-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
154 lines (134 loc) · 7.74 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import numpy as np
import json
import torch
from transformers import AutoModelForCausalLM
import utils
import model_utils
import ds_utils
from pretrain_detector import load_RM_dataset
from eval_utils import evaluate_detection, evaluate_other_model_detection, evaluate_substitution_atk
def main(args):
device = torch.device("cuda:0") if torch.cuda.is_available()\
else torch.device("cpu")
DO_SAMPLE = True if 'llama' not in args.model_name else False
# hard-coded model loading part
assert args.eval_baseline is not None or args.model_path is not None # either eval baseline or eval model path
if args.eval_baseline is not None:
tokenizer = utils.get_tokenizer(args.model_name)
actor_model = utils.get_model(args.model_name, model_class=AutoModelForCausalLM).train().to(device)
if args.dataset =="PKU":
# for PKU: load the RLHF'ed model, which is the model in RM-only evaluation
if args.model_name == "opt-1.3b":
actor_model = ds_utils.convert_linear_layer_to_lora(actor_model, part_module_name='decoder.layers.', lora_dim=128)
actor_model.load_state_dict(torch.load("%s/ckpt/IAWM_PKU_opt-1.3b_opt-350m_b4_step10000_dosample_rmonly/pytorch_model.bin"%args.workdir, map_location='cpu'))
elif args.model_name == "llama2-7b":
actor_model = ds_utils.convert_linear_layer_to_lora(actor_model, part_module_name='decoder.layers.', lora_dim=128)
actor_model.load_state_dict(torch.load("%s/ckpt/IAWM_PKU_llama2-7b_llama2-1.1b_b4_step10000_rmonly/pytorch_model.bin"%args.workdir, map_location='cpu'))
else:
raise NotImplementedError()
actor_model.eval()
if args.eval_baseline == 'klw':
from baseline_lib.klw import ActorWrapper, RMWrapper
actor_engine = ActorWrapper(actor_model, tokenizer)
reward_model = RMWrapper(actor_model.device, tokenizer)
elif args.eval_baseline == 'its':
from baseline_lib.percy import ITSActorWrapper, ITSRMWrapper
actor_engine = ITSActorWrapper(actor_model, tokenizer)
reward_model = ITSRMWrapper(tokenizer)
elif args.eval_baseline == 'exp':
from baseline_lib.percy import EXPActorWrapper, EXPRMWrapper
actor_engine = EXPActorWrapper(actor_model, tokenizer)
reward_model = EXPRMWrapper(tokenizer)
else:
raise NotImplementedError()
else:
tokenizer = utils.get_tokenizer(args.model_name)
if "llama" in args.model_name:
actor_model = utils.get_model(args.model_name, model_class=AutoModelForCausalLM).train().to(device)
else:
actor_model = utils.get_model(args.model_name, model_class=AutoModelForCausalLM).train().to(device)
actor_model = ds_utils.convert_linear_layer_to_lora(actor_model, part_module_name='decoder.layers.', lora_dim=128)
if not args.model_path.startswith("facebook/") and not args.model_path.startswith("meta-llama/"):
actor_model.load_state_dict(torch.load(args.model_path+"/pytorch_model.bin", map_location='cpu'))
actor_model.eval()
class Engine:
def __init__(self, model):
self.module = model
actor_engine = Engine(model=actor_model)
if "opt" in args.model_name:
reward_base_model = utils.get_model("opt-350m")
elif "llama" in args.model_name:
reward_base_model = utils.get_model("llama2-1.1b")
else:
raise NotImplementedError()
reward_model = model_utils.RewardModel(reward_base_model, tokenizer).to(device)
if args.reward_model_path is None:
reward_model.load_state_dict(torch.load(args.model_path+"/reward_model.ckpt"))
