 %s" % (GPG_CMD, artifact)).strip() - release_sha = get_url("%s.sha" % artifact_url).strip() - test(my_sha == release_sha, "Artifact SHA verified.") - - # Verify Apache required files - dir_name = artifact.replace(".tgz", "") - run_cmd("tar xvzf %s" % artifact) - base_files = os.listdir(dir_name) - test("CHANGES.txt" in base_files, "Tarball contains CHANGES.txt file") - test("NOTICE" in base_files, "Tarball contains NOTICE file") - test("LICENSE" in base_files, "Tarball contains LICENSE file") - - os.chdir(WORK_DIR) - + print "==== Verifying download integrity for artifact: %s ====" % artifact + + artifact_url = "%s/%s" % (RELEASE_URL, artifact) + run_cmd("wget %s" % artifact_url) + + key_file = "%s.asc" % artifact + run_cmd("wget %s/%s" % (RELEASE_URL, key_file)) + + run_cmd("wget %s%s" % (artifact_url, ".sha")) + + # Verify signature + run_cmd("%s --keyserver pgp.mit.edu --recv-key %s" % (GPG_CMD, RELEASE_KEY)) + run_cmd("%s %s" % (GPG_CMD, key_file)) + passed("Artifact signature verified.") + + # Verify md5 + my_md5 = run_cmd_with_output("%s --print-md MD5 %s" % (GPG_CMD, artifact)).strip() + release_md5 = get_url("%s.md5" % artifact_url).strip() + test(my_md5 == release_md5, "Artifact MD5 verified.") + + # Verify sha + my_sha = run_cmd_with_output("%s --print-md SHA512 %s" % (GPG_CMD, artifact)).strip() + release_sha = get_url("%s.sha" % artifact_url).strip() + test(my_sha == release_sha, "Artifact SHA verified.") + + # Verify Apache required files + dir_name = artifact.replace(".tgz", "") + run_cmd("tar xvzf %s" % artifact) + base_files = os.listdir(dir_name) + test("CHANGES.txt" in base_files, "Tarball contains CHANGES.txt file") + test("NOTICE" in base_files, "Tarball contains NOTICE file") + test("LICENSE" in base_files, "Tarball contains LICENSE file") + + os.chdir(WORK_DIR) + for artifact in artifacts: - print "==== Verifying build and tests for artifact: %s ====" % artifact - os.chdir(os.path.join(WORK_DIR, dir_name)) - - os.environ["MAVEN_OPTS"] = "-Xmx3g -XX:MaxPermSize=1g -XX:ReservedCodeCacheSize=1g" - # Verify build - print "==> Running build" - run_cmd("sbt assembly") - passed("sbt build successful") - run_cmd("%s package -DskipTests" % MAVEN_CMD) - passed("Maven build successful") - - # Verify tests - print "==> Performing unit tests" - run_cmd("%s test" % MAVEN_CMD) - passed("Tests successful") - os.chdir(WORK_DIR) + print "==== Verifying build and tests for artifact: %s ====" % artifact + os.chdir(os.path.join(WORK_DIR, dir_name)) + + os.environ["MAVEN_OPTS"] = "-Xmx3g -XX:MaxPermSize=1g -XX:ReservedCodeCacheSize=1g" + # Verify build + print "==> Running build" + run_cmd("sbt assembly") + passed("sbt build successful") + run_cmd("%s package -DskipTests" % MAVEN_CMD) + passed("Maven build successful") + + # Verify tests + print "==> Performing unit tests" + run_cmd("%s test" % MAVEN_CMD) + passed("Tests successful") + os.chdir(WORK_DIR) clean_work_files() if len(failures) == 0: - print "ALL TESTS PASSED" + print "ALL TESTS PASSED" else: - print "SOME TESTS DID NOT PASS" - for f in failures: - print f + print "SOME TESTS DID NOT PASS" + for f in failures: + print f os.chdir(original_dir) diff --git a/dev/create-release/generate-changelist.py b/dev/create-release/generate-changelist.py index 13b744ec1b37e..de1b5d4ae1314 100755 --- a/dev/create-release/generate-changelist.py +++ b/dev/create-release/generate-changelist.py @@ -29,16 +29,16 @@ import subprocess import time import traceback - + SPARK_HOME = os.environ["SPARK_HOME"] NEW_RELEASE_VERSION = "1.0.0" PREV_RELEASE_GIT_TAG = "v0.9.1" - -CHANGELIST = "CHANGES.txt" + +CHANGELIST = "CHANGES.txt" OLD_CHANGELIST = "%s.old" % (CHANGELIST) NEW_CHANGELIST = "%s.new" % (CHANGELIST) TMP_CHANGELIST = "%s.tmp" % (CHANGELIST) - + # date before first PR in TLP Spark repo SPARK_REPO_CHANGE_DATE1 = time.strptime("2014-02-26", "%Y-%m-%d") # date after last PR in incubator Spark repo @@ -46,99 +46,103 @@ # Threshold PR number that differentiates PRs to TLP # and incubator repos SPARK_REPO_PR_NUM_THRESH = 200 - + LOG_FILE_NAME = "changes_%s" % time.strftime("%h_%m_%Y_%I_%M_%S") LOG_FILE = open(LOG_FILE_NAME, 'w') - + + def run_cmd(cmd): - try: - print >> LOG_FILE, "Running command: %s" % cmd - output = subprocess.check_output(cmd, shell=True, stderr=LOG_FILE) - print >> LOG_FILE, "Output: %s" % output - return output - except: - traceback.print_exc() - cleanup() - sys.exit(1) - + try: + print >> LOG_FILE, "Running command: %s" % cmd + output = subprocess.check_output(cmd, shell=True, stderr=LOG_FILE) + print >> LOG_FILE, "Output: %s" % output + return output + except: + traceback.print_exc() + cleanup() + sys.exit(1) + + def append_to_changelist(string): - with open(TMP_CHANGELIST, "a") as f: - print >> f, string - -def cleanup(ask = True): - if ask == True: - print "OK to delete temporary and log files? (y/N): " - response = raw_input() - if ask == False or (ask == True and response == "y"): - if os.path.isfile(TMP_CHANGELIST): - os.remove(TMP_CHANGELIST) - if os.path.isfile(OLD_CHANGELIST): - os.remove(OLD_CHANGELIST) - LOG_FILE.close() - os.remove(LOG_FILE_NAME) - + with open(TMP_CHANGELIST, "a") as f: + print >> f, string + + +def cleanup(ask=True): + if ask is True: + print "OK to delete temporary and log files? (y/N): " + response = raw_input() + if ask is False or (ask is True and response == "y"): + if os.path.isfile(TMP_CHANGELIST): + os.remove(TMP_CHANGELIST) + if os.path.isfile(OLD_CHANGELIST): + os.remove(OLD_CHANGELIST) + LOG_FILE.close() + os.remove(LOG_FILE_NAME) + + print "Generating new %s for Spark release %s" % (CHANGELIST, NEW_RELEASE_VERSION) os.chdir(SPARK_HOME) if os.path.isfile(TMP_CHANGELIST): - os.remove(TMP_CHANGELIST) + os.remove(TMP_CHANGELIST) if os.path.isfile(OLD_CHANGELIST): - os.remove(OLD_CHANGELIST) - + os.remove(OLD_CHANGELIST) + append_to_changelist("Spark Change Log") append_to_changelist("----------------") append_to_changelist("") append_to_changelist("Release %s" % NEW_RELEASE_VERSION) append_to_changelist("") - + print "Getting commits between tag %s and HEAD" % PREV_RELEASE_GIT_TAG hashes = run_cmd("git log %s..HEAD --pretty='%%h'" % PREV_RELEASE_GIT_TAG).split() - + print "Getting details of %s commits" % len(hashes) for h in hashes: - date = run_cmd("git log %s -1 --pretty='%%ad' --date=iso | head -1" % h).strip() - subject = run_cmd("git log %s -1 --pretty='%%s' | head -1" % h).strip() - body = run_cmd("git log %s -1 --pretty='%%b'" % h) - committer = run_cmd("git log %s -1 --pretty='%%cn <%%ce>' | head -1" % h).strip() - body_lines = body.split("\n") - - if "Merge pull" in subject: - ## Parse old format commit message - append_to_changelist(" %s %s" % (h, date)) - append_to_changelist(" %s" % subject) - append_to_changelist(" [%s]" % body_lines[0]) - append_to_changelist("") - - elif "maven-release" not in subject: - ## Parse new format commit message - # Get authors from commit message, committer otherwise - authors = [committer] - if "Author:" in body: - authors = [line.split(":")[1].strip() for line in body_lines if "Author:" in line] - - # Generate GitHub PR URL for easy access if possible - github_url = "" - if "Closes #" in body: - pr_num = [line.split()[1].lstrip("#") for line in body_lines if "Closes #" in line][0] - github_url = "github.com/apache/spark/pull/%s" % pr_num - day = time.strptime(date.split()[0], "%Y-%m-%d") - if day < SPARK_REPO_CHANGE_DATE1 or (day < SPARK_REPO_CHANGE_DATE2 and pr_num < SPARK_REPO_PR_NUM_THRESH): - github_url = "github.com/apache/incubator-spark/pull/%s" % pr_num - - append_to_changelist(" %s" % subject) - append_to_changelist(" %s" % ', '.join(authors)) - # for author in authors: - # append_to_changelist(" %s" % author) - append_to_changelist(" %s" % date) - if len(github_url) > 0: - append_to_changelist(" Commit: %s, %s" % (h, github_url)) - else: - append_to_changelist(" Commit: %s" % h) - append_to_changelist("") - + date = run_cmd("git log %s -1 --pretty='%%ad' --date=iso | head -1" % h).strip() + subject = run_cmd("git log %s -1 --pretty='%%s' | head -1" % h).strip() + body = run_cmd("git log %s -1 --pretty='%%b'" % h) + committer = run_cmd("git log %s -1 --pretty='%%cn <%%ce>' | head -1" % h).strip() + body_lines = body.split("\n") + + if "Merge pull" in subject: + # Parse old format commit message + append_to_changelist(" %s %s" % (h, date)) + append_to_changelist(" %s" % subject) + append_to_changelist(" [%s]" % body_lines[0]) + append_to_changelist("") + + elif "maven-release" not in subject: + # Parse new format commit message + # Get authors from commit message, committer otherwise + authors = [committer] + if "Author:" in body: + authors = [line.split(":")[1].strip() for line in body_lines if "Author:" in line] + + # Generate GitHub PR URL for easy access if possible + github_url = "" + if "Closes #" in body: + pr_num = [line.split()[1].lstrip("#") for line in body_lines if "Closes #" in line][0] + github_url = "github.com/apache/spark/pull/%s" % pr_num + day = time.strptime(date.split()[0], "%Y-%m-%d") + if day < SPARK_REPO_CHANGE_DATE1 or + (day < SPARK_REPO_CHANGE_DATE2 and pr_num < SPARK_REPO_PR_NUM_THRESH): + github_url = "github.com/apache/incubator-spark/pull/%s" % pr_num + + append_to_changelist(" %s" % subject) + append_to_changelist(" %s" % ', '.join(authors)) + # for author in authors: + # append_to_changelist(" %s" % author) + append_to_changelist(" %s" % date) + if len(github_url) > 0: + append_to_changelist(" Commit: %s, %s" % (h, github_url)) + else: + append_to_changelist(" Commit: %s" % h) + append_to_changelist("") + # Append old change list -print "Appending changelist from tag %s" % PREV_RELEASE_GIT_TAG +print "Appending changelist from tag %s" % PREV_RELEASE_GIT_TAG run_cmd("git show %s:%s | tail -n +3 >> %s" % (PREV_RELEASE_GIT_TAG, CHANGELIST, TMP_CHANGELIST)) run_cmd("cp %s %s" % (TMP_CHANGELIST, NEW_CHANGELIST)) print "New change list generated as %s" % NEW_CHANGELIST cleanup(False) - diff --git a/dev/merge_spark_pr.py b/dev/merge_spark_pr.py index 83618c8068d35..7f744d5589ef7 100755 --- a/dev/merge_spark_pr.py +++ b/dev/merge_spark_pr.py @@ -21,7 +21,7 @@ # usage: ./apache-pr-merge.py (see config env vars below) # # This utility assumes you already have local a Spark git folder and that you -# have added remotes corresponding to both (i) the github apache Spark +# have added remotes corresponding to both (i) the github apache Spark # mirror and (ii) the apache git repo. import json @@ -33,10 +33,10 @@ import urllib2 try: - import jira.client - JIRA_IMPORTED=True + import jira.client + JIRA_IMPORTED = True except ImportError: - JIRA_IMPORTED=False + JIRA_IMPORTED = False # Location of your Spark git development area SPARK_HOME = os.environ.get("SPARK_HOME", "/home/patrick/Documents/spark") @@ -58,204 +58,217 @@ os.chdir(SPARK_HOME) + def get_json(url): - try: - return json.load(urllib2.urlopen(url)) - except urllib2.HTTPError as e: - print "Unable to fetch URL, exiting: %s" % url - sys.exit(-1) + try: + return json.load(urllib2.urlopen(url)) + except urllib2.HTTPError as e: + print "Unable to fetch URL, exiting: %s" % url + sys.exit(-1) + def fail(msg): - print msg - clean_up() - sys.exit(-1) + print msg + clean_up() + sys.exit(-1) + def run_cmd(cmd): - if isinstance(cmd, list): - return subprocess.check_output(cmd) - else: - return subprocess.check_output(cmd.split(" ")) + if isinstance(cmd, list): + return subprocess.check_output(cmd) + else: + return subprocess.check_output(cmd.split(" ")) + def continue_maybe(prompt): - result = raw_input("\n%s (y/n): " % prompt) - if result.lower() != "y": - fail("Okay, exiting") + result = raw_input("\n%s (y/n): " % prompt) + if result.lower() != "y": + fail("Okay, exiting") + original_head = run_cmd("git rev-parse HEAD")[:8] + def clean_up(): - print "Restoring head pointer to %s" % original_head - run_cmd("git checkout %s" % original_head) + print "Restoring head pointer to %s" % original_head + run_cmd("git checkout %s" % original_head) + + branches = run_cmd("git branch").replace(" ", "").split("\n") - branches = run_cmd("git branch").replace(" ", "").split("\n") + for branch in filter(lambda x: x.startswith(BRANCH_PREFIX), branches): + print "Deleting local branch %s" % branch + run_cmd("git branch -D %s" % branch) - for branch in filter(lambda x: x.startswith(BRANCH_PREFIX), branches): - print "Deleting local branch %s" % branch - run_cmd("git branch -D %s" % branch) # merge the requested PR and return the merge hash def merge_pr(pr_num, target_ref): - pr_branch_name = "%s_MERGE_PR_%s" % (BRANCH_PREFIX, pr_num) - target_branch_name = "%s_MERGE_PR_%s_%s" % (BRANCH_PREFIX, pr_num, target_ref.upper()) - run_cmd("git fetch %s pull/%s/head:%s" % (PR_REMOTE_NAME, pr_num, pr_branch_name)) - run_cmd("git fetch %s %s:%s" % (PUSH_REMOTE_NAME, target_ref, target_branch_name)) - run_cmd("git checkout %s" % target_branch_name) - - had_conflicts = False - try: - run_cmd(['git', 'merge', pr_branch_name, '--squash']) - except Exception as e: - msg = "Error merging: %s\nWould you like to manually fix-up this merge?" % e - continue_maybe(msg) - msg = "Okay, please fix any conflicts and 'git add' conflicting files... Finished?" - continue_maybe(msg) - had_conflicts = True - - commit_authors = run_cmd(['git', 'log', 'HEAD..%s' % pr_branch_name, - '--pretty=format:%an <%ae>']).split("\n") - distinct_authors = sorted(set(commit_authors), key=lambda x: commit_authors.count(x), - reverse=True) - primary_author = distinct_authors[0] - commits = run_cmd(['git', 'log', 'HEAD..%s' % pr_branch_name, - '--pretty=format:%h [%an] %s']).split("\n\n") - - merge_message_flags = [] - - for p in [title, body]: - merge_message_flags += ["-m", p] - - authors = "\n".join(["Author: %s" % a for a in distinct_authors]) - - merge_message_flags += ["-m", authors] + pr_branch_name = "%s_MERGE_PR_%s" % (BRANCH_PREFIX, pr_num) + target_branch_name = "%s_MERGE_PR_%s_%s" % (BRANCH_PREFIX, pr_num, target_ref.upper()) + run_cmd("git fetch %s pull/%s/head:%s" % (PR_REMOTE_NAME, pr_num, pr_branch_name)) + run_cmd("git fetch %s %s:%s" % (PUSH_REMOTE_NAME, target_ref, target_branch_name)) + run_cmd("git checkout %s" % target_branch_name) + + had_conflicts = False + try: + run_cmd(['git', 'merge', pr_branch_name, '--squash']) + except Exception as e: + msg = "Error merging: %s\nWould you like to manually fix-up this merge?" % e + continue_maybe(msg) + msg = "Okay, please fix any conflicts and 'git add' conflicting files... Finished?" + continue_maybe(msg) + had_conflicts = True + + commit_authors = run_cmd(['git', 'log', 'HEAD..%s' % pr_branch_name, + '--pretty=format:%an <%ae>']).split("\n") + distinct_authors = sorted(set(commit_authors), + key=lambda x: commit_authors.count(x), reverse=True) + primary_author = distinct_authors[0] + commits = run_cmd(['git', 'log', 'HEAD..