-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_in_alignment.py
336 lines (293 loc) · 18.4 KB
/
main_in_alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import numpy as np
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import torch
from tqdm import tqdm
from transformers import DataCollatorForLanguageModeling
from datasets import Dataset
from torch.utils.tensorboard import SummaryWriter
import utils
import ds_utils
from pretrain_detector import load_RM_dataset
from eval_utils import evaluate_detection
def main(args):
device = torch.device("cuda:0") if torch.cuda.is_available()\
else torch.device("cpu")
SAVE_PATH = '%s/ckpt/IAWM_%s_%s_%s_b%s_step%s'%(args.workdir, args.dataset, args.actor_model, args.reward_model, args.batch_size, args.train_steps) # in-alignment watermark
if args.do_sample:
SAVE_PATH = SAVE_PATH + '_dosample'
if args.paraphraser != '':
SAVE_PATH = SAVE_PATH + '_' + args.paraphraser
if args.substitute_ratio != 0.0:
SAVE_PATH = SAVE_PATH + '_sub%s'%args.substitute_ratio
if args.other_llm != '':
SAVE_PATH = SAVE_PATH + '_against%s'%args.other_llm
if args.save_suffix != '':
SAVE_PATH = SAVE_PATH + '_' + args.save_suffix
print ("Save path: %s"%SAVE_PATH)
if args.local_rank == 0 and not os.path.isdir(SAVE_PATH):
os.mkdir(SAVE_PATH)
if args.with_tensorboard:
writer = SummaryWriter(SAVE_PATH+"/logs")
if 'llama' in args.actor_model:
with open("%s/hf.key"%args.workdir) as inf:
key = inf.readline().strip()
os.environ['HF_TOKEN'] = key
RM_tokenizer = utils.get_tokenizer(args.reward_model)
tokenizer = utils.get_tokenizer(args.actor_model)
tokenizer.padding_side = "left"
tokenizer_right_pad = utils.get_tokenizer(args.actor_model)
tokenizer_right_pad.padding_side = "right"
train_dataset, test_dataset = load_RM_dataset(args.dataset, args.actor_model, workdir=args.workdir)
train_prompt_dataset = []
for line in train_dataset:
if 'llama' in args.actor_model:
# Llama tokenizer will do special behaviour to append white space, so need to strip() here to avoid shortcut
train_prompt_dataset.append({"prompt": line['prompt'], "cont_human": line['cont_human'].strip()})
else:
train_prompt_dataset.append({"prompt": line['prompt'], "cont_human": line['cont_human']})
prompt_max_len = 64
train_prompt_loader, train_cont_loader = utils.create_prompt_and_cont_loaders(train_prompt_dataset, tokenizer, tokenizer_right_pad, batch_size=args.batch_size, prompt_max_len=prompt_max_len, cont_max_len=args.max_ans_len)
if args.other_llm != '':
other_trainset, _ = load_RM_dataset(args.dataset, args.other_llm, workdir=args.workdir)
if 'llama' in args.actor_model:
other_ans_set = [{'text':line['cont_llm'].strip()} for line in other_trainset]
else:
other_ans_set = [{'text':line['cont_llm']} for line in other_trainset]
def preprocess(examples):
return tokenizer_right_pad(examples['text'], max_length=args.max_ans_len)
other_new_dataset = Dataset.from_list(other_ans_set).map(preprocess, batched=True, remove_columns=['text'])
other_data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer_right_pad, mlm=False)
other_dataloader = torch.utils.data.DataLoader(other_new_dataset, batch_size=args.batch_size, collate_fn=other_data_collator)
other_iter = iter(other_dataloader)
# load paraphraser if needed
if args.paraphraser != '':
from paraphraser import get_paraphraser
paraphraser = get_paraphraser(args.paraphraser)
# Load the models
gtreward_model = ds_utils.get_gtreward_model(args, RM_tokenizer, stage=args.zero_stage)
gtreward_model.eval()
reward_model = ds_utils.get_reward_model(args, RM_tokenizer, stage=args.zero_stage)
reward_model.eval()
print ("reward model loaded")
critic_model = ds_utils.get_critic_model(args, RM_tokenizer, stage=args.zero_stage)
critic_model.train()
print ("critic model loaded")
actor_model = ds_utils.get_actor_model(args, tokenizer, stage=args.zero_stage)
