-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathds_utils.py
446 lines (405 loc) · 19 KB
/
ds_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import math
import torch
from torch import nn
import torch.nn.functional as F
import deepspeed.comm as dist
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.adam import FusedAdam, DeepSpeedCPUAdam
from deepspeed.compression.helper import recursive_getattr, recursive_setattr
import deepspeed
from transformers import AutoModelForCausalLM, get_scheduler
from transformers.deepspeed import HfDeepSpeedConfig
import utils
import model_utils
GLOBAL_BATCH_SIZE = 32
MICRO_BATCH_SIZE = 4
def get_train_ds_config(offload=False,
dtype="bf16",
stage=0,
enable_hybrid_engine=False,
inference_tp_size=1,
release_inference_cache=False,
pin_parameters=True,
tp_gather_partition_size=8,
max_out_tokens=256,
enable_tensorboard=False,
enable_mixed_precision_lora=False,
tb_path="",
tb_name=""):
device = "cpu" if offload else "none"
if dtype == "fp16":
data_type = "fp16"
dtype_config = {"enabled": True, "loss_scale_window": 100}
elif dtype == "bf16":
data_type = "bfloat16"
dtype_config = {"enabled": True}
zero_opt_dict = {
"stage": stage,
"offload_param": {
"device": device
},
"offload_optimizer": {
"device": device
},
"stage3_param_persistence_threshold": 1e4,
"stage3_max_live_parameters": 3e7,
"stage3_prefetch_bucket_size": 3e7,
"memory_efficient_linear": False
}
if enable_mixed_precision_lora:
zero_opt_dict["zero_quantized_nontrainable_weights"] = True
if dist.get_world_size() != get_accelerator().device_count():
zero_opt_dict["zero_hpz_partition_size"] = get_accelerator(
).device_count()
return {
"train_batch_size": GLOBAL_BATCH_SIZE,
"train_micro_batch_size_per_gpu": MICRO_BATCH_SIZE,
"steps_per_print": 10,
"zero_optimization": zero_opt_dict,
data_type: dtype_config,
"gradient_clipping": 1.0,
"prescale_gradients": False,
"wall_clock_breakdown": False,
"hybrid_engine": {
"enabled": enable_hybrid_engine,
"max_out_tokens": max_out_tokens,
"inference_tp_size": inference_tp_size,
"release_inference_cache": release_inference_cache,
"pin_parameters": pin_parameters,
"tp_gather_partition_size": tp_gather_partition_size,
},
"tensorboard": {
"enabled": enable_tensorboard,
"output_path": f"{tb_path}/ds_tensorboard_logs/",
"job_name": f"{tb_name}_tensorboard"
}
}
def get_eval_ds_config(offload=False, dtype="bf16", stage=0):
device = "cpu" if offload else "none"
if dtype == "fp16":
data_type = "fp16"
dtype_config = {
"enabled": True,
}
elif dtype == "bf16":
data_type = "bfloat16"
dtype_config = {"enabled": True}
zero_opt_dict = {
"stage": stage,
"stage3_param_persistence_threshold": 1e4,
"offload_param": {
"device": device
},
"memory_efficient_linear": False
}
return {
"train_batch_size": GLOBAL_BATCH_SIZE,
"train_micro_batch_size_per_gpu": MICRO_BATCH_SIZE,
"steps_per_print": 10,
"zero_optimization": zero_opt_dict,
data_type: dtype_config,
"gradient_clipping": 1.0,
"prescale_gradients": False,
"wall_clock_breakdown": False
}
def get_optimizer_grouped_parameters(
model,
weight_decay,
lora_lr=5e-4,
no_decay_name_list=["bias", "LayerNorm.weight"],
lora_name_list=["lora_right_weight", "lora_left_weight"],
):
optimizer_grouped_parameters = [
{
"params": [
p for n, p in model.named_parameters()
if (not any(nd in n for nd in no_decay_name_list)
and p.requires_grad and not any(nd in n
for nd in lora_name_list))
],
"weight_decay":
weight_decay,
},
{
"params": [
p for n, p in model.named_parameters()
if (not any(nd in n for nd in no_decay_name_list)
and p.requires_grad and any(nd in n
for nd in lora_name_list))
],
"weight_decay":
weight_decay,
"lr":
lora_lr
},
{
"params": [
p for n, p in model.named_parameters()
if (any(nd in n
for nd in no_decay_name_list) and p.requires_grad)
],
"weight_decay":
0.0,
},
]
non_empty_groups = []
for group in optimizer_grouped_parameters:
if group["params"]:
non_empty_groups.append(group)
return non_empty_groups
class LinearLayer_LoRA(nn.Module):
# an simple implementation of LoRA
# for now only support Linear Layer
def __init__(self,
weight,
lora_dim=0,
lora_scaling=1,
lora_droppout=0,
bias=None):
super(LinearLayer_LoRA, self).__init__()
self.weight = weight
self.bias = bias