%s' % pr_branch_name, + '--pretty=format:%h [%an] %s']).split("\n\n") + + merge_message_flags = [] + + for p in [title, body]: + merge_message_flags += ["-m", p] + + authors = "\n".join(["Author: %s" % a for a in distinct_authors]) + + merge_message_flags += ["-m", authors] + + if had_conflicts: + committer_name = run_cmd("git config --get user.name").strip() + committer_email = run_cmd("git config --get user.email").strip() + message = "This patch had conflicts when merged, resolved by\nCommitter: %s <%s>" % ( + committer_name, committer_email) + merge_message_flags += ["-m", message] + + # The string "Closes #%s" string is required for GitHub to correctly close the PR + merge_message_flags += [ + "-m", + "Closes #%s from %s and squashes the following commits:" % (pr_num, pr_repo_desc)] + for c in commits: + merge_message_flags += ["-m", c] + + run_cmd(['git', 'commit', '--author="%s"' % primary_author] + merge_message_flags) + + continue_maybe("Merge complete (local ref %s). Push to %s?" % ( + target_branch_name, PUSH_REMOTE_NAME)) + + try: + run_cmd('git push %s %s:%s' % (PUSH_REMOTE_NAME, target_branch_name, target_ref)) + except Exception as e: + clean_up() + fail("Exception while pushing: %s" % e) + + merge_hash = run_cmd("git rev-parse %s" % target_branch_name)[:8] + clean_up() + print("Pull request #%s merged!" % pr_num) + print("Merge hash: %s" % merge_hash) + return merge_hash - if had_conflicts: - committer_name = run_cmd("git config --get user.name").strip() - committer_email = run_cmd("git config --get user.email").strip() - message = "This patch had conflicts when merged, resolved by\nCommitter: %s <%s>" % ( - committer_name, committer_email) - merge_message_flags += ["-m", message] - # The string "Closes #%s" string is required for GitHub to correctly close the PR - merge_message_flags += ["-m", - "Closes #%s from %s and squashes the following commits:" % (pr_num, pr_repo_desc)] - for c in commits: - merge_message_flags += ["-m", c] +def cherry_pick(pr_num, merge_hash, default_branch): + pick_ref = raw_input("Enter a branch name [%s]: " % default_branch) + if pick_ref == "": + pick_ref = default_branch - run_cmd(['git', 'commit', '--author="%s"' % primary_author] + merge_message_flags) + pick_branch_name = "%s_PICK_PR_%s_%s" % (BRANCH_PREFIX, pr_num, pick_ref.upper()) - continue_maybe("Merge complete (local ref %s). Push to %s?" % ( - target_branch_name, PUSH_REMOTE_NAME)) + run_cmd("git fetch %s %s:%s" % (PUSH_REMOTE_NAME, pick_ref, pick_branch_name)) + run_cmd("git checkout %s" % pick_branch_name) + run_cmd("git cherry-pick -sx %s" % merge_hash) - try: - run_cmd('git push %s %s:%s' % (PUSH_REMOTE_NAME, target_branch_name, target_ref)) - except Exception as e: - clean_up() - fail("Exception while pushing: %s" % e) - - merge_hash = run_cmd("git rev-parse %s" % target_branch_name)[:8] - clean_up() - print("Pull request #%s merged!" % pr_num) - print("Merge hash: %s" % merge_hash) - return merge_hash + continue_maybe("Pick complete (local ref %s). Push to %s?" % ( + pick_branch_name, PUSH_REMOTE_NAME)) + try: + run_cmd('git push %s %s:%s' % (PUSH_REMOTE_NAME, pick_branch_name, pick_ref)) + except Exception as e: + clean_up() + fail("Exception while pushing: %s" % e) -def cherry_pick(pr_num, merge_hash, default_branch): - pick_ref = raw_input("Enter a branch name [%s]: " % default_branch) - if pick_ref == "": - pick_ref = default_branch - - pick_branch_name = "%s_PICK_PR_%s_%s" % (BRANCH_PREFIX, pr_num, pick_ref.upper()) - - run_cmd("git fetch %s %s:%s" % (PUSH_REMOTE_NAME, pick_ref, pick_branch_name)) - run_cmd("git checkout %s" % pick_branch_name) - run_cmd("git cherry-pick -sx %s" % merge_hash) - - continue_maybe("Pick complete (local ref %s). Push to %s?" % ( - pick_branch_name, PUSH_REMOTE_NAME)) - - try: - run_cmd('git push %s %s:%s' % (PUSH_REMOTE_NAME, pick_branch_name, pick_ref)) - except Exception as e: + pick_hash = run_cmd("git rev-parse %s" % pick_branch_name)[:8] clean_up() - fail("Exception while pushing: %s" % e) - pick_hash = run_cmd("git rev-parse %s" % pick_branch_name)[:8] - clean_up() + print("Pull request #%s picked into %s!" % (pr_num, pick_ref)) + print("Pick hash: %s" % pick_hash) + return pick_ref - print("Pull request #%s picked into %s!" % (pr_num, pick_ref)) - print("Pick hash: %s" % pick_hash) - return pick_ref def fix_version_from_branch(branch, versions): - # Note: Assumes this is a sorted (newest->oldest) list of un-released versions - if branch == "master": - return versions[0] - else: - branch_ver = branch.replace("branch-", "") - return filter(lambda x: x.name.startswith(branch_ver), versions)[-1] + # Note: Assumes this is a sorted (newest->oldest) list of un-released versions + if branch == "master": + return versions[0] + else: + branch_ver = branch.replace("branch-", "") + return filter(lambda x: x.name.startswith(branch_ver), versions)[-1] + def resolve_jira(title, merge_branches, comment): - asf_jira = jira.client.JIRA({'server': JIRA_API_BASE}, - basic_auth=(JIRA_USERNAME, JIRA_PASSWORD)) - - default_jira_id = "" - search = re.findall("SPARK-[0-9]{4,5}", title) - if len(search) > 0: - default_jira_id = search[0] - - jira_id = raw_input("Enter a JIRA id [%s]: " % default_jira_id) - if jira_id == "": - jira_id = default_jira_id - - try: - issue = asf_jira.issue(jira_id) - except Exception as e: - fail("ASF JIRA could not find %s\n%s" % (jira_id, e)) - - cur_status = issue.fields.status.name - cur_summary = issue.fields.summary - cur_assignee = issue.fields.assignee - if cur_assignee == None: - cur_assignee = "NOT ASSIGNED!!!" - else: - cur_assignee = cur_assignee.displayName - - if cur_status == "Resolved" or cur_status == "Closed": - fail("JIRA issue %s already has status '%s'" % (jira_id, cur_status)) - print ("=== JIRA %s ===" % jira_id) - print ("summary\t\t%s\nassignee\t%s\nstatus\t\t%s\nurl\t\t%s/%s\n" % ( - cur_summary, cur_assignee, cur_status, JIRA_BASE, jira_id)) - - versions = asf_jira.project_versions("SPARK") - versions = sorted(versions, key = lambda x: x.name, reverse=True) - versions = filter(lambda x: x.raw['released'] == False, versions) - - default_fix_versions = map(lambda x: fix_version_from_branch(x, versions).name, merge_branches) - for v in default_fix_versions: - # Handles the case where we have forked a release branch but not yet made the release. - # In this case, if the PR is committed to the master branch and the release branch, we - # only consider the release branch to be the fix version. E.g. it is not valid to have - # both 1.1.0 and 1.0.0 as fix versions. - (major, minor, patch) = v.split(".") - if patch == "0": - previous = "%s.%s.%s" % (major, int(minor) - 1, 0) - if previous in default_fix_versions: - default_fix_versions = filter(lambda x: x != v, default_fix_versions) - default_fix_versions = ",".join(default_fix_versions) - - fix_versions = raw_input("Enter comma-separated fix version(s) [%s]: " % default_fix_versions) - if fix_versions == "": - fix_versions = default_fix_versions - fix_versions = fix_versions.replace(" ", "").split(",") - - def get_version_json(version_str): - return filter(lambda v: v.name == version_str, versions)[0].raw - jira_fix_versions = map(lambda v: get_version_json(v), fix_versions) - - resolve = filter(lambda a: a['name'] == "Resolve Issue", asf_jira.transitions(jira_id))[0] - asf_jira.transition_issue(jira_id, resolve["id"], fixVersions=jira_fix_versions, comment=comment) - - print "Succesfully resolved %s with fixVersions=%s!" % (jira_id, fix_versions) + asf_jira = jira.client.JIRA({'server': JIRA_API_BASE}, + basic_auth=(JIRA_USERNAME, JIRA_PASSWORD)) + + default_jira_id = "" + search = re.findall("SPARK-[0-9]{4,5}", title) + if len(search) > 0: + default_jira_id = search[0] + + jira_id = raw_input("Enter a JIRA id [%s]: " % default_jira_id) + if jira_id == "": + jira_id = default_jira_id + + try: + issue = asf_jira.issue(jira_id) + except Exception as e: + fail("ASF JIRA could not find %s\n%s" % (jira_id, e)) + + cur_status = issue.fields.status.name + cur_summary = issue.fields.summary + cur_assignee = issue.fields.assignee + if cur_assignee is None: + cur_assignee = "NOT ASSIGNED!!!" + else: + cur_assignee = cur_assignee.displayName + + if cur_status == "Resolved" or cur_status == "Closed": + fail("JIRA issue %s already has status '%s'" % (jira_id, cur_status)) + print ("=== JIRA %s ===" % jira_id) + print ("summary\t\t%s\nassignee\t%s\nstatus\t\t%s\nurl\t\t%s/%s\n" % ( + cur_summary, cur_assignee, cur_status, JIRA_BASE, jira_id)) + + versions = asf_jira.project_versions("SPARK") + versions = sorted(versions, key=lambda x: x.name, reverse=True) + versions = filter(lambda x: x.raw['released'] is False, versions) + + default_fix_versions = map(lambda x: fix_version_from_branch(x, versions).name, merge_branches) + for v in default_fix_versions: + # Handles the case where we have forked a release branch but not yet made the release. + # In this case, if the PR is committed to the master branch and the release branch, we + # only consider the release branch to be the fix version. E.g. it is not valid to have + # both 1.1.0 and 1.0.0 as fix versions. + (major, minor, patch) = v.split(".") + if patch == "0": + previous = "%s.%s.%s" % (major, int(minor) - 1, 0) + if previous in default_fix_versions: + default_fix_versions = filter(lambda x: x != v, default_fix_versions) + default_fix_versions = ",".join(default_fix_versions) + + fix_versions = raw_input("Enter comma-separated fix version(s) [%s]: " % default_fix_versions) + if fix_versions == "": + fix_versions = default_fix_versions + fix_versions = fix_versions.replace(" ", "").split(",") + + def get_version_json(version_str): + return filter(lambda v: v.name == version_str, versions)[0].raw + + jira_fix_versions = map(lambda v: get_version_json(v), fix_versions) + + resolve = filter(lambda a: a['name'] == "Resolve Issue", asf_jira.transitions(jira_id))[0] + asf_jira.transition_issue( + jira_id, resolve["id"], fixVersions=jira_fix_versions, comment=comment) + + print "Succesfully resolved %s with fixVersions=%s!" % (jira_id, fix_versions) + branches = get_json("%s/branches" % GITHUB_API_BASE) branch_names = filter(lambda x: x.startswith("branch-"), [x['name'] for x in branches]) @@ -273,28 +286,29 @@ def get_version_json(version_str): base_ref = pr["head"]["ref"] pr_repo_desc = "%s/%s" % (user_login, base_ref) -if pr["merged"] == True: - print "Pull request %s has already been merged, assuming you want to backport" % pr_num - merge_commit_desc = run_cmd(['git', 'log', '--merges', '--first-parent', - '--grep=pull request #%s' % pr_num, '--oneline']).split("\n")[0] - if merge_commit_desc == "": - fail("Couldn't find any merge commit for #%s, you may need to update HEAD." % pr_num) +if pr["merged"] is True: + print "Pull request %s has already been merged, assuming you want to backport" % pr_num + merge_commit_desc = run_cmd([ + 'git', 'log', '--merges', '--first-parent', + '--grep=pull request #%s' % pr_num, '--oneline']).split("\n")[0] + if merge_commit_desc == "": + fail("Couldn't find any merge commit for #%s, you may need to update HEAD." % pr_num) + + merge_hash = merge_commit_desc[:7] + message = merge_commit_desc[8:] - merge_hash = merge_commit_desc[:7] - message = merge_commit_desc[8:] - - print "Found: %s" % message - maybe_cherry_pick(pr_num, merge_hash, latest_branch) - sys.exit(0) + print "Found: %s" % message + maybe_cherry_pick(pr_num, merge_hash, latest_branch) + sys.exit(0) if not bool(pr["mergeable"]): - msg = "Pull request %s is not mergeable in its current form.\n" % pr_num + \ - "Continue? (experts only!)" - continue_maybe(msg) + msg = "Pull request %s is not mergeable in its current form.\n" % pr_num + \ + "Continue? (experts only!)" + continue_maybe(msg) print ("\n=== Pull Request #%s ===" % pr_num) print ("title\t%s\nsource\t%s\ntarget\t%s\nurl\t%s" % ( - title, pr_repo_desc, target_ref, url)) + title, pr_repo_desc, target_ref, url)) continue_maybe("Proceed with merging pull request #%s?" % pr_num) merged_refs = [target_ref] @@ -303,12 +317,12 @@ def get_version_json(version_str): pick_prompt = "Would you like to pick %s into another branch?" % merge_hash while raw_input("\n%s (y/n): " % pick_prompt).lower() == "y": - merged_refs = merged_refs + [cherry_pick(pr_num, merge_hash, latest_branch)] + merged_refs = merged_refs + [cherry_pick(pr_num, merge_hash, latest_branch)] if JIRA_IMPORTED: - continue_maybe("Would you like to update an associated JIRA?") - jira_comment = "Issue resolved by pull request %s\n[%s/%s]" % (pr_num, GITHUB_BASE, pr_num) - resolve_jira(title, merged_refs, jira_comment) + continue_maybe("Would you like to update an associated JIRA?") + jira_comment = "Issue resolved by pull request %s\n[%s/%s]" % (pr_num, GITHUB_BASE, pr_num) + resolve_jira(title, merged_refs, jira_comment) else: - print "Could not find jira-python library. Run 'sudo pip install jira-python' to install." - print "Exiting without trying to close the associated JIRA." + print "Could not find jira-python library. Run 'sudo pip install jira-python' to install." + print "Exiting without trying to close the associated JIRA." From 90e281b55aecbfbe4431ac582311d5790fe7aad3 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Mon, 26 May 2014 22:05:23 -0700 Subject: [PATCH 058/118] SPARK-1933: Throw a more meaningful exception when a directory is passed to addJar/addFile. https://issues.apache.org/jira/browse/SPARK-1933 Author: Reynold Xin Closes #888 from rxin/addfile and squashes the following commits: 8c402a3 [Reynold Xin] Updated comment. ff6c162 [Reynold Xin] SPARK-1933: Throw a more meaningful exception when a directory is passed to addJar/addFile. --- core/src/main/scala/org/apache/spark/HttpFileServer.scala | 7 +++++++ core/src/main/scala/org/apache/spark/SparkContext.scala | 5 ++--- 2 files changed, 9 insertions(+), 3 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/HttpFileServer.scala b/core/src/main/scala/org/apache/spark/HttpFileServer.scala index a6e300d345786..0e3750fdde415 100644 --- a/core/src/main/scala/org/apache/spark/HttpFileServer.scala +++ b/core/src/main/scala/org/apache/spark/HttpFileServer.scala @@ -59,6 +59,13 @@ private[spark] class HttpFileServer(securityManager: SecurityManager) extends Lo } def addFileToDir(file: File, dir: File) : String = { + // Check whether the file is a directory. If it is, throw a more meaningful exception. + // If we don't catch this, Guava throws a very confusing error message: + // java.io.FileNotFoundException: [file] (No such file or directory) + // even though the directory ([file]) exists. + if (file.isDirectory) { + throw new IllegalArgumentException(s"$file cannot be a directory.") + } Files.copy(file, new File(dir, file.getName)) dir + "/" + file.getName } diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 49737fa4be56b..03ceff8bf1fb0 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -794,7 +794,7 @@ class SparkContext(config: SparkConf) extends Logging { addedFiles(key) = System.currentTimeMillis // Fetch the file locally in case a job is executed using DAGScheduler.runLocally(). - Utils.fetchFile(path, new File(SparkFiles.getRootDirectory), conf, env.securityManager) + Utils.fetchFile(path, new File(SparkFiles.getRootDirectory()), conf, env.securityManager) logInfo("Added file " + path + " at " + key + " with timestamp " + addedFiles(key)) postEnvironmentUpdate() @@ -932,13 +932,12 @@ class SparkContext(config: SparkConf) extends Logging { try { env.httpFileServer.addJar(new File(fileName)) } catch { - case e: Exception => { + case e: Exception => // For now just log an error but allow to go through so spark examples work. // The spark examples don't really need the jar distributed since its also // the app jar. logError("Error adding jar (" + e + "), was the --addJars option used?") null - } } } else { env.httpFileServer.addJar(new File(uri.getPath)) From 549830b0db2c8b069391224f3a73bb0d7f397f71 Mon Sep 17 00:00:00 2001 From: zsxwing Date: Mon, 26 May 2014 23:17:39 -0700 Subject: [PATCH 059/118] SPARK-1932: Fix race conditions in onReceiveCallback and cachedPeers `var cachedPeers: Seq[BlockManagerId] = null` is used in `def replicate(blockId: BlockId, data: ByteBuffer, level: StorageLevel)` without proper protection. There are two place will call `replicate(blockId, bytesAfterPut, level)` * https://github.com/apache/spark/blob/17f3075bc4aa8cbed165f7b367f70e84b1bc8db9/core/src/main/scala/org/apache/spark/storage/BlockManager.scala#L644 runs in `connectionManager.futureExecContext` * https://github.com/apache/spark/blob/17f3075bc4aa8cbed165f7b367f70e84b1bc8db9/core/src/main/scala/org/apache/spark/storage/BlockManager.scala#L752 `doPut` runs in `connectionManager.handleMessageExecutor`. `org.apache.spark.storage.BlockManagerWorker` calls `blockManager.putBytes` in `connectionManager.handleMessageExecutor`. As they run in different `Executor`s, this is a race condition which