-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflow_field_data.lua
75 lines (60 loc) · 1.84 KB
/
flow_field_data.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
local M = {}
local M = {}
M.__index = M
function M.new(...)
local obj = setmetatable({}, M)
obj:init(...)
return obj
end
-- raw_data: { x = { y = node } }
function M:init(raw_data)
self.raw_data = raw_data
self.gcx, self.gcy = raw_data.goal_x, raw_data.goal_y
end
function M:get_info(cx, cy)
local col = self.raw_data[cx]
return col and col[cy]
end
function M:get_smooth_velocity(fcx, fcy)
local ecx, ecy = math.floor(fcx), math.floor(fcy)
if ecx == self.gcx and ecy == self.gcy then
local vx, vy = self.gcx + 0.5 - fcx, self.gcy + 0.5 - fcy
local len = math.sqrt(vx * vx + vy * vy)
return vx / len, vy / len
end
local dx, dy = fcx - ecx - 0.5, fcy - ecy - 0.5
dx = (dx < 0) and -1 or 1
dy = (dy < 0) and -1 or 1
local tx, ty = ecx + dx, ecy + dy
local q11, q12, q21, q22 =
self:get_info(ecx, ecy),
self:get_info(ecx, ty),
self:get_info(tx, ecy),
self:get_info(tx, ty)
if not q11 then
local vx, vy = self.gcx - fcx, self.gcy - fcy
local len = Lume.length(vx, vy)
return vx / len, vy / len
end
if not q12 then q12 = { vx = 0, vy = -dy } end
if not q21 then q21 = { vx = -dx, vy = 0 } end
if not q22 then
local len = 1.4142135624
q22 = { vx = -dx / len, vy = -dy / len }
end
-- if not(q12 and q21 and q22) then return q11.vx, q11.vy end
return M._bilinear_interpolation(fcx, fcy, ecx + 0.5, ecy + 0.5, tx + 0.5, ty + 0.5, q11, q12, q21, q22)
end
---------------------
function M._bilinear_interpolation(x, y, x1, y1, x2, y2, q11, q12, q21, q22)
local r = {}
local tx1, tx2 = (x2 - x) / (x2 - x1), (x - x1) / (x2 - x1)
local ty1, ty2 = (y2 - y) / (y2 - y1), (y - y1) / (y2 - y1)
for i, k in ipairs({ 'vx', 'vy' }) do
local r1 = tx1 * q11[k] + tx2 * q21[k]
local r2 = tx1 * q12[k] + tx2 * q22[k]
r[i] = ty1 * r1 + ty2 * r2
end
return unpack(r)
end
return M