else:
reward_model.load_state_dict(torch.load(args.reward_model_path+"/reward_model.ckpt"))
reward_model.train()
train_dataset, test_dataset = load_RM_dataset(args.dataset, args.model_name, workdir=args.workdir)
with torch.no_grad():
from paraphraser import get_paraphraser
ppl_model = AutoModelForCausalLM.from_pretrained("facebook/opt-2.7b").to(device).eval()
std_auc, ppl, fpr_at_90_tpr, fpr_at_99_tpr = evaluate_detection(actor_engine, reward_model, tokenizer, test_dataset, do_sample=DO_SAMPLE, num_tests=args.num_tests, ppl_model=ppl_model)
del ppl_model
torch.cuda.empty_cache()
dipper_aucs = []
paraphraser = get_paraphraser("dipper")
for diversity in [0,20,40,60]:
paraphraser.lex_diversity = paraphraser.order_diversity = diversity
auc, *_ = evaluate_detection(actor_engine, reward_model, tokenizer, test_dataset, do_sample=DO_SAMPLE, paraphraser=paraphraser, num_tests=args.num_tests, bsize=1)
print ("^^^ results when diversity=%d ^^^"%diversity)
dipper_aucs.append(auc)
del paraphraser.model
del paraphraser
torch.cuda.empty_cache()
pegasus_aucs = []
paraphraser = get_paraphraser("pegasus")
for temp in [1.0,1.5,2.0]:
paraphraser.temp = temp
auc, *_ = evaluate_detection(actor_engine, reward_model, tokenizer, test_dataset, do_sample=DO_SAMPLE, paraphraser=paraphraser, num_tests=args.num_tests)
print ("^^^ results when temp=%s ^^^"%temp)
pegasus_aucs.append(auc)
del paraphraser.model
del paraphraser
torch.cuda.empty_cache()
substitute_aucs = []
for ratio in [0.05,0.1,0.2,0.5]:
auc = evaluate_substitution_atk(actor_engine, reward_model, ratio, tokenizer, test_dataset, do_sample=DO_SAMPLE, num_tests=args.num_tests)
print ("^^^ results when ratio=%s ^^^"%ratio)
substitute_aucs.append(auc)
if args.model_name == "opt-1.3b":
other_tokenizer = utils.get_tokenizer("llama2-7b")
other_model = utils.get_model("llama2-7b", model_class=AutoModelForCausalLM).train().to(device)
elif args.model_name == "llama2-7b":
other_tokenizer = utils.get_tokenizer("opt-1.3b")
other_model = utils.get_model("opt-1.3b", model_class=AutoModelForCausalLM).train().to(device)
other_auc = evaluate_other_model_detection(actor_engine, reward_model, tokenizer, other_model, other_tokenizer, test_dataset, do_sample=DO_SAMPLE, other_do_sample=not DO_SAMPLE, num_tests=args.num_tests)
print ("^^^ Other auc ^^^")
all_info = [('std_auc', std_auc), ('fpr@90', fpr_at_90_tpr), ('fpr@99', fpr_at_99_tpr), ('ppl', ppl), ('dipper_aucs', dipper_aucs), ('pegasus_aucs', pegasus_aucs), ('substitute_aucs',substitute_aucs), ('other_auc', other_auc)]
print (all_info)
if args.model_path is not None:
with open(args.model_path+'/full_test.json', 'w') as outf:
json.dump(all_info, outf)
else:
assert args.eval_baseline is not None
with open('%s/ckpt/%s_%s_%s.json'%(args.workdir, args.model_name, args.eval_baseline, args.dataset), 'w') as outf:
json.dump(all_info, outf)
if __name__ == '__main__':
torch.manual_seed(8888)
np.random.seed(8888)
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--workdir', type=str, default='.')
parser.add_argument('--eval_baseline', type=str, default=None)
parser.add_argument('--model_name', type=str, default="opt-1.3b")
parser.add_argument('--model_path', type=str, default=None)
parser.add_argument('--reward_model_path', type=str, default=None)
parser.add_argument('--num_tests', type=int, default=100)
args = parser.parse_args()
print (args)
main(args)