may cause the memory pointed by `cachedPeers` is not correct even if `cachedPeers != null`. The race condition of `onReceiveCallback` is that it's set in `BlockManagerWorker` but read in a different thread in `ConnectionManager.handleMessageExecutor`. Author: zsxwing Closes #887 from zsxwing/SPARK-1932 and squashes the following commits: 524f69c [zsxwing] SPARK-1932: Fix race conditions in onReceiveCallback and cachedPeers --- .../scala/org/apache/spark/network/ConnectionManager.scala | 3 ++- .../src/main/scala/org/apache/spark/storage/BlockManager.scala | 2 +- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/network/ConnectionManager.scala b/core/src/main/scala/org/apache/spark/network/ConnectionManager.scala index dcbbc1853186b..5dd5fd0047c0d 100644 --- a/core/src/main/scala/org/apache/spark/network/ConnectionManager.scala +++ b/core/src/main/scala/org/apache/spark/network/ConnectionManager.scala @@ -93,7 +93,8 @@ private[spark] class ConnectionManager(port: Int, conf: SparkConf, implicit val futureExecContext = ExecutionContext.fromExecutor( Utils.newDaemonCachedThreadPool("Connection manager future execution context")) - private var onReceiveCallback: (BufferMessage, ConnectionManagerId) => Option[Message]= null + @volatile + private var onReceiveCallback: (BufferMessage, ConnectionManagerId) => Option[Message] = null private val authEnabled = securityManager.isAuthenticationEnabled() diff --git a/core/src/main/scala/org/apache/spark/storage/BlockManager.scala b/core/src/main/scala/org/apache/spark/storage/BlockManager.scala index 6534095811907..6e450081dcb11 100644 --- a/core/src/main/scala/org/apache/spark/storage/BlockManager.scala +++ b/core/src/main/scala/org/apache/spark/storage/BlockManager.scala @@ -772,7 +772,7 @@ private[spark] class BlockManager( /** * Replicate block to another node. */ - var cachedPeers: Seq[BlockManagerId] = null + @volatile var cachedPeers: Seq[BlockManagerId] = null private def replicate(blockId: BlockId, data: ByteBuffer, level: StorageLevel) { val tLevel = StorageLevel( level.useDisk, level.useMemory, level.useOffHeap, level.deserialized, 1) From 95e4c9c6fb153b7f0aa4c442c4bdb6552d326640 Mon Sep 17 00:00:00 2001 From: lianhuiwang Date: Tue, 27 May 2014 11:53:38 -0700 Subject: [PATCH 060/118] bugfix worker DriverStateChanged state should match DriverState.FAILED bugfix worker DriverStateChanged state should match DriverState.FAILED Author: lianhuiwang Closes #864 from lianhuiwang/master and squashes the following commits: 480ce94 [lianhuiwang] address aarondav comments f2b5970 [lianhuiwang] bugfix worker DriverStateChanged state should match DriverState.FAILED --- .../main/scala/org/apache/spark/deploy/worker/Worker.scala | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala b/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala index 8b6747977eb87..100de26170a50 100755 --- a/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala +++ b/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala @@ -317,10 +317,14 @@ private[spark] class Worker( state match { case DriverState.ERROR => logWarning(s"Driver $driverId failed with unrecoverable exception: ${exception.get}") + case DriverState.FAILED => + logWarning(s"Driver $driverId exited with failure") case DriverState.FINISHED => logInfo(s"Driver $driverId exited successfully") case DriverState.KILLED => logInfo(s"Driver $driverId was killed by user") + case _ => + logDebug(s"Driver $driverId changed state to $state") } masterLock.synchronized { master ! DriverStateChanged(driverId, state, exception) From d1375a2bff846f2c4274e14545924646852895f9 Mon Sep 17 00:00:00 2001 From: Takuya UESHIN Date: Tue, 27 May 2014 14:53:57 -0700 Subject: [PATCH 061/118] [SPARK-1926] [SQL] Nullability of Max/Min/First should be true. Nullability of `Max`/`Min`/`First` should be `true` because they return `null` if there are no rows. Author: Takuya UESHIN Closes #881 from ueshin/issues/SPARK-1926 and squashes the following commits: 322610f [Takuya UESHIN] Fix nullability of Min/Max/First. --- .../apache/spark/sql/catalyst/expressions/aggregates.scala | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala index 79937b129aeae..b49a4614eacab 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala @@ -90,7 +90,7 @@ abstract class AggregateFunction case class Min(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def references = child.references - override def nullable = child.nullable + override def nullable = true override def dataType = child.dataType override def toString = s"MIN($child)" @@ -120,7 +120,7 @@ case class MinFunction(expr: Expression, base: AggregateExpression) extends Aggr case class Max(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def references = child.references - override def nullable = child.nullable + override def nullable = true override def dataType = child.dataType override def toString = s"MAX($child)" @@ -257,7 +257,7 @@ case class SumDistinct(child: Expression) case class First(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def references = child.references - override def nullable = child.nullable + override def nullable = true override def dataType = child.dataType override def toString = s"FIRST($child)" From 3b0babad1f0856ee16f9d58e1ead30779a4a6310 Mon Sep 17 00:00:00 2001 From: Takuya UESHIN Date: Tue, 27 May 2014 14:55:23 -0700 Subject: [PATCH 062/118] [SPARK-1915] [SQL] AverageFunction should not count if the evaluated value is null. Average values are difference between the calculation is done partially or not partially. Because `AverageFunction` (in not-partially calculation) counts even if the evaluated value is null. Author: Takuya UESHIN Closes #862 from ueshin/issues/SPARK-1915 and squashes the following commits: b1ff3c0 [Takuya UESHIN] Modify AverageFunction not to count if the evaluated value is null. --- .../spark/sql/catalyst/expressions/aggregates.scala | 9 ++++++--- .../scala/org/apache/spark/sql/DslQuerySuite.scala | 10 ++++++++++ 2 files changed, 16 insertions(+), 3 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala index b49a4614eacab..c902433688943 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala @@ -281,14 +281,17 @@ case class AverageFunction(expr: Expression, base: AggregateExpression) private val sum = MutableLiteral(zero.eval(EmptyRow)) private val sumAsDouble = Cast(sum, DoubleType) - private val addFunction = Add(sum, Coalesce(Seq(expr, zero))) + private def addFunction(value: Any) = Add(sum, Literal(value)) override def eval(input: Row): Any = sumAsDouble.eval(EmptyRow).asInstanceOf[Double] / count.toDouble override def update(input: Row): Unit = { - count += 1 - sum.update(addFunction, input) + val evaluatedExpr = expr.eval(input) + if (evaluatedExpr != null) { + count += 1 + sum.update(addFunction(evaluatedExpr), input) + } } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala index 8197e8a18d447..fb599e1e01e73 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DslQuerySuite.scala @@ -115,6 +115,16 @@ class DslQuerySuite extends QueryTest { 2.0) } + test("null average") { + checkAnswer( + testData3.groupBy()(Average('b)), + 2.0) + + checkAnswer( + testData3.groupBy()(Average('b), CountDistinct('b :: Nil)), + (2.0, 1) :: Nil) + } + test("count") { assert(testData2.count() === testData2.map(_ => 1).count()) } From 068256745052b0aa947dd8c16b1f1d73d8e4631e Mon Sep 17 00:00:00 2001 From: LY Lai Date: Tue, 27 May 2014 16:08:38 -0700 Subject: [PATCH 063/118] [SQL] SPARK-1922 Allow underscore in column name of a struct field https://issues.apache.org/jira/browse/SPARK-1922 . Author: LY Lai Closes #873 from lyuanlai/master and squashes the following commits: 2253263 [LY Lai] Allow underscore in struct field column name --- .../spark/sql/hive/HiveMetastoreCatalog.scala | 2 +- .../sql/hive/HiveMetastoreCatalogSuite.scala | 32 +++++++++++++++++++ 2 files changed, 33 insertions(+), 1 deletion(-) create mode 100644 sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveMetastoreCatalogSuite.scala diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala index 636c4f7b93190..9f74e0334f727 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala @@ -201,7 +201,7 @@ object HiveMetastoreTypes extends RegexParsers { } protected lazy val structField: Parser[StructField] = - "[a-zA-Z0-9]*".r ~ ":" ~ dataType ^^ { + "[a-zA-Z0-9_]*".r ~ ":" ~ dataType ^^ { case name ~ _ ~ tpe => StructField(name, tpe, nullable = true) } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveMetastoreCatalogSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveMetastoreCatalogSuite.scala new file mode 100644 index 0000000000000..4a64b5f5eb1b4 --- /dev/null +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveMetastoreCatalogSuite.scala @@ -0,0 +1,32 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.hive + +import org.scalatest.FunSuite + +import org.apache.spark.sql.catalyst.types.{DataType, StructType} + +class HiveMetastoreCatalogSuite extends FunSuite { + + test("struct field should accept underscore in sub-column name") { + val metastr = "struct" + + val datatype = HiveMetastoreTypes.toDataType(metastr) + assert(datatype.isInstanceOf[StructType]) + } +} From 9df86835b60ce587c8b9bd4ad7410eebf59a179d Mon Sep 17 00:00:00 2001 From: Takuya UESHIN Date: Tue, 27 May 2014 22:17:50 -0700 Subject: [PATCH 064/118] [SPARK-1938] [SQL] ApproxCountDistinctMergeFunction should return Int value. `ApproxCountDistinctMergeFunction` should return `Int` value because the `dataType` of `ApproxCountDistinct` is `IntegerType`. Author: Takuya UESHIN Closes #893 from ueshin/issues/SPARK-1938 and squashes the following commits: 3970e88 [Takuya UESHIN] Remove a superfluous line. 5ad7ec1 [Takuya UESHIN] Make dataType for each of CountDistinct, ApproxCountDistinctMerge and ApproxCountDistinct LongType. cbe7c71 [Takuya UESHIN] Revert a change. fc3ac0f [Takuya UESHIN] Fix evaluated value type of ApproxCountDistinctMergeFunction to Int. --- .../spark/sql/catalyst/expressions/aggregates.scala | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala index c902433688943..01947273b6ccc 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala @@ -82,7 +82,6 @@ abstract class AggregateFunction override def dataType = base.dataType def update(input: Row): Unit - override def eval(input: Row): Any // Do we really need this? override def newInstance() = makeCopy(productIterator.map { case a: AnyRef => a }.toArray) @@ -166,7 +165,7 @@ case class CountDistinct(expressions: Seq[Expression]) extends AggregateExpressi override def children = expressions override def references = expressions.flatMap(_.references).toSet override def nullable = false - override def dataType = IntegerType + override def dataType = LongType override def toString = s"COUNT(DISTINCT ${expressions.mkString(",")})" override def newInstance() = new CountDistinctFunction(expressions, this) } @@ -184,7 +183,7 @@ case class ApproxCountDistinctMerge(child: Expression, relativeSD: Double) extends AggregateExpression with trees.UnaryNode[Expression] { override def references = child.references override def nullable = false - override def dataType = IntegerType + override def dataType = LongType override def toString = s"APPROXIMATE COUNT(DISTINCT $child)" override def newInstance() = new ApproxCountDistinctMergeFunction(child, this, relativeSD) } @@ -193,7 +192,7 @@ case class ApproxCountDistinct(child: Expression, relativeSD: Double = 0.05) extends PartialAggregate with trees.UnaryNode[Expression] { override def references = child.references override def nullable = false - override def dataType = IntegerType + override def dataType = LongType override def toString = s"APPROXIMATE COUNT(DISTINCT $child)" override def asPartial: SplitEvaluation = { @@ -394,7 +393,7 @@ case class CountDistinctFunction(expr: Seq[Expression], base: AggregateExpressio } } - override def eval(input: Row): Any = seen.size + override def eval(input: Row): Any = seen.size.toLong } case class FirstFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { From 82eadc3b07d3f00eebd30811f981016e68cf60bf Mon Sep 17 00:00:00 2001 From: jmu Date: Tue, 27 May 2014 22:41:47 -0700 Subject: [PATCH 065/118] Fix doc about NetworkWordCount/JavaNetworkWordCount usage of spark streaming Usage: NetworkWordCount --> Usage: NetworkWordCount Usage: JavaNetworkWordCount --> Usage: JavaNetworkWordCount Author: jmu Closes #826 from jmu/master and squashes the following commits: 9fb7980 [jmu] Merge branch 'master' of https://github.com/jmu/spark b9a6b02 [jmu] Fix doc for NetworkWordCount/JavaNetworkWordCount Usage: NetworkWordCount --> Usage: NetworkWordCount --- docs/streaming-programming-guide.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/streaming-programming-guide.md b/docs/streaming-programming-guide.md index 0c125eb693a8e..972b660262d14 100644 --- a/docs/streaming-programming-guide.md +++ b/docs/streaming-programming-guide.md @@ -234,12 +234,12 @@ Then, in a different terminal, you can start the example by using
{% highlight bash %} -$ ./bin/run-example org.apache.spark.examples.streaming.NetworkWordCount local[2] localhost 9999 +$ ./bin/run-example org.apache.spark.examples.streaming.NetworkWordCount localhost 9999 {% endhighlight %}
{% highlight bash %} -$ ./bin/run-example org.apache.spark.examples.streaming.JavaNetworkWordCount local[2] localhost 9999 +$ ./bin/run-example org.apache.spark.examples.streaming.JavaNetworkWordCount localhost 9999 {% endhighlight %}
@@ -268,7 +268,7 @@ hello world {% highlight bash %} # TERMINAL 2: RUNNING NetworkWordCount or JavaNetworkWordCount -$ ./bin/run-example org.apache.spark.examples.streaming.NetworkWordCount local[2] localhost 9999 +$ ./bin/run-example org.apache.spark.examples.streaming.NetworkWordCount localhost 9999 ... ------------------------------------------- Time: 1357008430000 ms From 7801d44fd3bcf4d82e6db12574cc42bef15bf0e1 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Wed, 28 May 2014 15:49:54 -0700 Subject: [PATCH 066/118] Organize configuration docs This PR improves and organizes the config option page and makes a few other changes to config docs. See a preview here: http://people.apache.org/~pwendell/config-improvements/configuration.html The biggest changes are: 1. The configs for the standalone master/workers were moved to the standalone page and out of the general config doc. 2. SPARK_LOCAL_DIRS was missing from the standalone docs. 3. Expanded discussion of injecting configs with spark-submit, including an example. 4. Config options were organized into the following categories: - Runtime Environment - Shuffle Behavior - Spark UI - Compression and Serialization - Execution Behavior - Networking - Scheduling - Security - Spark Streaming Author: Patrick Wendell Closes #880 from pwendell/config-cleanup and squashes the following commits: 93f56c3 [Patrick Wendell] Feedback from Matei 6f66efc [Patrick Wendell] More feedback 16ae776 [Patrick Wendell] Adding back header section d9c264f [Patrick Wendell] Small fix e0c1728 [Patrick Wendell] Response to Matei's review 27d57db [Patrick Wendell] Reverting changes to index.html (covered in #896) e230ef9 [Patrick Wendell] Merge remote-tracking branch 'apache/master' into config-cleanup a374369 [Patrick Wendell] Line wrapping fixes fdff7fc [Patrick Wendell] Merge remote-tracking branch 'apache/master' into config-cleanup 3289ea4 [Patrick Wendell] Pulling in changes from #856 106ee31 [Patrick Wendell] Small link fix f7e79bc [Patrick Wendell] Re-organizing config options. 