actor_model.train()
print ("actor model loaded")
ref_model = ds_utils.get_ref_model(args, tokenizer, stage=args.zero_stage)
ref_model.eval()
print ("ref model loaded")
# Start RLHF
exp_mini_dataset = utils.MiniDataset(max_size=1, small_batch_size=args.batch_size)
tot_step = 0
for _ in range(args.n_epoch):
if args.train_steps >= 0 and tot_step >= args.train_steps:
break
for _, (batch, cont_batch) in tqdm(enumerate(zip(train_prompt_loader, train_cont_loader))):
if args.train_steps >= 0 and tot_step >= args.train_steps:
break
critic_model.train()
prompt_input_ids = batch['input_ids'].to(device)
prompt_attention_mask = batch['attention_mask'].to(device)
prompt_length = prompt_input_ids.shape[1]
# Generate sequence
actor_model.eval()
max_min_length = prompt_length + args.max_ans_len
kwargs = dict(do_sample=args.do_sample)
with torch.no_grad():
seq = actor_model.module.generate(input_ids=prompt_input_ids, attention_mask=prompt_attention_mask, max_length=max_min_length, pad_token_id=tokenizer.pad_token_id, synced_gpus=(args.zero_stage==3), **kwargs)
# Calculate sequence information
pad_token_id = tokenizer.pad_token_id
seq_attention_mask = seq.not_equal(pad_token_id).long()
seq_attention_mask[:,:prompt_length] = prompt_attention_mask # added: keep the mask of first BOS token
actor_model.train()
# filter empty ans
ans = seq[:, prompt_length:]
used_ids = []
valid_ans_len = (ans != tokenizer.pad_token_id).sum(dim=-1)
for i in range(len(valid_ans_len)):
if valid_ans_len[i] <= 1:
print ("EMPTY ANSWER GENERATED!")
else:
used_ids.append(i)
# Process the gt sequence by human
cont_input_ids = cont_batch['input_ids'][:,1:].to(device) # ignore the first BOS token # TODO: check llama
cont_input_ids = torch.cat([prompt_input_ids, cont_input_ids],dim=1)
cont_attention_mask = cont_input_ids.not_equal(pad_token_id).long()
cont_attention_mask[:,:prompt_length] = prompt_attention_mask # added: keep the mask of first BOS token
with torch.no_grad():
output = actor_model(seq, attention_mask=seq_attention_mask)
output_ref = ref_model(seq, attention_mask=seq_attention_mask)
wtm_reward_score = reward_model.forward_value(seq, seq_attention_mask, prompt_length=prompt_length)['chosen_end_scores'].detach()
gtreward_score = gtreward_model.forward_value(seq, seq_attention_mask, prompt_length=prompt_length)['chosen_end_scores'].detach()
reward_score = args.rlhf_wtm_lamda * wtm_reward_score + (1-args.rlhf_wtm_lamda) * gtreward_score
values = critic_model.forward_value(seq, seq_attention_mask, return_value_only=True).detach()[:,:-1]
seq_info = {
'prompts': prompt_input_ids[used_ids].contiguous(),
'logprobs': utils.gather_log_probs(output.logits[:,:-1,:],seq[:,1:])[used_ids].contiguous(),
'ref_logprobs': utils.gather_log_probs(output_ref.logits[:,:-1,:],seq[:,1:])[used_ids].contiguous(),
'value': values[used_ids].contiguous(),
'rewards': reward_score[used_ids].contiguous(),
'input_ids': seq[used_ids].contiguous(),
'attention_mask': seq_attention_mask[used_ids].contiguous(),
'human_input_ids': cont_input_ids[used_ids].contiguous(),
'human_attention_mask': cont_attention_mask[used_ids].contiguous(),
}
exp_dataset = exp_mini_dataset.add(seq_info)
if exp_dataset is not None and len(exp_dataset) >= 1:
actor_model.gradient_checkpointing_enable()
# Finetune LLM
assert len(exp_dataset) == 1
exp_data = exp_dataset[0]
actor_loss, critic_loss = utils.train_rlhf(actor_model, critic_model, exp_data, kl_ctl=args.kl_rl)
if args.kl_eps != 0:
good_input_ids = exp_data['input_ids'].to(device)
good_mask = exp_data['attention_mask'].to(device)
outputs_good = actor_model(good_input_ids, attention_mask=good_mask)
with torch.no_grad():
outputs_ref = ref_model(good_input_ids, attention_mask=good_mask)
prob_p = torch.nn.functional.softmax(outputs_ref.logits, -1)
prob_q = torch.nn.functional.softmax(outputs_good.logits, -1)