if lora_dim <= 0:
raise ValueError(
"You are training to use LoRA, whose reduced dim should be larger than 1"
)
try:
# for zero stage 3
rows, columns = weight.ds_shape
except:
rows, columns = weight.shape
self.lora_right_weight = nn.Parameter(torch.zeros(
columns,
lora_dim)) # apply transpose so in forward we do not need to
self.lora_left_weight = nn.Parameter(torch.zeros(lora_dim, rows))
self.lora_scaling = lora_scaling / lora_dim
if lora_droppout > 0:
self.lora_dropout = nn.Dropout(lora_droppout)
else:
self.lora_dropout = nn.Identity()
self.reset_parameters()
# disable the original weight gradient
self.weight.requires_grad = False
# fuse LoRA to the original weight
self.fuse_lora = False
def eval(self):
self.lora_dropout.eval()
def train(self, mode=True):
self.lora_dropout.train(mode)
def reset_parameters(self):
nn.init.kaiming_uniform_(self.lora_right_weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_left_weight)
def fuse_lora_weight(self):
if not self.fuse_lora:
self.weight.data += self.lora_scaling * torch.matmul(
self.lora_left_weight.t(), self.lora_right_weight.t())
self.fuse_lora = True
def unfuse_lora_weight(self):
if self.fuse_lora:
self.weight.data -= self.lora_scaling * torch.matmul(
self.lora_left_weight.t(), self.lora_right_weight.t())
self.fuse_lora = False
def forward(self, input):
if self.fuse_lora:
return F.linear(input, self.weight, self.bias)
else:
return F.linear(
input, self.weight,
self.bias) + (self.lora_dropout(input) @ self.lora_right_weight
@ self.lora_left_weight) * self.lora_scaling
# convert the linear layer to LoRA
def convert_linear_layer_to_lora(model,
part_module_name,
lora_dim=0,
lora_scaling=1,
lora_droppout=0):
replace_name = []
for name, module in model.named_modules():
if isinstance(module, nn.Linear) and part_module_name in name:
replace_name.append(name)
for name in replace_name:
module = recursive_getattr(model, name)
tmp = LinearLayer_LoRA(
module.weight, lora_dim, lora_scaling, lora_droppout,
module.bias).to(module.weight.device).to(module.weight.dtype)
recursive_setattr(model, name, tmp)
return model
def _z3_params_to_fetch(param_list):
return [
p for p in param_list
if hasattr(p, 'ds_id') and p.ds_status == deepspeed.runtime.zero.
partition_parameters.ZeroParamStatus.NOT_AVAILABLE
]
# convert the LoRA layer to linear layer
def convert_lora_to_linear_layer(model):
replace_name = []
for name, module in model.named_modules():
if isinstance(module, LinearLayer_LoRA):
replace_name.append(name)
for name in replace_name:
module = recursive_getattr(model, name)
zero_stage_3 = hasattr(module.weight, 'ds_id')
with deepspeed.zero.GatheredParameters(_z3_params_to_fetch([
module.weight, module.bias, module.lora_left_weight,
module.lora_right_weight
]),
modifier_rank=0,
enabled=zero_stage_3):
module.fuse_lora_weight()
return model
# copied from deepspeed
def load_state_dict_into_model(model_to_load=None,
state_dict=None,
start_prefix="",
zero_stage=0):
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
error_msgs = []
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: nn.Module, state_dict, prefix=""):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
# Parameters of module and children will start with prefix. We can exit early if there are none in this
# state_dict
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
if zero_stage == 3:
# In sharded models, each shard has only part of the full state_dict, so only gather
# parameters that are in the current state_dict.
named_parameters = dict(
module.named_parameters(prefix=prefix[:-1], recurse=False))
params_to_gather = [
named_parameters[k] for k in state_dict.keys()
if k in named_parameters
]
if len(params_to_gather) > 0:
# because zero3 puts placeholders in model params, this context
# manager gathers (unpartitions) the params of the current layer, then loads from
# the state dict and then re-partitions them again
with deepspeed.zero.GatheredParameters(params_to_gather,
modifier_rank=0):
if torch.distributed.get_rank() == 0:
module._load_from_state_dict(*args)
else:
module._load_from_state_dict(*args)
for name, child in module._modules.items():
if child is not None:
load(child, state_dict, prefix + name + ".")