54b184d [Patrick Wendell] Adding standalone configs to the standalone page 592e94a [Patrick Wendell] Stash 29b5446 [Patrick Wendell] Better discussion of spark-submit in configuration docs 2d719ef [Patrick Wendell] Small fix 4af9e07 [Patrick Wendell] Adding SPARK_LOCAL_DIRS docs 204b248 [Patrick Wendell] Small fixes --- docs/configuration.md | 815 ++++++++++++++++++--------------------- docs/quick-start.md | 8 +- docs/spark-standalone.md | 167 +++++++- 3 files changed, 554 insertions(+), 436 deletions(-) diff --git a/docs/configuration.md b/docs/configuration.md index e5d955f23fe32..b6e7fd34eae68 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -2,19 +2,25 @@ layout: global title: Spark Configuration --- - * This will become a table of contents (this text will be scraped). {:toc} -Spark provides several locations to configure the system: +Spark provides three locations to configure the system: + +* [Spark properties](#spark-properties) control most application parameters and can be set by passing + a [SparkConf](api/core/index.html#org.apache.spark.SparkConf) object to SparkContext, or through Java + system properties. +* [Environment variables](#environment-variables) can be used to set per-machine settings, such as + the IP address, through the `conf/spark-env.sh` script on each node. +* [Logging](#configuring-logging) can be configured through `log4j.properties`. # Spark Properties Spark properties control most application settings and are configured separately for each -application. The preferred way is to set them through -[SparkConf](api/scala/index.html#org.apache.spark.SparkConf) and passing it as an argument to your -SparkContext. SparkConf allows you to configure most of the common properties to initialize a -cluster (e.g. master URL and application name), as well as arbitrary key-value pairs through the +application. These properties can be set directly on a +[SparkConf](api/scala/index.html#org.apache.spark.SparkConf) and passed as an argument to your +SparkContext. SparkConf allows you to configure some of the common properties +(e.g. master URL and application name), as well as arbitrary key-value pairs through the `set()` method. For example, we could initialize an application as follows: {% highlight scala %} @@ -25,22 +31,37 @@ val conf = new SparkConf() val sc = new SparkContext(conf) {% endhighlight %} -## Loading Default Configurations +## Dynamically Loading Spark Properties +In some cases, you may want to avoid hard-coding certain configurations in a `SparkConf`. For +instance, if you'd like to run the same application with different masters or different +amounts of memory. Spark allows you to simply create an empty conf: -In the case of `spark-shell`, a SparkContext has already been created for you, so you cannot control -the configuration properties through SparkConf. However, you can still set configuration properties -through a default configuration file. By default, `spark-shell` (and more generally `spark-submit`) -will read configuration options from `conf/spark-defaults.conf`, in which each line consists of a -key and a value separated by whitespace. For example, +{% highlight scala %} +val sc = new SparkContext(new SparkConf()) +{% endhighlight %} + +Then, you can supply configuration values at runtime: +{% highlight bash %} +./bin/spark-submit --name "My fancy app" --master local[4] myApp.jar +{% endhighlight %} + +The Spark shell and [`spark-submit`](cluster-overview.html#launching-applications-with-spark-submit) +tool support two ways to load configurations dynamically. The first are command line options, +such as `--master`, as shown above. Running `./bin/spark-submit --help` will show the entire list +of options. + +`bin/spark-submit` will also read configuration options from `conf/spark-defaults.conf`, in which +each line consists of a key and a value separated by whitespace. For example: spark.master spark://5.6.7.8:7077 spark.executor.memory 512m spark.eventLog.enabled true spark.serializer org.apache.spark.serializer.KryoSerializer -Any values specified in the file will be passed on to the application, and merged with those -specified through SparkConf. If the same configuration property exists in both `spark-defaults.conf` -and SparkConf, then the latter will take precedence as it is the most application-specific. +Any values specified as flags or in the properties file will be passed on to the application +and merged with those specified through SparkConf. Properties set directly on the SparkConf +take highest precedence, then flags passed to `spark-submit` or `spark-shell`, then options +in the `spark-defaults.conf` file. ## Viewing Spark Properties @@ -49,19 +70,34 @@ This is a useful place to check to make sure that your properties have been set that only values explicitly specified through either `spark-defaults.conf` or SparkConf will appear. For all other configuration properties, you can assume the default value is used. -## All Configuration Properties +## Available Properties -Most of the properties that control internal settings have reasonable default values. However, -there are at least five properties that you will commonly want to control: +Most of the properties that control internal settings have reasonable default values. Some +of the most common options to set are: + + + + + + + + + + @@ -69,10 +105,12 @@ there are at least five properties that you will commonly want to control: @@ -81,7 +119,8 @@ there are at least five properties that you will commonly want to control: @@ -94,138 +133,151 @@ there are at least five properties that you will commonly want to control: comma-separated list of multiple directories on different disks. NOTE: In Spark 1.0 and later this will be overriden by SPARK_LOCAL_DIRS (Standalone, Mesos) or - LOCAL_DIRS (YARN) envrionment variables set by the cluster manager. + LOCAL_DIRS (YARN) environment variables set by the cluster manager. - - + +
Property NameDefaultMeaning
spark.app.name(none) + The name of your application. This will appear in the UI and in log data. +
spark.master(none) + The cluster manager to connect to. See the list of + allowed master URL's. +
spark.executor.memory 512m - Amount of memory to use per executor process, in the same format as JVM memory strings (e.g. - 512m, 2g). + Amount of memory to use per executor process, in the same format as JVM memory strings + (e.g. 512m, 2g).
org.apache.spark.serializer.
JavaSerializer
Class to use for serializing objects that will be sent over the network or need to be cached - in serialized form. The default of Java serialization works with any Serializable Java object but is - quite slow, so we recommend using org.apache.spark.serializer.KryoSerializer - and configuring Kryo serialization when speed is necessary. Can be any subclass of - org.apache.spark.Serializer. + in serialized form. The default of Java serialization works with any Serializable Java object + but is quite slow, so we recommend using + org.apache.spark.serializer.KryoSerializer and configuring Kryo serialization + when speed is necessary. Can be any subclass of + + org.apache.spark.Serializer.
If you use Kryo serialization, set this class to register your custom classes with Kryo. It should be set to a class that extends - KryoRegistrator. + + KryoRegistrator. See the tuning guide for more details.
spark.cores.max(not set)spark.logConffalse - When running on a standalone deploy cluster or a - Mesos cluster in "coarse-grained" - sharing mode, the maximum amount of CPU cores to request for the application from - across the cluster (not from each machine). If not set, the default will be - spark.deploy.defaultCores on Spark's standalone cluster manager, or - infinite (all available cores) on Mesos. + Logs the effective SparkConf as INFO when a SparkContext is started.
- Apart from these, the following properties are also available, and may be useful in some situations: +#### Runtime Environment - + + + + + + - - + + - - + + - - + + +
Property NameDefaultMeaning
spark.default.parallelismspark.executor.memory512m -
    -
  • Local mode: number of cores on the local machine
  • -
  • Mesos fine grained mode: 8
  • -
  • Others: total number of cores on all executor nodes or 2, whichever is larger
  • -
+ Amount of memory to use per executor process, in the same format as JVM memory strings + (e.g. 512m, 2g).
spark.executor.extraJavaOptions(none) - Default number of tasks to use across the cluster for distributed shuffle operations - (groupByKey, reduceByKey, etc) when not set by user. + A string of extra JVM options to pass to executors. For instance, GC settings or other + logging. Note that it is illegal to set Spark properties or heap size settings with this + option. Spark properties should be set using a SparkConf object or the + spark-defaults.conf file used with the spark-submit script. Heap size settings can be set + with spark.executor.memory.
spark.storage.memoryFraction0.6spark.executor.extraClassPath(none) - Fraction of Java heap to use for Spark's memory cache. This should not be larger than the "old" - generation of objects in the JVM, which by default is given 0.6 of the heap, but you can increase - it if you configure your own old generation size. + Extra classpath entries to append to the classpath of executors. This exists primarily + for backwards-compatibility with older versions of Spark. Users typically should not need + to set this option.
spark.shuffle.memoryFraction0.3spark.executor.extraLibraryPath(none) - Fraction of Java heap to use for aggregation and cogroups during shuffles, if - spark.shuffle.spill is true. At any given time, the collective size of - all in-memory maps used for shuffles is bounded by this limit, beyond which the contents will - begin to spill to disk. If spills are often, consider increasing this value at the expense of - spark.storage.memoryFraction. + Set a special library path to use when launching executor JVM's.
spark.storage.memoryMapThreshold8192spark.files.userClassPathFirstfalse - Size of a block, in bytes, above which Spark memory maps when reading a block from disk. - This prevents Spark from memory mapping very small blocks. In general, memory - mapping has high overhead for blocks close to or below the page size of the operating system. + (Experimental) Whether to give user-added jars precedence over Spark's own jars when + loading classes in Executors. This feature can be used to mitigate conflicts between + Spark's dependencies and user dependencies. It is currently an experimental feature.
+ +#### Shuffle Behavior + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + + +
Property NameDefaultMeaning
spark.tachyonStore.baseDirSystem.getProperty("java.io.tmpdir")spark.shuffle.consolidateFilesfalse - Directories of the Tachyon File System that store RDDs. The Tachyon file system's URL is set by - spark.tachyonStore.url. It can also be a comma-separated list of multiple - directories on Tachyon file system. + If set to "true", consolidates intermediate files created during a shuffle. Creating fewer + files can improve filesystem performance for shuffles with large numbers of reduce tasks. It + is recommended to set this to "true" when using ext4 or xfs filesystems. On ext3, this option + might degrade performance on machines with many (>8) cores due to filesystem limitations.
spark.tachyonStore.urltachyon://localhost:19998spark.shuffle.spilltrue - The URL of the underlying Tachyon file system in the TachyonStore. + If set to "true", limits the amount of memory used during reduces by spilling data out to disk. + This spilling threshold is specified by spark.shuffle.memoryFraction.
spark.mesos.coarsefalsespark.shuffle.spill.compresstrue - If set to "true", runs over Mesos clusters in "coarse-grained" sharing mode, where Spark - acquires one long-lived Mesos task on each machine instead of one Mesos task per Spark task. - This gives lower-latency scheduling for short queries, but leaves resources in use for the whole - duration of the Spark job. + Whether to compress data spilled during shuffles. Compression will use + spark.io.compression.codec.
spark.ui.port4040spark.shuffle.memoryFraction0.3 - Port for your application's dashboard, which shows memory and workload data + Fraction of Java heap to use for aggregation and cogroups during shuffles, if + spark.shuffle.spill is true. At any given time, the collective size of + all in-memory maps used for shuffles is bounded by this limit, beyond which the contents will + begin to spill to disk. If spills are often, consider increasing this value at the expense of + spark.storage.memoryFraction.
spark.ui.retainedStages1000spark.shuffle.compresstrue - How many stages the Spark UI remembers before garbage collecting. + Whether to compress map output files. Generally a good idea. Compression will use + spark.io.compression.codec.
spark.ui.filtersNonespark.shuffle.file.buffer.kb100 - Comma separated list of filter class names to apply to the Spark web ui. The filter should be a - standard javax servlet Filter. Parameters to each filter can also be specified by setting a - java system property of spark.<class name of filter>.params='param1=value1,param2=value2' - (e.g. -Dspark.ui.filters=com.test.filter1 -Dspark.com.test.filter1.params='param1=foo,param2=testing') + Size of the in-memory buffer for each shuffle file output stream, in kilobytes. These buffers + reduce the number of disk seeks and system calls made in creating intermediate shuffle files.
spark.ui.acls.enablefalsespark.reducer.maxMbInFlight48 - Whether spark web ui acls should are enabled. If enabled, this checks to see if the user has - access permissions to view the web ui. See spark.ui.view.acls for more details. - Also note this requires the user to be known, if the user comes across as null no checks - are done. Filters can be used to authenticate and set the user. + Maximum size (in megabytes) of map outputs to fetch simultaneously from each reduce task. Since + each output requires us to create a buffer to receive it, this represents a fixed memory + overhead per reduce task, so keep it small unless you have a large amount of memory. +
+ +#### Spark UI + + + + + + - - + + @@ -236,19 +288,35 @@ Apart from these, the following properties are also available, and may be useful - - + + - - + + + + + + + +
Property NameDefaultMeaning
spark.ui.port4040 + Port for your application's dashboard, which shows memory and workload data
spark.ui.view.aclsEmptyspark.ui.retainedStages1000 - Comma separated list of users that have view access to the spark web ui. By default only the - user that started the Spark job has view access. + How many stages the Spark UI remembers before garbage collecting.
spark.shuffle.compresstruespark.eventLog.enabledfalse - Whether to compress map output files. Generally a good idea. + Whether to log Spark events, useful for reconstructing the Web UI after the application has + finished.
spark.shuffle.spill.compresstruespark.eventLog.compressfalse - Whether to compress data spilled during shuffles. + Whether to compress logged events, if spark.eventLog.enabled is true.
spark.eventLog.dirfile:///tmp/spark-events + Base directory in which Spark events are logged, if spark.eventLog.enabled is true. + Within this base directory, Spark creates a sub-directory for each application, and logs the + events specific to the application in this directory. Users may want to set this to + and HDFS directory so that history files can be read by the history server. +
+ +#### Compression and Serialization + + @@ -260,59 +328,46 @@ Apart from these, the following properties are also available, and may be useful - - - - - - - - - - - - + + - - + + @@ -329,21 +384,29 @@ Apart from these, the following properties are also available, and may be useful +
Property NameDefaultMeaning
spark.broadcast.compress truespark.rdd.compress false - Whether to compress serialized RDD partitions (e.g. for StorageLevel.MEMORY_ONLY_SER). - Can save substantial space at the cost of some extra CPU time. + Whether to compress serialized RDD partitions (e.g. for + StorageLevel.MEMORY_ONLY_SER). Can save substantial space at the cost of some + extra CPU time.
spark.io.compression.codec org.apache.spark.io.