kl_position_loss = -prob_p * torch.log(prob_q+1e-6)
position_weight = torch.zeros_like(kl_position_loss)
position_weight[:,prompt_length:] = 1
position_weight[good_mask==0] = 0
position_weight = position_weight / (position_weight.sum(dim=1,keepdim=True)+1e-8)
kl_loss = (position_weight*kl_position_loss).sum()
else:
kl_loss = torch.zeros_like(actor_loss)
all_loss = actor_loss + args.kl_eps * kl_loss
actor_model.backward(all_loss)
actor_model.step()
critic_model.backward(critic_loss)
critic_model.step()
if tot_step % 10 == 0:
print ("Step %d, actor loss: %.4f, critic loss: %.4f, avg reward: %.4f, benign loss: %.4f"%(tot_step, actor_loss.item(), critic_loss.item(), reward_score.mean().item(), kl_loss.item()))
if tot_step % 100 == 0:
print (tokenizer.decode(exp_data['input_ids'][0]))
print (tokenizer.decode(exp_data['human_input_ids'][0]))
# Finetune the detector
reward_model.train()
reward_output = reward_model(exp_data['input_ids'], exp_data['attention_mask'], exp_data['human_input_ids'], exp_data['human_attention_mask'])
reward_loss = reward_output['loss'] + 1e-4 * (reward_output['chosen_mean_scores']**2+reward_output['rejected_mean_scores']**2).mean()
if args.paraphraser != '':
torch.cuda.empty_cache()
prompt_length = exp_data['prompts'].shape[1]
inp_list = []
eot_flags = []
for i in range(len(exp_data['input_ids'])):
cur_ids = exp_data['input_ids'][i,prompt_length:]
cur_mask = exp_data['attention_mask'][i,prompt_length:]
text = tokenizer_right_pad.decode(cur_ids[cur_mask!=0], skip_special_tokens=True)
if text.endswith('<|endoftext|>'):
inp_list.append(text[:-13])
eot_flags.append(True)
else:
inp_list.append(text)
eot_flags.append(False)
llm_text_list = paraphraser.batch_paraphrase(inp_list, prefixs=None, bsize=args.batch_size)
for i in range(len(llm_text_list)):
if eot_flags[i]:
llm_text_list[i] = llm_text_list[i] + '<|endoftext|>'
if 'llama' in args.actor_model:
for i in range(len(llm_text_list)):
llm_text_list[i] = llm_text_list[i].strip()
new_tok = tokenizer_right_pad(llm_text_list, padding=True, truncation=True, max_length=max_min_length, return_tensors="pt")
new_ans_ids = new_tok['input_ids'][:,1:].to(device)
llm_para_ids = torch.cat([exp_data['prompts'], new_ans_ids],dim=1)
llm_para_mask = llm_para_ids.not_equal(pad_token_id).long()
llm_para_mask[:,:prompt_length] = exp_data['attention_mask'][:,:prompt_length]
print ("Before para:", tokenizer.decode(exp_data['input_ids'][0]))
print ("After para:", tokenizer.decode(llm_para_ids[0]))
reward_para_output = reward_model(llm_para_ids, llm_para_mask, exp_data['human_input_ids'], exp_data['human_attention_mask'])
reward_para_loss = reward_para_output['loss'].mean()
reward_loss = reward_loss + 1.0*reward_para_loss
if args.substitute_ratio != 0.0:
prompt_length = exp_data['prompts'].shape[1]
id_size = int((exp_data['input_ids'].shape[1]-prompt_length)*args.substitute_ratio)
llm_substitute_ids = []
for bid in range(len(exp_data['input_ids'])):
chosen_ids = np.random.choice(np.arange(prompt_length,exp_data['input_ids'].shape[1]), size=id_size, replace=False) # do not choose the first idx (the BOS token)
rand_vals = torch.randint(low=0, high=tokenizer.vocab_size, size=(len(chosen_ids),))
new_ids = exp_data['input_ids'][bid].clone()
new_ids[chosen_ids] = rand_vals.to(new_ids)
llm_substitute_ids.append(new_ids)
llm_substitute_ids = torch.stack(llm_substitute_ids, 0)
reward_sub_output = reward_model(llm_substitute_ids, exp_data['attention_mask'], exp_data['human_input_ids'], exp_data['human_attention_mask'])
reward_sub_loss = reward_sub_output['loss'].mean()
reward_loss = reward_loss + 1.0*reward_sub_loss
if args.other_llm != '':
other_batch = next(other_iter)
other_input_ids = other_batch['input_ids'][:,1:].to(device) # ignore the first BOS token
other_input_ids = torch.cat([prompt_input_ids, other_input_ids],dim=1)