load(model_to_load, state_dict, prefix=start_prefix)
# Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
# it's safe to delete it.
del state_dict
return error_msgs
def get_reward_model(args, tokenizer, stage=0):
ds_config = get_train_ds_config(stage=stage)
ds_config['train_micro_batch_size_per_gpu'] = args.batch_size
ds_config['train_batch_size'] = args.batch_size #* torch.distributed.get_world_size()
if stage == 3:
dschf = HfDeepSpeedConfig(ds_config) # Note: dschf is defined in function scope to avoid global effects
base_model = utils.get_model(args.reward_model)
reward_model = model_utils.RewardModel(base_model, tokenizer)
load_state_dict_into_model(reward_model, torch.load('%s/ckpt/%s_%s_raw_detector/reward_model.ckpt'%(args.workdir, args.dataset, args.reward_model), map_location='cpu'), "", zero_stage=stage)
if args.use_reward_lora:
reward_model = convert_linear_layer_to_lora(reward_model, part_module_name='decoder.layers.', lora_dim=128)
optim_params = get_optimizer_grouped_parameters(reward_model, weight_decay=0, lora_lr=args.reward_lora_lr)
if 'llama' in args.reward_model:
assert stage == 0
ds_config['zero_optimization']['stage'] = 1
ds_config['zero_optimization']['offload_optimizer']['device'] = 'cpu'
optim = DeepSpeedCPUAdam(optim_params, lr=args.reward_lr, betas=(0.9, 0.95))
reward_model.config.end_token_id = tokenizer.eos_token_id
reward_model.config.pad_token_id = reward_model.config.eos_token_id
else:
optim = FusedAdam(optim_params, lr=args.reward_lr, betas=(0.9, 0.95))
if args.reward_with_scheduler:
lr_scheduler = get_scheduler(name='cosine', optimizer=optim, num_warmup_steps=min(100,0.1*args.train_steps), num_training_steps=args.train_steps)
reward_engine, *_ = deepspeed.initialize(model=reward_model,optimizer=optim,lr_scheduler=lr_scheduler,config=ds_config)
else:
reward_engine, *_ = deepspeed.initialize(model=reward_model,optimizer=optim,config=ds_config)
return reward_engine
def get_critic_model(args, tokenizer, stage=0):
ds_config = get_train_ds_config(stage=stage)
ds_config['train_micro_batch_size_per_gpu'] = args.batch_size
ds_config['train_batch_size'] = args.batch_size #* torch.distributed.get_world_size()
if stage == 3:
dschf = HfDeepSpeedConfig(ds_config) # Note: dschf is defined in function scope to avoid global effects
base_model = utils.get_model(args.reward_model)
critic_model = model_utils.RewardModel(base_model, tokenizer)
load_state_dict_into_model(critic_model, torch.load('%s/ckpt/%s_%s_raw_detector/reward_model.ckpt'%(args.workdir, args.dataset, args.reward_model), map_location='cpu'), "", zero_stage=stage)
if args.use_critic_lora:
critic_model = convert_linear_layer_to_lora(critic_model, part_module_name='decoder.layers.', lora_dim=128)
optim_params = get_optimizer_grouped_parameters(critic_model, weight_decay=0, lora_lr=args.critic_lora_lr)
if 'llama' in args.reward_model:
assert stage == 0
ds_config['zero_optimization']['stage'] = 1
ds_config['zero_optimization']['offload_optimizer']['device'] = 'cpu'
optim = DeepSpeedCPUAdam(optim_params, lr=args.critic_lr, betas=(0.9, 0.95))
else:
optim = FusedAdam(optim_params, lr=args.critic_lr, betas=(0.9, 0.95))
lr_scheduler = get_scheduler(name='cosine', optimizer=optim, num_warmup_steps=min(100,0.1*args.train_steps), num_training_steps=args.train_steps)
critic_engine, *_ = deepspeed.initialize(model=critic_model,optimizer=optim,lr_scheduler=lr_scheduler,config=ds_config)
return critic_engine
def get_gtreward_model(args, tokenizer, stage=0):
ds_config = get_eval_ds_config(stage=stage)