LZFCompressionCodec
- The codec used to compress internal data such as RDD partitions and shuffle outputs. By default, - Spark provides two codecs: org.apache.spark.io.LZFCompressionCodec and - org.apache.spark.io.SnappyCompressionCodec. + The codec used to compress internal data such as RDD partitions and shuffle outputs. + By default, Spark provides two codecs: org.apache.spark.io.LZFCompressionCodec + and org.apache.spark.io.SnappyCompressionCodec. Of these two choices, + Snappy offers faster compression and decompression, while LZF offers a better compression + ratio.
spark.io.compression.snappy.block.size 32768 - Block size (in bytes) used in Snappy compression, in the case when Snappy compression codec is - used. -
spark.scheduler.modeFIFO - The scheduling mode between - jobs submitted to the same SparkContext. Can be set to FAIR - to use fair sharing instead of queueing jobs one after another. Useful for - multi-user services. -
spark.scheduler.revive.interval1000 - The interval length for the scheduler to revive the worker resource offers to run tasks. (in - milliseconds) + Block size (in bytes) used in Snappy compression, in the case when Snappy compression codec + is used.
spark.reducer.maxMbInFlight48spark.closure.serializerorg.apache.spark.serializer.
JavaSerializer
- Maximum size (in megabytes) of map outputs to fetch simultaneously from each reduce task. Since - each output requires us to create a buffer to receive it, this represents a fixed memory - overhead per reduce task, so keep it small unless you have a large amount of memory. + Serializer class to use for closures. Currently only the Java serializer is supported.
spark.closure.serializerorg.apache.spark.serializer.
JavaSerializer
spark.serializer.objectStreamReset10000 - Serializer class to use for closures. Currently only the Java serializer is supported. + When serializing using org.apache.spark.serializer.JavaSerializer, the serializer caches + objects to prevent writing redundant data, however that stops garbage collection of those + objects. By calling 'reset' you flush that info from the serializer, and allow old + objects to be collected. To turn off this periodic reset set it to a value <= 0. + By default it will reset the serializer every 10,000 objects.
spark.kryoserializer.buffer.mb 2 - Maximum object size to allow within Kryo (the library needs to create a buffer at least as large - as the largest single object you'll serialize). Increase this if you get a "buffer limit + Maximum object size to allow within Kryo (the library needs to create a buffer at least as + large as the largest single object you'll serialize). Increase this if you get a "buffer limit exceeded" exception inside Kryo. Note that there will be one buffer per core on each worker.
+ +#### Execution Behavior + + - - + + @@ -354,73 +417,92 @@ Apart from these, the following properties are also available, and may be useful - - + + - - + + - - + + + + + + + + + + + + - - + + - - + + - - + + +
Property NameDefaultMeaning
spark.serializer.objectStreamReset10000spark.default.parallelism - When serializing using org.apache.spark.serializer.JavaSerializer, the serializer caches - objects to prevent writing redundant data, however that stops garbage collection of those - objects. By calling 'reset' you flush that info from the serializer, and allow old - objects to be collected. To turn off this periodic reset set it to a value <= 0. - By default it will reset the serializer every 10,000 objects. +
    +
  • Local mode: number of cores on the local machine
  • +
  • Mesos fine grained mode: 8
  • +
  • Others: total number of cores on all executor nodes or 2, whichever is larger
  • +
+
+ Default number of tasks to use across the cluster for distributed shuffle operations + (groupByKey, reduceByKey, etc) when not set by user.
spark.locality.wait3000spark.broadcast.blockSize4096 - Number of milliseconds to wait to launch a data-local task before giving up and launching it - on a less-local node. The same wait will be used to step through multiple locality levels - (process-local, node-local, rack-local and then any). It is also possible to customize the - waiting time for each level by setting spark.locality.wait.node, etc. - You should increase this setting if your tasks are long and see poor locality, but the - default usually works well. + Size of each piece of a block in kilobytes for TorrentBroadcastFactory. + Too large a value decreases parallelism during broadcast (makes it slower); however, if it is + too small, BlockManager might take a performance hit.
spark.locality.wait.processspark.locality.waitspark.files.overwritefalse - Customize the locality wait for process locality. This affects tasks that attempt to access - cached data in a particular executor process. + Whether to overwrite files added through SparkContext.addFile() when the target file exists and + its contents do not match those of the source.
spark.locality.wait.nodespark.locality.waitspark.files.fetchTimeoutfalse + Communication timeout to use when fetching files added through SparkContext.addFile() from + the driver. +
spark.storage.memoryFraction0.6 + Fraction of Java heap to use for Spark's memory cache. This should not be larger than the "old" + generation of objects in the JVM, which by default is given 0.6 of the heap, but you can + increase it if you configure your own old generation size. +
spark.tachyonStore.baseDirSystem.getProperty("java.io.tmpdir") - Customize the locality wait for node locality. For example, you can set this to 0 to skip - node locality and search immediately for rack locality (if your cluster has rack information). + Directories of the Tachyon File System that store RDDs. The Tachyon file system's URL is set by + spark.tachyonStore.url. It can also be a comma-separated list of multiple + directories on Tachyon file system.
spark.locality.wait.rackspark.locality.waitspark.storage.memoryMapThreshold8192 - Customize the locality wait for rack locality. + Size of a block, in bytes, above which Spark memory maps when reading a block from disk. + This prevents Spark from memory mapping very small blocks. In general, memory + mapping has high overhead for blocks close to or below the page size of the operating system.
spark.worker.timeout60spark.tachyonStore.urltachyon://localhost:19998 - Number of seconds after which the standalone deploy master considers a worker lost if it - receives no heartbeats. + The URL of the underlying Tachyon file system in the TachyonStore.
spark.worker.cleanup.enabledfalsespark.cleaner.ttl(infinite) - Enable periodic cleanup of worker / application directories. Note that this only affects - standalone mode, as YARN works differently. Applications directories are cleaned up regardless - of whether the application is still running. + Duration (seconds) of how long Spark will remember any metadata (stages generated, tasks + generated, etc.). Periodic cleanups will ensure that metadata older than this duration will be + forgotten. This is useful for running Spark for many hours / days (for example, running 24/7 in + case of Spark Streaming applications). Note that any RDD that persists in memory for more than + this duration will be cleared as well.
+ +#### Networking + + - - + + - - + + @@ -454,8 +536,8 @@ Apart from these, the following properties are also available, and may be useful This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). Acceptable heart beat pause in seconds for akka. This can be used to control sensitivity to gc pauses. Tune this in - combination of `spark.akka.heartbeat.interval` and `spark.akka.failure-detector.threshold` if - you need to. + combination of `spark.akka.heartbeat.interval` and `spark.akka.failure-detector.threshold` + if you need to. @@ -476,55 +558,23 @@ Apart from these, the following properties are also available, and may be useful enabled again, if you plan to use this feature (Not recommended). A larger interval value in seconds reduces network overhead and a smaller value ( ~ 1 s) might be more informative for akka's failure detector. Tune this in combination of `spark.akka.heartbeat.pauses` and - `spark.akka.failure-detector.threshold` if you need to. Only positive use case for using failure - detector can be, a sensistive failure detector can help evict rogue executors really quick. - However this is usually not the case as gc pauses and network lags are expected in a real spark - cluster. Apart from that enabling this leads to a lot of exchanges of heart beats between nodes - leading to flooding the network with those. - - - - - - - - - - - - - - - - - - - - - +
Property NameDefaultMeaning
spark.worker.cleanup.interval1800 (30 minutes)spark.driver.host(local hostname) - Controls the interval, in seconds, at which the worker cleans up old application work dirs - on the local machine. + Hostname or IP address for the driver to listen on.
spark.worker.cleanup.appDataTtl7 * 24 * 3600 (7 days)spark.driver.port(random) - The number of seconds to retain application work directories on each worker. This is a Time To - Live and should depend on the amount of available disk space you have. Application logs and - jars are downloaded to each application work dir. Over time, the work dirs can quickly fill up - disk space, especially if you run jobs very frequently. + Port for the driver to listen on.
spark.driver.host(local hostname) - Hostname or IP address for the driver to listen on. -
spark.driver.port(random) - Port for the driver to listen on. -
spark.cleaner.ttl(infinite) - Duration (seconds) of how long Spark will remember any metadata (stages generated, tasks - generated, etc.). Periodic cleanups will ensure that metadata older than this duration will be - forgotten. This is useful for running Spark for many hours / days (for example, running 24/7 in - case of Spark Streaming applications). Note that any RDD that persists in memory for more than - this duration will be cleared as well. -
spark.streaming.blockInterval200 - Interval (milliseconds) at which data received by Spark Streaming receivers is coalesced - into blocks of data before storing them in Spark. + `spark.akka.failure-detector.threshold` if you need to. Only positive use case for using + failure detector can be, a sensistive failure detector can help evict rogue executors really + quick. However this is usually not the case as gc pauses and network lags are expected in a + real Spark cluster. Apart from that enabling this leads to a lot of exchanges of heart beats + between nodes leading to flooding the network with those.
+ +#### Scheduling + + - - + + @@ -536,39 +586,36 @@ Apart from these, the following properties are also available, and may be useful - - - - - - - - + + - - + + - - + + @@ -601,91 +648,59 @@ Apart from these, the following properties are also available, and may be useful - - - - - - - - - - - - - - - - - - - - - - + + - - + + - - + + - - + + - - + + +
Property NameDefaultMeaning
spark.streaming.unpersisttruespark.task.cpus1 - Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from - Spark's memory. The raw input data received by Spark Streaming is also automatically cleared. - Setting this to false will allow the raw data and persisted RDDs to be accessible outside the - streaming application as they will not be cleared automatically. But it comes at the cost of - higher memory usage in Spark. + Number of cores to allocate for each task.
spark.broadcast.blockSize4096 - Size of each piece of a block in kilobytes for TorrentBroadcastFactory. - Too large a value decreases parallelism during broadcast (makes it slower); however, if it is - too small, BlockManager might take a performance hit. -
spark.shuffle.consolidateFilesfalsespark.scheduler.modeFIFO - If set to "true", consolidates intermediate files created during a shuffle. Creating fewer files - can improve filesystem performance for shuffles with large numbers of reduce tasks. It is - recommended to set this to "true" when using ext4 or xfs filesystems. On ext3, this option might - degrade performance on machines with many (>8) cores due to filesystem limitations. + The scheduling mode between + jobs submitted to the same SparkContext. Can be set to FAIR + to use fair sharing instead of queueing jobs one after another. Useful for + multi-user services.
spark.shuffle.file.buffer.kb100spark.cores.max(not set) - Size of the in-memory buffer for each shuffle file output stream, in kilobytes. These buffers - reduce the number of disk seeks and system calls made in creating intermediate shuffle files. + When running on a standalone deploy cluster or a + Mesos cluster in "coarse-grained" + sharing mode, the maximum amount of CPU cores to request for the application from + across the cluster (not from each machine). If not set, the default will be + spark.deploy.defaultCores on Spark's standalone cluster manager, or + infinite (all available cores) on Mesos.
spark.shuffle.spilltruespark.mesos.coarsefalse - If set to "true", limits the amount of memory used during reduces by spilling data out to disk. - This spilling threshold is specified by spark.shuffle.memoryFraction. + If set to "true", runs over Mesos clusters in + "coarse-grained" sharing mode, + where Spark acquires one long-lived Mesos task on each machine instead of one Mesos task per + Spark task. This gives lower-latency scheduling for short queries, but leaves resources in use + for the whole duration of the Spark job.
spark.logConffalse - Whether to log the supplied SparkConf as INFO at start of spark context. -
spark.eventLog.enabledfalse - Whether to log spark events, useful for reconstructing the Web UI after the application has - finished. -
spark.eventLog.compressfalse - Whether to compress logged events, if spark.eventLog.enabled is true. -
spark.eventLog.dirfile:///tmp/spark-events - Base directory in which spark events are logged, if spark.eventLog.enabled is true. - Within this base directory, Spark creates a sub-directory for each application, and logs the - events specific to the application in this directory. -
spark.deploy.spreadOuttruespark.locality.wait3000 - Whether the standalone cluster manager should spread applications out across nodes or try to - consolidate them onto as few nodes as possible. Spreading out is usually better for data - locality in HDFS, but consolidating is more efficient for compute-intensive workloads.
- Note: this setting needs to be configured in the standalone cluster master, not in - individual applications; you can set it through SPARK_MASTER_OPTS in - spark-env.sh. + Number of milliseconds to wait to launch a data-local task before giving up and launching it + on a less-local node. The same wait will be used to step through multiple locality levels + (process-local, node-local, rack-local and then any). It is also possible to customize the + waiting time for each level by setting spark.locality.wait.node, etc. + You should increase this setting if your tasks are long and see poor locality, but the + default usually works well.
spark.deploy.defaultCores(infinite)spark.locality.wait.processspark.locality.wait - Default number of cores to give to applications in Spark's standalone mode if they don't set - spark.cores.max. If not set, applications always get all available cores unless - they configure spark.cores.max themselves. Set this lower on a shared cluster to - prevent users from grabbing the whole cluster by default.
Note: this setting needs - to be configured in the standalone cluster master, not in individual applications; you can set - it through SPARK_MASTER_OPTS in spark-env.sh. + Customize the locality wait for process locality. This affects tasks that attempt to access + cached data in a particular executor process.
spark.files.overwritefalsespark.locality.wait.nodespark.locality.wait - Whether to overwrite files added through SparkContext.addFile() when the target file exists and - its contents do not match those of the source. + Customize the locality wait for node locality. For example, you can set this to 0 to skip + node locality and search immediately for rack locality (if your cluster has rack information).
spark.files.fetchTimeoutfalsespark.locality.wait.rackspark.locality.wait - Communication timeout to use when fetching files added through SparkContext.addFile() from - the driver. + Customize the locality wait for rack locality.
spark.files.userClassPathFirstfalsespark.scheduler.revive.interval1000 - (Experimental) Whether to give user-added jars precedence over Spark's own jars when - loading classes in Executors. This feature can be used to mitigate conflicts between - Spark's dependencies and user dependencies. It is currently an experimental feature. + The interval length for the scheduler to revive the worker resource offers to run tasks. + (in milliseconds)
+ +#### Security + + @@ -693,7 +708,7 @@ Apart from these, the following properties are also available, and may be useful @@ -705,42 +720,71 @@ Apart from these, the following properties are also available, and may be useful - - + + - - + + - - + + +
Property NameDefaultMeaning
spark.authenticate false - Whether spark authenticates its internal connections. See spark.authenticate.secret - if not running on Yarn. + Whether Spark authenticates its internal connections. See + spark.authenticate.secret if not running on YARN.