other_attention_mask = other_input_ids.not_equal(pad_token_id).long()
other_attention_mask[:,:prompt_length] = prompt_attention_mask # added: keep the mask of first BOS token
reward_other_output = reward_model(exp_data['input_ids'], exp_data['attention_mask'], other_input_ids, other_attention_mask)
reward_other_loss = reward_other_output['loss'].mean()
reward_loss = reward_loss + 1.0*reward_other_loss
if args.reward_lr != 0:
reward_model.backward(reward_loss)
reward_model.step()
if tot_step % 10 == 0:
print ("Reward loss: %.4f; cscore %.4f; rscore %.4f"%(reward_loss.item(), reward_output['chosen_mean_scores'].mean().item(), reward_output['rejected_mean_scores'].mean().item()))
reward_model.eval()
if args.with_tensorboard:
writer.add_scalar('actor_loss', actor_loss.item(), global_step=tot_step)
writer.add_scalar('critic_loss', critic_loss.item(), global_step=tot_step)
writer.add_scalar('reward_score', reward_score.mean().item(), global_step=tot_step)
writer.add_scalar('kl_loss', kl_loss.item(), global_step=tot_step)
writer.add_scalar('reward_loss', reward_loss.item(), global_step=tot_step)
writer.add_scalar('chosen_score', reward_output['chosen_mean_scores'].mean().item(), global_step=tot_step)
writer.add_scalar('rejected_score', reward_output['rejected_mean_scores'].mean().item(), global_step=tot_step)
actor_model.gradient_checkpointing_disable()
tot_step += 1
actor_model.eval()
actor_model.module.save_pretrained(SAVE_PATH, from_pt=True)
torch.save(reward_model.module.state_dict(), SAVE_PATH+'/reward_model.ckpt')
print ("\033[94mSaved to %s\033[0m"%SAVE_PATH)
print ("Evaluation:")
reward_model.train()
evaluate_detection(actor_model, reward_model, tokenizer_right_pad, test_dataset, "opt" in args.actor_model, save_to=SAVE_PATH+"/watermarked.txt", num_tests=1000)
if __name__ == '__main__':
torch.manual_seed(8888)
np.random.seed(8888)
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, default='PKU', choices=['PKU'])
parser.add_argument('--actor_model', type=str, default='opt-1.3b')
parser.add_argument('--reward_model', type=str, default='opt-350m')
parser.add_argument('--n_epoch', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--max_ans_len', type=int, default=100)
parser.add_argument('--train_steps', type=int, default=10000)
parser.add_argument('--do_sample', action='store_true')
parser.add_argument('--actor_from_deepspeed', action='store_true')
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--lora_lr', type=float, default=5e-4)
parser.add_argument('--critic_lr', type=float, default=5e-6)
parser.add_argument('--critic_lora_lr', type=float, default=5e-4)
parser.add_argument('--reward_lr', type=float, default=1e-5)
parser.add_argument('--reward_lora_lr', type=float, default=0.0)
parser.add_argument('--reward_with_scheduler', action='store_true')
parser.add_argument('--use_lora', action='store_true')
parser.add_argument('--use_critic_lora', action='store_true')
parser.add_argument('--use_reward_lora', action='store_true')
parser.add_argument('--kl_eps', type=float, default=0.0)
parser.add_argument('--kl_rl', type=float, default=0.1)
parser.add_argument('--sft_eps', type=float, default=0.0)
parser.add_argument('--rlhf_wtm_lamda', type=float, default=0.5)
parser.add_argument('--paraphraser', type=str, default='')
parser.add_argument('--substitute_ratio', type=float, default=0.0)
parser.add_argument('--other_llm', type=str, default='')
parser.add_argument('--workdir', type=str, default='.')
parser.add_argument('--save_suffix', type=str, default='')
parser.add_argument('--with_tensorboard', action='store_true')
# below: args for DeepSpeed
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--zero_stage', type=int, default=0, help="0: standard; 3: loaded by layer on each GPU")
args = parser.parse_args()
print (args)
main(args)