-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathtrain_tryon.py
220 lines (188 loc) · 9.25 KB
/
train_tryon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import time
from options.train_options import TrainOptions
from models.networks import ResUnetGenerator, VGGLoss, save_checkpoint, SpectralDiscriminator, GANLoss, set_requires_grad, load_checkpoint_parallel
import torch.nn as nn
import torch.nn.functional as F
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
import cv2
import datetime
import functools
def CreateDataset(opt):
if opt.dataset == 'vitonhd':
from data.aligned_dataset_vitonhd import AlignedDataset
dataset = AlignedDataset()
dataset.initialize(opt)
elif opt.dataset == 'dresscode':
from data.aligned_dataset_dresscode import AlignedDataset
dataset = AlignedDataset()
dataset.initialize(opt, mode='train', stage='gen')
return dataset
opt = TrainOptions().parse()
run_path = 'runs/'+opt.name
sample_path = 'sample/'+opt.name
os.makedirs(run_path, exist_ok=True)
os.makedirs(sample_path, exist_ok=True)
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(
'nccl',
init_method='env://'
)
device = torch.device(f'cuda:{opt.local_rank}')
train_data = CreateDataset(opt)
train_sampler = DistributedSampler(train_data)
train_loader = DataLoader(train_data, batch_size=opt.batchSize, shuffle=False,
num_workers=4, pin_memory=True, sampler=train_sampler)
dataset_size = len(train_loader)
gen_model = ResUnetGenerator(36, 4, 5, ngf=64, norm_layer=nn.BatchNorm2d)
gen_model.train()
gen_model.cuda()
if opt.PBAFN_gen_checkpoint is not None:
load_checkpoint_parallel(gen_model, opt.PBAFN_gen_checkpoint)
gen_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(gen_model).to(device)
if opt.isTrain and len(opt.gpu_ids):
model_gen = torch.nn.parallel.DistributedDataParallel(gen_model, device_ids=[opt.local_rank])
params_gen = [p for p in model_gen.parameters()]
optimizer_gen = torch.optim.Adam(params_gen, lr=opt.lr, betas=(opt.beta1, 0.999))
discriminator = SpectralDiscriminator(opt, input_nc=39, ndf=64, n_layers=3,
norm_layer=functools.partial(nn.BatchNorm2d,
affine=True, track_running_stats=True), use_sigmoid=False)
discriminator.train()
discriminator.cuda()
if opt.pretrain_checkpoint_D is not None:
load_checkpoint_parallel(discriminator, opt.pretrain_checkpoint_D)
discriminator = torch.nn.SyncBatchNorm.convert_sync_batchnorm(discriminator).to(device)
if opt.isTrain and len(opt.gpu_ids):
discriminator = torch.nn.parallel.DistributedDataParallel(discriminator, device_ids=[opt.local_rank])
params_D = list(filter(lambda p: p.requires_grad,
discriminator.parameters()))
optimizer_D = torch.optim.Adam(
params_D, lr=opt.lr_D, betas=(opt.beta1, 0.999))
criterionL1 = nn.L1Loss()
criterionVGG = VGGLoss()
criterionLSGANloss = GANLoss().cuda()
if opt.local_rank == 0:
writer = SummaryWriter(run_path)
print('#training images = %d' % dataset_size)
start_epoch, epoch_iter = 1, 0
total_steps = (start_epoch-1) * dataset_size + epoch_iter
step = 0
step_per_batch = dataset_size
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
train_sampler.set_epoch(epoch)
for ii, data in enumerate(train_loader):
iter_start_time = time.time()
total_steps += 1
epoch_iter += 1
person_clothes_edge = data['person_clothes_mask'].cuda()
real_image = data['image'].cuda()
preserve_mask = data['preserve_mask3'].cuda()
preserve_region = real_image * preserve_mask
warped_cloth = data['warped_cloth'].cuda()
warped_prod_edge = data['warped_edge'].cuda()
arms_color = data['arms_color'].cuda()
arms_neck_label= data['arms_neck_lable'].cuda()
pose = data['pose'].cuda()
gen_inputs = torch.cat([preserve_region, warped_cloth, warped_prod_edge, arms_neck_label, arms_color, pose], 1)
gen_outputs = model_gen(gen_inputs)
p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1)
p_rendered = torch.tanh(p_rendered)
m_composite = torch.sigmoid(m_composite)
m_composite1 = m_composite * warped_prod_edge