None Set the secret key used for Spark to authenticate between components. This needs to be set if - not running on Yarn and authentication is enabled. + not running on YARN and authentication is enabled.
spark.task.cpus1spark.ui.filtersNone - Number of cores to allocate for each task. + Comma separated list of filter class names to apply to the Spark web UI. The filter should be a + standard + javax servlet Filter. Parameters to each filter can also be specified by setting a + java system property of:
+ spark.<class name of filter>.params='param1=value1,param2=value2'
+ For example:
+ -Dspark.ui.filters=com.test.filter1
+ -Dspark.com.test.filter1.params='param1=foo,param2=testing'
spark.executor.extraJavaOptions(none)spark.ui.acls.enablefalse - A string of extra JVM options to pass to executors. For instance, GC settings or other - logging. Note that it is illegal to set Spark properties or heap size settings with this - option. Spark properties should be set using a SparkConf object or the - spark-defaults.conf file used with the spark-submit script. Heap size settings can be set - with spark.executor.memory. + Whether Spark web ui acls should are enabled. If enabled, this checks to see if the user has + access permissions to view the web ui. See spark.ui.view.acls for more details. + Also note this requires the user to be known, if the user comes across as null no checks + are done. Filters can be used to authenticate and set the user.
spark.executor.extraClassPath(none)spark.ui.view.aclsEmpty - Extra classpath entries to append to the classpath of executors. This exists primarily - for backwards-compatibility with older versions of Spark. Users typically should not need - to set this option. + Comma separated list of users that have view access to the Spark web ui. By default only the + user that started the Spark job has view access.
+ +#### Spark Streaming + + - - + + + + + + + -
Property NameDefaultMeaning
spark.executor.extraLibraryPath(none)spark.streaming.blockInterval200 - Set a special library path to use when launching executor JVM's. + Interval (milliseconds) at which data received by Spark Streaming receivers is coalesced + into blocks of data before storing them in Spark. +
spark.streaming.unpersisttrue + Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from + Spark's memory. The raw input data received by Spark Streaming is also automatically cleared. + Setting this to false will allow the raw data and persisted RDDs to be accessible outside the + streaming application as they will not be cleared automatically. But it comes at the cost of + higher memory usage in Spark.
+#### Cluster Managers (YARN, Mesos, Standalone) +Each cluster manager in Spark has additional configuration options. Configurations +can be found on the pages for each mode: + + * [YARN](running-on-yarn.html#configuration) + * [Mesos](running-on-mesos.html) + * [Standalone Mode](spark-standalone.html#cluster-launch-scripts) + # Environment Variables Certain Spark settings can be configured through environment variables, which are read from the @@ -774,104 +818,15 @@ The following variables can be set in `spark-env.sh`: -In addition to the above, there are also options for setting up the Spark [standalone cluster -scripts](spark-standalone.html#cluster-launch-scripts), such as number of cores to use on each -machine and maximum memory. +In addition to the above, there are also options for setting up the Spark +[standalone cluster scripts](spark-standalone.html#cluster-launch-scripts), such as number of cores +to use on each machine and maximum memory. -Since `spark-env.sh` is a shell script, some of these can be set programmatically -- for example, -you might compute `SPARK_LOCAL_IP` by looking up the IP of a specific network interface. +Since `spark-env.sh` is a shell script, some of these can be set programmatically -- for example, you might +compute `SPARK_LOCAL_IP` by looking up the IP of a specific network interface. # Configuring Logging Spark uses [log4j](http://logging.apache.org/log4j/) for logging. You can configure it by adding a `log4j.properties` file in the `conf` directory. One way to start is to copy the existing `log4j.properties.template` located there. - -# Configuring Ports for Network Security - -Spark makes heavy use of the network, and some environments have strict requirements for using tight -firewall settings. Below are the primary ports that Spark uses for its communication and how to -configure those ports. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FromToDefault PortPurposeConfiguration - SettingNotes
BrowserStandalone Cluster Master8080Web UImaster.ui.portJetty-based
BrowserWorker8081Web UIworker.ui.portJetty-based
BrowserDriver4040Web UIspark.ui.portJetty-based
BrowserHistory Server18080Web UIspark.history.ui.portJetty-based
ApplicationStandalone Cluster Master7077Submit job to clusterspark.driver.portAkka-based. Set to "0" to choose a port randomly
WorkerStandalone Cluster Master7077Join clusterspark.driver.portAkka-based. Set to "0" to choose a port randomly
ApplicationWorker(random)Join clusterSPARK_WORKER_PORT (standalone cluster)Akka-based
Driver and other WorkersWorker(random) -
    -
  • File server for file and jars
  • -
  • Http Broadcast
  • -
  • Class file server (Spark Shell only)
  • -
-
NoneJetty-based. Each of these services starts on a random port that cannot be configured
diff --git a/docs/quick-start.md b/docs/quick-start.md index 33a0df1036424..20e17ebf703fc 100644 --- a/docs/quick-start.md +++ b/docs/quick-start.md @@ -252,11 +252,11 @@ we initialize a SparkContext as part of the program. We pass the SparkContext constructor a [SparkConf](api/scala/index.html#org.apache.spark.SparkConf) object which contains information about our -application. We also call sc.addJar to make sure that when our application is launched in cluster -mode, the jar file containing it will be shipped automatically to worker nodes. +application. -This file depends on the Spark API, so we'll also include an sbt configuration file, `simple.sbt` -which explains that Spark is a dependency. This file also adds a repository that Spark depends on: +Our application depends on the Spark API, so we'll also include an sbt configuration file, +`simple.sbt` which explains that Spark is a dependency. This file also adds a repository that +Spark depends on: {% highlight scala %} name := "Simple Project" diff --git a/docs/spark-standalone.md b/docs/spark-standalone.md index eb3211b6b0e4e..dca80a9a69614 100644 --- a/docs/spark-standalone.md +++ b/docs/spark-standalone.md @@ -93,7 +93,15 @@ You can optionally configure the cluster further by setting environment variable SPARK_MASTER_OPTS - Configuration properties that apply only to the master in the form "-Dx=y" (default: none). + Configuration properties that apply only to the master in the form "-Dx=y" (default: none). See below for a list of possible options. + + + SPARK_LOCAL_DIRS + + Directory to use for "scratch" space in Spark, including map output files and RDDs that get + stored on disk. This should be on a fast, local disk in your system. It can also be a + comma-separated list of multiple directories on different disks. + SPARK_WORKER_CORES @@ -126,7 +134,7 @@ You can optionally configure the cluster further by setting environment variable SPARK_WORKER_OPTS - Configuration properties that apply only to the worker in the form "-Dx=y" (default: none). + Configuration properties that apply only to the worker in the form "-Dx=y" (default: none). See below for a list of possible options. SPARK_DAEMON_MEMORY @@ -144,6 +152,73 @@ You can optionally configure the cluster further by setting environment variable **Note:** The launch scripts do not currently support Windows. To run a Spark cluster on Windows, start the master and workers by hand. +SPARK_MASTER_OPTS supports the following system properties: + + + + + + + + + + + + + + + + + + +
Property NameDefaultMeaning
spark.deploy.spreadOuttrue + Whether the standalone cluster manager should spread applications out across nodes or try + to consolidate them onto as few nodes as possible. Spreading out is usually better for + data locality in HDFS, but consolidating is more efficient for compute-intensive workloads.
+
spark.deploy.defaultCores(infinite) + Default number of cores to give to applications in Spark's standalone mode if they don't + set spark.cores.max. If not set, applications always get all available + cores unless they configure spark.cores.max themselves. + Set this lower on a shared cluster to prevent users from grabbing + the whole cluster by default.
+
spark.worker.timeout60 + Number of seconds after which the standalone deploy master considers a worker lost if it + receives no heartbeats. +
+ +SPARK_WORKER_OPTS supports the following system properties: + + + + + + + + + + + + + + + + + + +
Property NameDefaultMeaning
spark.worker.cleanup.enabledfalse + Enable periodic cleanup of worker / application directories. Note that this only affects standalone + mode, as YARN works differently. Applications directories are cleaned up regardless of whether + the application is still running. +
spark.worker.cleanup.interval1800 (30 minutes) + Controls the interval, in seconds, at which the worker cleans up old application work dirs + on the local machine. +
spark.worker.cleanup.appDataTtl7 * 24 * 3600 (7 days) + The number of seconds to retain application work directories on each worker. This is a Time To Live + and should depend on the amount of available disk space you have. Application logs and jars are + downloaded to each application work dir. Over time, the work dirs can quickly fill up disk space, + especially if you run jobs very frequently. +
+ # Connecting an Application to the Cluster To run an application on the Spark cluster, simply pass the `spark://IP:PORT` URL of the master as to the [`SparkContext` @@ -212,6 +287,94 @@ In addition, detailed log output for each job is also written to the work direct You can run Spark alongside your existing Hadoop cluster by just launching it as a separate service on the same machines. To access Hadoop data from Spark, just use a hdfs:// URL (typically `hdfs://:9000/path`, but you can find the right URL on your Hadoop Namenode's web UI). Alternatively, you can set up a separate cluster for Spark, and still have it access HDFS over the network; this will be slower than disk-local access, but may not be a concern if you are still running in the same local area network (e.g. you place a few Spark machines on each rack that you have Hadoop on). +# Configuring Ports for Network Security + +Spark makes heavy use of the network, and some environments have strict requirements for using tight +firewall settings. Below are the primary ports that Spark uses for its communication and how to +configure those ports. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FromToDefault PortPurposeConfiguration + SettingNotes
BrowserStandalone Cluster Master8080Web UImaster.ui.portJetty-based
BrowserDriver4040Web UIspark.ui.portJetty-based
BrowserHistory Server18080Web UIspark.history.ui.portJetty-based
BrowserWorker8081Web UIworker.ui.portJetty-based
ApplicationStandalone Cluster Master7077Submit job to clusterspark.driver.portAkka-based. Set to "0" to choose a port randomly
WorkerStandalone Cluster Master7077Join clusterspark.driver.portAkka-based. Set to "0" to choose a port randomly
ApplicationWorker(random)Join clusterSPARK_WORKER_PORT (standalone cluster)Akka-based
Driver and other WorkersWorker(random) +
    +
  • File server for file and jars
  • +
  • Http Broadcast
  • +
  • Class file server (Spark Shell only)
  • +
+
NoneJetty-based. Each of these services starts on a random port that cannot be configured
+ # High Availability By default, standalone scheduling clusters are resilient to Worker failures (insofar as Spark itself is resilient to losing work by moving it to other workers). However, the scheduler uses a Master to make scheduling decisions, and this (by default) creates a single point of failure: if the Master crashes, no new applications can be created. In order to circumvent this, we have two high availability schemes, detailed below. From 4312cf0bade82d4b54eef80e637953e1633edc3e Mon Sep 17 00:00:00 2001 From: David Lemieux Date: Wed, 28 May 2014 15:50:35 -0700 Subject: [PATCH 067/118] Spark 1916 The changes could be ported back to 0.9 as well. Changing in.read to in.readFully to read the whole input stream rather than the first 1020 bytes. This should ok considering that Flume caps the body size to 32K by default. Author: David Lemieux Closes #865 from lemieud/SPARK-1916 and squashes the following commits: a265673 [David Lemieux] Updated SparkFlumeEvent to read the whole stream rather than the first X bytes. (cherry picked from commit 0b769b73fb7ae314325857138a2d3138ed157908) Signed-off-by: Patrick Wendell --- .../org/apache/spark/streaming/flume/FlumeInputDStream.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/external/flume/src/main/scala/org/apache/spark/streaming/flume/FlumeInputDStream.scala b/external/flume/src/main/scala/org/apache/spark/streaming/flume/FlumeInputDStream.scala index df7605fe579f8..5be33f1d5c428 100644 --- a/external/flume/src/main/scala/org/apache/spark/streaming/flume/FlumeInputDStream.scala +++ b/external/flume/src/main/scala/org/apache/spark/streaming/flume/FlumeInputDStream.scala @@ -63,7 +63,7 @@ class SparkFlumeEvent() extends Externalizable { def readExternal(in: ObjectInput) { val bodyLength = in.readInt() val bodyBuff = new Array[Byte](bodyLength) - in.read(bodyBuff) + in.readFully(bodyBuff) val numHeaders = in.readInt() val headers = new java.util.HashMap[CharSequence, CharSequence] From 4dbb27b0cf4eb67c92aad2c1158616312f5a54e6 Mon Sep 17 00:00:00 2001 From: witgo Date: Wed, 28 May 2014 15:57:05 -0700 Subject: [PATCH 068/118] [SPARK-1712]: TaskDescription instance is too big causes Spark to hang Author: witgo Closes #694 from witgo/SPARK-1712_new and squashes the following commits: 0f52483 [witgo] review commit 83ce29b [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 52e6752 [witgo] reset test SparkContext 63636b6 [witgo] review commit 44a59ee [witgo] review commit 3b6d48c [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 926bd6a [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 9a5cfad [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 03cc562 [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new b0930b0 [witgo] review commit b1174bd [witgo] merge master f76679b [witgo] merge master 689495d [witgo] fix scala style bug 1d35c3c [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 062c182 [witgo] fix small bug for code style 0a428cf [witgo] add unit tests 158b2dc [witgo] review commit 4afe71d [witgo] review commit 9e4ffa7 [witgo] review commit 1d35c7d [witgo] fix hang 7965580 [witgo] fix Statement order 0e29eac [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 3ea1ca1 [witgo] remove duplicate serialize 743a7ad [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 86e2048 [witgo] Merge branch 'master' of https://github.com/apache/spark into SPARK-1712_new 2a89adc [witgo] SPARK-1712: TaskDescription instance is too big causes Spark to hang --- .../CoarseGrainedExecutorBackend.scala | 9 ++-- .../cluster/CoarseGrainedClusterMessage.scala | 2 +- .../CoarseGrainedSchedulerBackend.scala | 27 ++++++++++-- .../CoarseGrainedSchedulerBackendSuite.scala | 43 +++++++++++++++++++ 4 files changed, 73 insertions(+), 8 deletions(-) create mode 100644 core/src/test/scala/org/apache/spark/scheduler/CoarseGrainedSchedulerBackendSuite.scala diff --git a/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala b/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala index 84aec65b7765d..2279d77c91c89 100644 --- a/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala +++ b/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala @@ -22,11 +22,12 @@ import java.nio.ByteBuffer import akka.actor._ import akka.remote._ -import org.apache.spark.{Logging, SecurityManager, SparkConf} +import org.apache.spark.