ds_config['train_micro_batch_size_per_gpu'] = args.batch_size
ds_config['train_batch_size'] = args.batch_size #* torch.distributed.get_world_size()
if stage == 3:
dschf = HfDeepSpeedConfig(ds_config) # Note: dschf is defined in function scope to avoid global effects
base_model = utils.get_model(args.reward_model)
gtreward_model = model_utils.RewardModel(base_model, tokenizer)
LOAD_PREFIX = args.workdir+'/deepspeed_ckpt'
if args.dataset == 'PKU' and args.reward_model == 'opt-350m':
load_state_dict_into_model(gtreward_model, torch.load('%s/opt-350m/pytorch_model.bin'%LOAD_PREFIX, map_location='cpu'), "", zero_stage=stage)
elif args.dataset == 'PKU' and args.reward_model == 'llama2-1.1b':
load_state_dict_into_model(gtreward_model, torch.load('%s/llama2-1.1b/pytorch_model.bin'%LOAD_PREFIX, map_location='cpu'), "", zero_stage=stage)
else:
raise NotImplementedError()
gtreward_engine, *_ = deepspeed.initialize(model=gtreward_model,config=ds_config)
return gtreward_engine
def get_actor_model(args, tokenizer, model_path=None, stage=0):
ds_config = get_train_ds_config(enable_hybrid_engine=True, stage=stage)
ds_config['train_micro_batch_size_per_gpu'] = args.batch_size
ds_config['train_batch_size'] = args.batch_size
if stage == 3:
dschf = HfDeepSpeedConfig(ds_config) # Note: dschf is defined in function scope to avoid global effects
if model_path is None:
if args.dataset in ['c4']:
actor_model = utils.get_model(args.actor_model, model_class=AutoModelForCausalLM)
else:
actor_model = utils.get_model(args.actor_model, model_class=AutoModelForCausalLM, model_path="%s/ckpt/%s_%s_sft"%(args.workdir, args.actor_model, args.dataset))
else:
actor_model = utils.get_model(args.actor_model, model_class=AutoModelForCausalLM, model_path=model_path)
if args.use_lora:
actor_model = convert_linear_layer_to_lora(actor_model, part_module_name='decoder.layers.', lora_dim=128)
optim_params = get_optimizer_grouped_parameters(actor_model, weight_decay=0, lora_lr=args.lora_lr)
if 'llama' in args.actor_model:
assert stage == 0
ds_config['zero_optimization']['stage'] = 1
ds_config['zero_optimization']['offload_optimizer']['device'] = 'cpu'
optim = DeepSpeedCPUAdam(optim_params, lr=args.lr, betas=(0.9, 0.95))
actor_model.config.end_token_id = tokenizer.eos_token_id
actor_model.config.pad_token_id = actor_model.config.eos_token_id
else:
optim = FusedAdam(optim_params, lr=args.lr, betas=(0.9, 0.95))
lr_scheduler = get_scheduler(name='cosine', optimizer=optim, num_warmup_steps=min(100,0.1*args.train_steps), num_training_steps=args.train_steps)
actor_engine, *_ = deepspeed.initialize(model=actor_model,optimizer=optim,lr_scheduler=lr_scheduler,config=ds_config)
return actor_engine
def get_ref_model(args, tokenizer, model_path=None, stage=0):
ds_config = get_eval_ds_config(stage=stage)
ds_config['train_micro_batch_size_per_gpu'] = args.batch_size
ds_config['train_batch_size'] = args.batch_size #* torch.distributed.get_world_size()
if stage == 3:
dschf = HfDeepSpeedConfig(ds_config) # Note: dschf is defined in function scope to avoid global effects
if model_path is None:
if args.dataset in ['c4']:
ref_model = utils.get_model(args.actor_model, model_class=AutoModelForCausalLM)
else:
ref_model = utils.get_model(args.actor_model, model_class=AutoModelForCausalLM, model_path="%s/ckpt/%s_%s_sft"%(args.workdir, args.actor_model, args.dataset))
else:
ref_model = utils.get_model(args.actor_model, model_class=AutoModelForCausalLM, model_path=model_path)
ref_engine, *_ = deepspeed.initialize(model=ref_model,config=ds_config)
return ref_engine