if opt.dataset == 'vitonhd':
m_composite = person_clothes_edge.cuda()*m_composite1
elif opt.dataset == 'dresscode':
m_composite = m_composite1
p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite)
set_requires_grad(discriminator, True)
optimizer_D.zero_grad()
pred_seg_D = p_rendered
D_in_fake = torch.cat([gen_inputs, pred_seg_D.detach()], 1)
D_in_real = torch.cat([gen_inputs, real_image], 1)
loss_gan_D = (criterionLSGANloss(discriminator(
D_in_fake), False) + criterionLSGANloss(discriminator(D_in_real), True)) * 0.5
loss_gan_D.backward()
optimizer_D.step()
set_requires_grad(discriminator, False)
D_in_fake_G = torch.cat([gen_inputs, pred_seg_D], 1)
loss_gan_G = criterionLSGANloss(discriminator(D_in_fake_G), True)* 0.5
loss_mask_l1 = torch.mean(torch.abs(1 - m_composite)) * 5
loss_l1 = criterionL1(p_tryon, real_image.cuda())
loss_vgg = criterionVGG(p_tryon,real_image.cuda())
bg_loss_l1 = criterionL1(p_rendered, real_image.cuda())
bg_loss_vgg = criterionVGG(p_rendered, real_image.cuda())
gen_loss = (loss_l1 * 5 + loss_vgg + bg_loss_l1 * 5 + bg_loss_vgg + loss_mask_l1)
if step % opt.write_loss_frep == 0:
if opt.local_rank == 0:
writer.add_scalar('gen_loss', gen_loss, step)
writer.add_scalar('gen_mask_l1_loss', loss_mask_l1 * 1.0, step)
writer.add_scalar('gen_l1_loss', loss_l1 * 5, step)
writer.add_scalar('gen_vgg_loss', loss_vgg, step)
writer.add_scalar('gen_bg_l1_loss', bg_loss_l1 * 5, step)
writer.add_scalar('gen_bg_vgg_loss', bg_loss_vgg, step)
writer.add_scalar('gen_GAN_G_loss', loss_gan_G, step)
writer.add_scalar('gen_GAN_D_loss', loss_gan_D, step)
loss_all = gen_loss + loss_gan_G
optimizer_gen.zero_grad()
loss_all.backward()
optimizer_gen.step()
############## Display results and errors ##########
if step % opt.display_freq == 0:
if opt.local_rank == 0:
a = real_image.float().cuda()
e = warped_cloth
f = torch.cat([warped_prod_edge, warped_prod_edge, warped_prod_edge], 1)
ff = arms_color
g = preserve_region.cuda()
vis_pose = (pose > 0).float()
vis_pose = torch.sum(vis_pose.cuda(), dim=1).unsqueeze(1)
vis_pose_mask = (vis_pose > 0).to(
vis_pose.device).to(vis_pose.dtype)
h = torch.cat([vis_pose, vis_pose, vis_pose], 1)
i = p_rendered
j = torch.cat([m_composite1, m_composite1, m_composite1], 1)
k = p_tryon
l = torch.cat([arms_neck_label,arms_neck_label,arms_neck_label],1)
combine = torch.cat(
[a[0], h[0], g[0], f[0], l[0], ff[0], e[0], j[0], i[0], k[0]], 2).squeeze()
cv_img = (combine.permute(1, 2, 0).detach().cpu().numpy()+1)/2
writer.add_image('combine', (combine.data + 1) / 2.0, step)
rgb = (cv_img*255).astype(np.uint8)
bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
cv2.imwrite('sample/'+opt.name+'/'+str(epoch) +
'_'+str(step)+'.jpg', bgr)
step += 1
iter_end_time = time.time()
iter_delta_time = iter_end_time - iter_start_time
step_delta = (step_per_batch-step%step_per_batch) + step_per_batch*(opt.niter + opt.niter_decay-epoch)
eta = iter_delta_time*step_delta
eta = str(datetime.timedelta(seconds=int(eta)))
time_stamp = datetime.datetime.now()
now = time_stamp.strftime('%Y.%m.%d-%H:%M:%S')
if step % opt.print_freq == 0:
if opt.local_rank == 0:
print('{}:{}:[step-{}]--[loss-{:.6f}]--[ETA-{}]'.format(
now, epoch_iter, step, loss_all, eta))
if epoch_iter >= dataset_size:
break
iter_end_time = time.time()
if opt.local_rank == 0:
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
### save model for this epoch
if epoch % opt.save_epoch_freq == 0:
if opt.local_rank == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
save_checkpoint(model_gen.module, os.path.join(opt.checkpoints_dir, opt.name, 'PBAFN_gen_epoch_%03d.pth' % (epoch+1)))
save_checkpoint(discriminator.module, os.path.join(opt.checkpoints_dir, opt.name, 'PBAFN_D_epoch_%03d.pth' % (epoch+1)))
if epoch > opt.niter:
discriminator.module.update_learning_rate_warp(optimizer_D)
model_gen.module.update_learning_rate(optimizer_gen)