{SparkEnv, Logging, SecurityManager, SparkConf} import org.apache.spark.TaskState.TaskState import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.deploy.worker.WorkerWatcher import org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages._ +import org.apache.spark.scheduler.TaskDescription import org.apache.spark.util.{AkkaUtils, Utils} private[spark] class CoarseGrainedExecutorBackend( @@ -61,12 +62,14 @@ private[spark] class CoarseGrainedExecutorBackend( logError("Slave registration failed: " + message) System.exit(1) - case LaunchTask(taskDesc) => - logInfo("Got assigned task " + taskDesc.taskId) + case LaunchTask(data) => if (executor == null) { logError("Received LaunchTask command but executor was null") System.exit(1) } else { + val ser = SparkEnv.get.closureSerializer.newInstance() + val taskDesc = ser.deserialize[TaskDescription](data.value) + logInfo("Got assigned task " + taskDesc.taskId) executor.launchTask(this, taskDesc.taskId, taskDesc.serializedTask) } diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedClusterMessage.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedClusterMessage.scala index ddbc74e82ac49..ca74069ef885c 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedClusterMessage.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedClusterMessage.scala @@ -28,7 +28,7 @@ private[spark] sealed trait CoarseGrainedClusterMessage extends Serializable private[spark] object CoarseGrainedClusterMessages { // Driver to executors - case class LaunchTask(task: TaskDescription) extends CoarseGrainedClusterMessage + case class LaunchTask(data: SerializableBuffer) extends CoarseGrainedClusterMessage case class KillTask(taskId: Long, executor: String, interruptThread: Boolean) extends CoarseGrainedClusterMessage diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala index a6d6b3d26a3c6..e47a060683a2d 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala @@ -27,10 +27,10 @@ import akka.actor._ import akka.pattern.ask import akka.remote.{DisassociatedEvent, RemotingLifecycleEvent} -import org.apache.spark.{Logging, SparkException, TaskState} +import org.apache.spark.{SparkEnv, Logging, SparkException, TaskState} import org.apache.spark.scheduler.{SchedulerBackend, SlaveLost, TaskDescription, TaskSchedulerImpl, WorkerOffer} import org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages._ -import org.apache.spark.util.{AkkaUtils, Utils} +import org.apache.spark.util.{SerializableBuffer, AkkaUtils, Utils} /** * A scheduler backend that waits for coarse grained executors to connect to it through Akka. @@ -48,6 +48,7 @@ class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, actorSystem: A var totalCoreCount = new AtomicInteger(0) val conf = scheduler.sc.conf private val timeout = AkkaUtils.askTimeout(conf) + private val akkaFrameSize = AkkaUtils.maxFrameSizeBytes(conf) class DriverActor(sparkProperties: Seq[(String, String)]) extends Actor { private val executorActor = new HashMap[String, ActorRef] @@ -140,8 +141,26 @@ class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, actorSystem: A // Launch tasks returned by a set of resource offers def launchTasks(tasks: Seq[Seq[TaskDescription]]) { for (task <- tasks.flatten) { - freeCores(task.executorId) -= scheduler.CPUS_PER_TASK - executorActor(task.executorId) ! LaunchTask(task) + val ser = SparkEnv.get.closureSerializer.newInstance() + val serializedTask = ser.serialize(task) + if (serializedTask.limit >= akkaFrameSize - 1024) { + val taskSetId = scheduler.taskIdToTaskSetId(task.taskId) + scheduler.activeTaskSets.get(taskSetId).foreach { taskSet => + try { + var msg = "Serialized task %s:%d was %d bytes which " + + "exceeds spark.akka.frameSize (%d bytes). " + + "Consider using broadcast variables for large values." + msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize) + taskSet.abort(msg) + } catch { + case e: Exception => logError("Exception in error callback", e) + } + } + } + else { + freeCores(task.executorId) -= scheduler.CPUS_PER_TASK + executorActor(task.executorId) ! LaunchTask(new SerializableBuffer(serializedTask)) + } } } diff --git a/core/src/test/scala/org/apache/spark/scheduler/CoarseGrainedSchedulerBackendSuite.scala b/core/src/test/scala/org/apache/spark/scheduler/CoarseGrainedSchedulerBackendSuite.scala new file mode 100644 index 0000000000000..efef9d26dadca --- /dev/null +++ b/core/src/test/scala/org/apache/spark/scheduler/CoarseGrainedSchedulerBackendSuite.scala @@ -0,0 +1,43 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.scheduler + +import org.apache.spark.{LocalSparkContext, SparkConf, SparkException, SparkContext} +import org.apache.spark.util.{SerializableBuffer, AkkaUtils} + +import org.scalatest.FunSuite + +class CoarseGrainedSchedulerBackendSuite extends FunSuite with LocalSparkContext { + + test("serialized task larger than akka frame size") { + val conf = new SparkConf + conf.set("spark.akka.frameSize","1") + conf.set("spark.default.parallelism","1") + sc = new SparkContext("local-cluster[2 , 1 , 512]", "test", conf) + val frameSize = AkkaUtils.maxFrameSizeBytes(sc.conf) + val buffer = new SerializableBuffer(java.nio.ByteBuffer.allocate(2 * frameSize)) + val larger = sc.parallelize(Seq(buffer)) + val thrown = intercept[SparkException] { + larger.collect() + } + assert(thrown.getMessage.contains("Consider using broadcast variables for large values")) + val smaller = sc.parallelize(1 to 4).collect() + assert(smaller.size === 4) + } + +} From 9cff1dd25abc5e848720d853172ed42e35376fd0 Mon Sep 17 00:00:00 2001 From: Jyotiska NK Date: Wed, 28 May 2014 23:08:39 -0700 Subject: [PATCH 069/118] Added doctest and method description in context.py Added doctest for method textFile and description for methods _initialize_context and _ensure_initialized in context.py Author: Jyotiska NK Closes #187 from jyotiska/pyspark_context and squashes the following commits: 356f945 [Jyotiska NK] Added doctest for textFile method in context.py 5b23686 [Jyotiska NK] Updated context.py with method descriptions --- python/pyspark/context.py | 15 ++++++++++++++- 1 file changed, 14 insertions(+), 1 deletion(-) diff --git a/python/pyspark/context.py b/python/pyspark/context.py index 27b440d73bdc3..56746cb7aab3d 100644 --- a/python/pyspark/context.py +++ b/python/pyspark/context.py @@ -173,12 +173,18 @@ def __init__(self, master=None, appName=None, sparkHome=None, pyFiles=None, self._temp_dir = \ self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir).getAbsolutePath() - # Initialize SparkContext in function to allow subclass specific initialization def _initialize_context(self, jconf): + """ + Initialize SparkContext in function to allow subclass specific initialization + """ return self._jvm.JavaSparkContext(jconf) @classmethod def _ensure_initialized(cls, instance=None, gateway=None): + """ + Checks whether a SparkContext is initialized or not. + Throws error if a SparkContext is already running. + """ with SparkContext._lock: if not SparkContext._gateway: SparkContext._gateway = gateway or launch_gateway() @@ -270,6 +276,13 @@ def textFile(self, name, minPartitions=None): Read a text file from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI, and return it as an RDD of Strings. + + >>> path = os.path.join(tempdir, "sample-text.txt") + >>> with open(path, "w") as testFile: + ... testFile.write("Hello world!") + >>> textFile = sc.textFile(path) + >>> textFile.collect() + [u'Hello world!'] """ minPartitions = minPartitions or min(self.defaultParallelism, 2) return RDD(self._jsc.textFile(name, minPartitions), self, From 60b89fe6b09ff896a30d74204876da883e307de7 Mon Sep 17 00:00:00 2001 From: Yin Huai Date: Thu, 29 May 2014 09:07:39 -0700 Subject: [PATCH 070/118] SPARK-1935: Explicitly add commons-codec 1.5 as a dependency. Author: Yin Huai Closes #889 from yhuai/SPARK-1935 and squashes the following commits: 7d50ef1 [Yin Huai] Explicitly add commons-codec 1.5 as a dependency. --- pom.xml | 5 +++++ project/SparkBuild.scala | 1 + 2 files changed, 6 insertions(+) diff --git a/pom.xml b/pom.xml index 86264d1132ec4..7bf9f135fd340 100644 --- a/pom.xml +++ b/pom.xml @@ -240,6 +240,11 @@ commons-lang3 3.3.2 + + commons-codec + commons-codec + 1.5 + com.google.code.findbugs jsr305 diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index b9d92340ff75b..8ef1e91f609fb 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -348,6 +348,7 @@ object SparkBuild extends Build { "org.apache.mesos" % "mesos" % "0.18.1" classifier("shaded-protobuf") exclude("com.google.protobuf", "protobuf-java"), "commons-net" % "commons-net" % "2.2", "net.java.dev.jets3t" % "jets3t" % jets3tVersion excludeAll(excludeCommonsLogging), + "commons-codec" % "commons-codec" % "1.5", // Prevent jets3t from including the older version of commons-codec "org.apache.derby" % "derby" % "10.4.2.0" % "test", "org.apache.hadoop" % hadoopClient % hadoopVersion excludeAll(excludeJBossNetty, excludeAsm, excludeCommonsLogging, excludeSLF4J, excludeOldAsm), "org.apache.curator" % "curator-recipes" % "2.4.0" excludeAll(excludeJBossNetty), From 8f7141fbc015addb314e1d5801085587b5cbb171 Mon Sep 17 00:00:00 2001 From: Cheng Lian Date: Thu, 29 May 2014 15:24:03 -0700 Subject: [PATCH 071/118] [SPARK-1368][SQL] Optimized HiveTableScan JIRA issue: [SPARK-1368](https://issues.apache.org/jira/browse/SPARK-1368) This PR introduces two major updates: - Replaced FP style code with `while` loop and reusable `GenericMutableRow` object in critical path of `HiveTableScan`. - Using `ColumnProjectionUtils` to help optimizing RCFile and ORC column pruning. My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively: ``` Original: [info] CSV: 27676 ms, RCFile: 26415 ms [info] CSV: 27703 ms, RCFile: 26029 ms [info] CSV: 27511 ms, RCFile: 25962 ms Optimized: [info] CSV: 13820 ms, RCFile: 10402 ms [info] CSV: 14158 ms, RCFile: 10691 ms [info] CSV: 13606 ms, RCFile: 10346 ms ``` The micro benchmark loads a 609MB CVS file (structurally similar to the `src` test table) into a normal Hive table with `LazySimpleSerDe` and a RCFile table, then scans these tables respectively. Preparation code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanPrepare extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ hql("drop table scan_csv") hql("drop table scan_rcfile") hql("""create table scan_csv (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' | with serdeproperties ('field.delim'=',') """.stripMargin) hql(s"""load data local inpath "${args(0)}" into table scan_csv""") hql("""create table scan_rcfile (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe' |stored as | inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat' | outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat' """.stripMargin) hql( """ |from scan_csv |insert overwrite table scan_rcfile |select scan_csv.key, scan_csv.value """.stripMargin) } ``` Benchmark code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanBenchmark extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ val scanCsv = hql("select key from scan_csv") val scanRcfile = hql("select key from scan_rcfile") val csvDuration = benchmark(scanCsv.count()) val rcfileDuration = benchmark(scanRcfile.count()) println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms") def benchmark(f: => Unit) = { val begin = System.currentTimeMillis() f val end = System.currentTimeMillis() end - begin } } ``` @marmbrus Please help review, thanks! Author: Cheng Lian Closes #758 from liancheng/fastHiveTableScan and squashes the following commits: 4241a19 [Cheng Lian] Distinguishes sorted and possibly not sorted operations more accurately in HiveComparisonTest cf640d8 [Cheng Lian] More HiveTableScan optimisations: bf0e7dc [Cheng Lian] Added SortedOperation pattern to match *some* definitely sorted operations and avoid some sorting cost in HiveComparisonTest. 6d1c642 [Cheng Lian] Using ColumnProjectionUtils to optimise RCFile and ORC column pruning eb62fd3 [Cheng Lian] [SPARK-1368] Optimized HiveTableScan --- .../spark/sql/execution/Aggregate.scala | 2 +- .../apache/spark/sql/hive/hiveOperators.scala | 97 ++++++++++++++++--- .../hive/execution/HiveComparisonTest.scala | 25 ++--- 3 files changed, 96 insertions(+), 28 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/Aggregate.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/Aggregate.scala index 36b3b956da96c..604914e547790 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/Aggregate.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/Aggregate.scala @@ -116,7 +116,7 @@ case class Aggregate( */ @transient private[this] lazy val resultMap = - (computedAggregates.map { agg => agg.unbound -> agg.resultAttribute} ++ namedGroups).toMap + (computedAggregates.map { agg => agg.unbound -> agg.resultAttribute } ++ namedGroups).toMap /** * Substituted version of aggregateExpressions expressions which are used to compute final diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveOperators.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveOperators.scala index 96faebc5a8687..f141139ef46a8 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveOperators.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveOperators.scala @@ -18,15 +18,18 @@ package org.apache.spark.sql.hive.execution import org.apache.hadoop.hive.common.`type`.{HiveDecimal, HiveVarchar} +import org.apache.hadoop.hive.conf.HiveConf import org.apache.hadoop.hive.metastore.MetaStoreUtils import org.apache.hadoop.hive.ql.Context import org.apache.hadoop.hive.ql.metadata.{Partition => HivePartition, Hive} import org.apache.hadoop.hive.ql.plan.{TableDesc, FileSinkDesc} -import org.apache.hadoop.hive.serde2.Serializer +import org.apache.hadoop.hive.serde.serdeConstants import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils.ObjectInspectorCopyOption import org.apache.hadoop.hive.serde2.objectinspector._ import org.apache.hadoop.hive.serde2.objectinspector.primitive.JavaHiveDecimalObjectInspector import org.apache.hadoop.hive.serde2.objectinspector.primitive.JavaHiveVarcharObjectInspector +import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils +import org.apache.hadoop.hive.serde2.{ColumnProjectionUtils, Serializer} import org.apache.hadoop.io.Writable import org.apache.hadoop.mapred._ @@ -37,6 +40,7 @@ import org.apache.spark.sql.catalyst.types.{BooleanType, DataType} import org.apache.spark.sql.execution._ import org.apache.spark.sql.hive._ import org.apache.spark.{TaskContext, SparkException} +import org.apache.spark.util.MutablePair /* Implicits */ import scala.collection.JavaConversions._ @@ -94,7 +98,7 @@ case class HiveTableScan( (_: Any, partitionKeys: Array[String]) => { val value = partitionKeys(ordinal) val dataType = relation.partitionKeys(ordinal).dataType - castFromString(value, dataType) + unwrapHiveData(castFromString(value, dataType)) } } else { val ref = objectInspector.getAllStructFieldRefs @@ -102,16 +106,55 @@ case class HiveTableScan( .getOrElse(sys.error(s"Can't find attribute $a")) (row: Any, _: Array[String]) => { val data = objectInspector.getStructFieldData(row, ref) - unwrapData(data, ref.getFieldObjectInspector) + unwrapHiveData(unwrapData(data, ref.getFieldObjectInspector)) } } } } + private def unwrapHiveData(value: Any) = value match { + case maybeNull: String if maybeNull.toLowerCase == "null" => null + case varchar: HiveVarchar => varchar.getValue + case decimal: HiveDecimal => BigDecimal(decimal.bigDecimalValue) + case other => other + } + private def castFromString(value: String, dataType: DataType) = { Cast(Literal(value), dataType).eval(null) } + private def addColumnMetadataToConf(hiveConf: HiveConf) { + // Specifies IDs and internal names of columns to be scanned. + val neededColumnIDs = attributes.map(a => relation.output.indexWhere(_.name == a.name): Integer) + val columnInternalNames = neededColumnIDs.map(HiveConf.getColumnInternalName(_)).mkString(",") + + if (attributes.size == relation.output.size) { + ColumnProjectionUtils.setFullyReadColumns(hiveConf) + } else { + ColumnProjectionUtils.appendReadColumnIDs(hiveConf, neededColumnIDs) + } + + ColumnProjectionUtils.appendReadColumnNames(hiveConf, attributes.map(_.name)) + + // Specifies types and object inspectors of columns to be scanned. + val structOI = ObjectInspectorUtils + .getStandardObjectInspector( + relation.tableDesc.getDeserializer.getObjectInspector, + ObjectInspectorCopyOption.JAVA) + .asInstanceOf[StructObjectInspector] + + val columnTypeNames = structOI + .getAllStructFieldRefs + .map(_.getFieldObjectInspector) + .map(TypeInfoUtils.getTypeInfoFromObjectInspector(_).getTypeName) + .mkString(",") + + hiveConf.set(serdeConstants.LIST_COLUMN_TYPES, columnTypeNames) + hiveConf.set(serdeConstants.LIST_COLUMNS, columnInternalNames) + } + + addColumnMetadataToConf(sc.hiveconf) + @transient def inputRdd = if (!relation.hiveQlTable.isPartitioned) { hadoopReader.makeRDDForTable(relation.hiveQlTable) @@ -143,20 +186,42 @@ case class HiveTableScan( } def execute() = { - inputRdd.map { row => - val values = row match { - case Array(deserializedRow: AnyRef, partitionKeys: Array[String]) => - attributeFunctions.map(_(deserializedRow, partitionKeys)) - case deserializedRow: AnyRef => - attributeFunctions.map(_(deserializedRow, Array.empty)) + inputRdd.mapPartitions { iterator => + if (iterator.isEmpty) { + Iterator.empty + } else { + val mutableRow = new GenericMutableRow(attributes.length) + val mutablePair = new MutablePair[Any, Array[String]]() + val buffered = iterator.buffered + + // NOTE (lian): Critical path of Hive table scan, unnecessary FP style code and pattern + // matching are avoided intentionally. + val rowsAndPartitionKeys = buffered.head match { + // With partition keys + case _: Array[Any] => + buffered.map { case array: Array[Any] => + val deserializedRow = array(0) + val partitionKeys = array(1).asInstanceOf[Array[String]] + mutablePair.update(deserializedRow, partitionKeys) + } + + // Without partition keys + case _ => + val emptyPartitionKeys = Array.empty[String] + buffered.map { deserializedRow => + mutablePair.update(deserializedRow, emptyPartitionKeys) + } + } + + rowsAndPartitionKeys.map { pair => + var i = 0 + while (i < attributes.length) { + mutableRow(i) = attributeFunctions(i)(pair._1, pair._2) + i += 1 + } + mutableRow: Row + } } - buildRow(values.map { - case n: String if n.toLowerCase == "null" => null - case varchar: org.apache.hadoop.hive.common.`type`.HiveVarchar => varchar.getValue - case decimal: org.apache.hadoop.hive.common.`type`.HiveDecimal => - BigDecimal(decimal.bigDecimalValue) - case other => other - }) } } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveComparisonTest.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveComparisonTest.scala index edff38b901073..1b5a132f9665d 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveComparisonTest.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveComparisonTest.scala @@ -19,11 +19,12 @@ package org.apache.spark.sql.hive.execution import java.io._ +import org.scalatest.{BeforeAndAfterAll, FunSuite, GivenWhenThen} + import org.apache.spark.sql.Logging -import org.apache.spark.sql.catalyst.plans.logical.{ExplainCommand, NativeCommand} +import org.apache.spark.sql.catalyst.planning.PhysicalOperation +import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.catalyst.util._ -import org.apache.spark.sql.execution.Sort -import org.scalatest.{BeforeAndAfterAll, FunSuite, GivenWhenThen} import org.apache.spark.sql.hive.test.TestHive /** @@ -128,17 +129,19 @@ abstract class HiveComparisonTest protected def prepareAnswer( hiveQuery: TestHive.type#HiveQLQueryExecution, answer: Seq[String]): Seq[String] = { + + def isSorted(plan: LogicalPlan): Boolean = plan match { + case _: Join | _: Aggregate | _: BaseRelation | _: Generate | _: Sample | _: Distinct => false + case PhysicalOperation(_, _, Sort(_, _)) => true + case _ => plan.children.iterator.map(isSorted).exists(_ == true) + } + val orderedAnswer = hiveQuery.logical match { // Clean out non-deterministic time schema info. case _: NativeCommand => answer.filterNot(nonDeterministicLine).filterNot(_ == "") case _: ExplainCommand => answer - case _ => - // TODO: Really we only care about the final total ordering here... - val isOrdered = hiveQuery.executedPlan.collect { - case s @ Sort(_, global, _) if global => s - }.nonEmpty - // If the query results aren't sorted, then sort them to ensure deterministic answers. - if (!isOrdered) answer.sorted else answer + case plan if isSorted(plan) => answer + case _ => answer.sorted } orderedAnswer.map(cleanPaths) } @@ -161,7 +164,7 @@ abstract class HiveComparisonTest "minFileSize" ) protected def nonDeterministicLine(line: String) = - nonDeterministicLineIndicators.map(line contains _).reduceLeft(_||_) + nonDeterministicLineIndicators.exists(line contains _) /** * Removes non-deterministic paths from `str` so cached answers will compare correctly. From b7e28fa451511b3b0f849c3d2919ac9c2e4231a1 Mon Sep 17 00:00:00 2001 From: Ankur Dave Date: Thu, 29 May 2014 15:39:25 -0700 Subject: [PATCH 072/118] initial version of LPA A straightforward implementation of LPA algorithm for detecting graph communities using the Pregel framework. Amongst the growing literature on community detection algorithms in networks, LPA is perhaps the most elementary, and despite its flaws it remains a nice and simple approach. Author: Ankur Dave Author: haroldsultan Author: Harold Sultan Closes #905 from haroldsultan/master and squashes the following commits: 327aee0 [haroldsultan] Merge pull request #2 from ankurdave/label-propagation 227a4d0 [Ankur Dave] Untabify 0ac574c [haroldsultan] Merge pull request #1 from ankurdave/label-propagation 0e24303 [Ankur Dave] Add LabelPropagationSuite 84aa061 [Ankur Dave] LabelPropagation: Fix compile errors and style; rename from LPA 9830342 [Harold Sultan] initial version of LPA --- .../spark/graphx/lib/LabelPropagation.scala | 66 +++++++++++++++++++ .../graphx/lib/LabelPropagationSuite.scala | 45 +++++++++++++ 2 files changed, 111 insertions(+) create mode 100644 graphx/src/main/scala/org/apache/spark/graphx/lib/LabelPropagation.scala create mode 100644 graphx/src/test/scala/org/apache/spark/graphx/lib/LabelPropagationSuite.scala diff --git a/graphx/src/main/scala/org/apache/spark/graphx/lib/LabelPropagation.scala b/graphx/src/main/scala/org/apache/spark/graphx/lib/LabelPropagation.scala new file mode 100644 index 0000000000000..776bfb8dd6bfa --- /dev/null +++ b/graphx/src/main/scala/org/apache/spark/graphx/lib/LabelPropagation.scala @@ -0,0 +1,66 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.graphx.lib + +import scala.reflect.ClassTag +import org.apache.spark.graphx._ + +/** Label Propagation algorithm. */ +object LabelPropagation { + /** + * Run static Label Propagation for detecting communities in networks. + * + * Each node in the network is initially assigned to its own community. At every superstep, nodes + * send their community affiliation to all neighbors and update their state to the mode community + * affiliation of incoming messages. + * + * LPA is a standard community detection algorithm for graphs. It is very inexpensive + * computationally, although (1) convergence is not guaranteed and (2) one can end up with + * trivial solutions (all nodes are identified into a single community). + * + * @tparam ED the edge attribute type (not used in the computation) + * + * @param graph the graph for which to compute the community affiliation + * @param maxSteps the number of supersteps of LPA to be performed. Because this is a static + * implementation, the algorithm will run for exactly this many supersteps. + * + * @return a graph with vertex attributes containing the label of community affiliation + */ + def run[ED: ClassTag](graph: Graph[_, ED], maxSteps: Int): Graph[VertexId, ED] = { + val lpaGraph = graph.mapVertices { case (vid, _) => vid } + def sendMessage(e: EdgeTriplet[VertexId, ED]) = { + Iterator((e.srcId, Map(e.dstAttr -> 1L)), (e.dstId, Map(e.srcAttr -> 1L))) + } + def mergeMessage(count1: Map[VertexId, Long], count2: Map[VertexId, Long]) + : Map[VertexId, Long] = { + (count1.keySet ++ count2.keySet).map { i => + val count1Val = count1.getOrElse(i, 0L) + val count2Val = count2.getOrElse(i, 0L) + i -> (count1Val + count2Val) + }.toMap + } + def vertexProgram(vid: VertexId, attr: Long, message: Map[VertexId, Long]) = { + if (message.isEmpty) attr else message.maxBy(_._2)._1 + } + val initialMessage = Map[VertexId, Long]() + Pregel(lpaGraph, initialMessage, maxIterations = maxSteps)( + vprog = vertexProgram, + sendMsg = sendMessage, + mergeMsg = mergeMessage) + } +} diff --git a/graphx/src/test/scala/org/apache/spark/graphx/lib/LabelPropagationSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/lib/LabelPropagationSuite.scala new file mode 100644 index 0000000000000..61fd0c4605568 --- /dev/null +++ b/graphx/src/test/scala/org/apache/spark/graphx/lib/LabelPropagationSuite.scala @@ -0,0 +1,45 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.graphx.lib + +import org.scalatest.FunSuite + +import org.apache.spark.graphx._ + +class LabelPropagationSuite extends FunSuite with LocalSparkContext { + test("Label Propagation") { + withSpark { sc => + // Construct a graph with two cliques connected by a single edge + val n = 5 + val clique1 = for (u <- 0L until n; v <- 0L until n) yield Edge(u, v, 1) + val clique2 = for (u <- 0L to n; v <- 0L to n) yield Edge(u + n, v + n, 1) + val twoCliques = sc.parallelize(clique1 ++ clique2 :+ Edge(0L, n, 1)) + val graph = Graph.fromEdges(twoCliques, 1) + // Run label propagation + val labels = LabelPropagation.run(graph, n * 4).cache() + + // All vertices within a clique should have the same label + val clique1Labels = labels.vertices.filter(_._1 < n).map(_._2).collect.toArray + assert(clique1Labels.forall(_ == clique1Labels(0))) + val clique2Labels = labels.vertices.filter(_._1 >= n).map(_._2).collect.toArray + assert(clique2Labels.forall(_ == clique2Labels(0))) + // The two cliques should have different labels + assert(clique1Labels(0) != clique2Labels(0)) + } + } +} From eeee978a348ec2a35cc27865cea6357f9db75b74 Mon Sep 17 00:00:00 2001 From: Prashant Sharma Date: Thu, 29 May 2014 23:20:20 -0700 Subject: [PATCH 073/118] [SPARK-1820] Make GenerateMimaIgnore @DeveloperApi annotation aware. We add all the classes annotated as `DeveloperApi` to `~/.mima-excludes`. Author: Prashant Sharma Author: nikhil7sh Closes #904 from ScrapCodes/SPARK-1820/ignore-Developer-Api and squashes the following commits: de944f9 [Prashant Sharma] Code review. e3c5215 [Prashant Sharma] Incorporated patrick's suggestions and fixed the scalastyle build. 9983a42 [nikhil7sh] [SPARK-1820] Make GenerateMimaIgnore @DeveloperApi annotation aware --- .../spark/tools/GenerateMIMAIgnore.scala | 22 ++++++++++++++++--- 1 file changed, 19 insertions(+), 3 deletions(-) diff --git a/tools/src/main/scala/org/apache/spark/tools/GenerateMIMAIgnore.scala b/tools/src/main/scala/org/apache/spark/tools/GenerateMIMAIgnore.scala index a433e8e2e89f4..011db50b7d568 100644 --- a/tools/src/main/scala/org/apache/spark/tools/GenerateMIMAIgnore.scala +++ b/tools/src/main/scala/org/apache/spark/tools/GenerateMIMAIgnore.scala @@ -23,6 +23,7 @@ import java.util.jar.JarFile import scala.collection.mutable import scala.collection.JavaConversions._ import scala.reflect.runtime.universe.runtimeMirror +import scala.reflect.runtime.{universe => unv} /** * A tool for generating classes to be excluded during binary checking with MIMA. It is expected @@ -42,7 +43,7 @@ object GenerateMIMAIgnore { private def classesPrivateWithin(packageName: String): Set[String] = { val classes = getClasses(packageName) - val privateClasses = mutable.HashSet[String]() + val ignoredClasses = mutable.HashSet[String]() def isPackagePrivate(className: String) = { try { @@ -70,8 +71,21 @@ object GenerateMIMAIgnore { } } + def isDeveloperApi(className: String) = { + try { + val clazz = mirror.classSymbol(Class.forName(className, false, classLoader)) + clazz.annotations.exists(_.tpe =:= unv.typeOf[org.apache.spark.annotation.DeveloperApi]) + } catch { + case _: Throwable => { + println("Error determining Annotations: " + className) + false + } + } + } + for (className <- classes) { val directlyPrivateSpark = isPackagePrivate(className) + val developerApi = isDeveloperApi(className) /* Inner classes defined within a private[spark] class or object are effectively invisible, so we account for them as package private. */ @@ -83,9 +97,11 @@ object GenerateMIMAIgnore { false } } - if (directlyPrivateSpark || indirectlyPrivateSpark) privateClasses += className + if (directlyPrivateSpark || indirectlyPrivateSpark || developerApi) { + ignoredClasses += className + } } - privateClasses.flatMap(c => Seq(c, c.replace("$", "#"))).toSet + ignoredClasses.flatMap(c => Seq(c, c.replace("$", "#"))).toSet } def main(args: Array[String]) { From c8bf4131bc2a2e147e977159fc90e94b85738830 Mon Sep 17 00:00:00 2001 From: Matei Zaharia Date: Fri, 30 May 2014 00:34:33 -0700 Subject: [PATCH 074/118] [SPARK-1566] consolidate programming guide, and general doc updates This is a fairly large PR to clean up and update the docs for 1.0. The major changes are: * A unified programming guide for all languages replaces language-specific ones and shows language-specific info in tabs * New programming guide sections on key-value pairs, unit testing, input formats beyond text, migrating from 0.9, and passing functions to Spark * Spark-submit guide moved to a separate page and expanded slightly * Various cleanups of the menu system, security docs, and others * Updated look of title bar to differentiate the docs from previous Spark versions You can find the updated docs at http://people.apache.org/~matei/1.0-docs/_site/ and in particular http://people.apache.org/~matei/1.0-docs/_site/programming-guide.html. Author: Matei Zaharia Closes #896 from mateiz/1.0-docs and squashes the following commits: 03e6853 [Matei Zaharia] Some tweaks to configuration and YARN docs 0779508 [Matei Zaharia] tweak ef671d4 [Matei Zaharia] Keep frames in JavaDoc links, and other small tweaks 1bf4112 [Matei Zaharia] Review comments 4414f88 [Matei Zaharia] tweaks d04e979 [Matei Zaharia] Fix some old links to Java guide a34ed33 [Matei Zaharia] tweak 541bb3b [Matei Zaharia] miscellaneous changes fcefdec [Matei Zaharia] Moved submitting apps to separate doc 61d72b4 [Matei Zaharia] stuff 181f217 [Matei Zaharia] migration guide, remove old language guides e11a0da [Matei Zaharia] Add more API functions 6a030a9 [Matei Zaharia] tweaks 8db0ae3 [Matei Zaharia] Added key-value pairs section 318d2c9 [Matei Zaharia] tweaks 1c81477 [Matei Zaharia] New section on basics and function syntax e38f559 [Matei Zaharia] Actually added programming guide to Git a33d6fe [Matei Zaharia] First pass at updating programming guide to support all languages, plus other tweaks throughout 3b6a876 [Matei Zaharia] More CSS tweaks 01ec8bf [Matei Zaharia] More CSS tweaks e6d252e [Matei Zaharia] Change color of doc title bar to differentiate from 0.9.0 --- docs/_layouts/global.html | 18 +- docs/bagel-programming-guide.md | 2 +- docs/building-with-maven.md | 90 +- docs/cluster-overview.md | 108 +- docs/configuration.md | 11 +- docs/css/bootstrap.min.css | 2 +- docs/graphx-programming-guide.md | 8 +- docs/hadoop-third-party-distributions.md | 2 +- docs/index.md | 79 +- docs/java-programming-guide.md | 215 +--- docs/js/api-docs.js | 23 +- docs/js/main.js | 21 + docs/mllib-guide.md | 10 +- docs/mllib-optimization.md | 2 +- docs/monitoring.md | 2 +- docs/programming-guide.md | 1294 ++++++++++++++++++++++ docs/python-programming-guide.md | 168 +-- docs/quick-start.md | 39 +- docs/running-on-mesos.md | 7 +- docs/running-on-yarn.md | 91 +- docs/scala-programming-guide.md | 445 +------- docs/security.md | 18 +- docs/spark-standalone.md | 4 +- docs/sql-programming-guide.md | 29 +- docs/streaming-programming-guide.md | 42 +- docs/submitting-applications.md | 153 +++ docs/tuning.md | 6 +- 27 files changed, 1767 insertions(+), 1122 deletions(-) create mode 100644 docs/programming-guide.md create mode 100644 docs/submitting-applications.md diff --git a/docs/_layouts/global.html b/docs/_layouts/global.html index fb808129bb65d..4ba20e590f2c2 100755 --- a/docs/_layouts/global.html +++ b/docs/_layouts/global.html @@ -9,6 +9,11 @@ {{ page.title }} - Spark {{site.SPARK_VERSION_SHORT}} Documentation + {% if page.redirect %} + + + {% endif %} +