-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloops.py
271 lines (221 loc) · 10.2 KB
/
loops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import math
import sys
from typing import Iterable
import torch
import torch.nn as nn
import utils
#import torch.nn.functional as F
from distiller_zoo import HinTop,VTop
def train_distill(module_list,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
opt,
max_norm: float = 0,
patch_size: int = 16,
normlize_target: bool = True,
log_writer=None,
lr_scheduler=None,
start_steps=None,
lr_schedule_values=None,
wd_schedule_values=None
):
"""One epoch distillation"""
# set modules as train()
for module in module_list:
module.train()
# set teacher as eval()
module_list[-1].eval()
model_t = module_list[-1]
model = module_list[0]
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter(
'lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter(
'min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
loss_func = nn.MSELoss()
for step, batch in enumerate(
metric_logger.log_every(data_loader, print_freq, header)):
# assign learning rate & weight decay for each step
it = start_steps + step # global training iteration
if lr_schedule_values is not None or wd_schedule_values is not None:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group[
"lr_scale"]
if wd_schedule_values is not None and param_group[
"weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
videos, bool_masked_pos = batch
videos = videos.to(device, non_blocking=True)
bool_masked_pos = bool_masked_pos.to(
device, non_blocking=True).flatten(1).to(torch.bool)
with torch.no_grad():
if opt.distill in ['VTop','hinTop','hybrid']:
opt.is_att = True
elif opt.distill == 'onlymse':
pass
output_list_t = model_t(videos, bool_masked_pos,is_att = opt.is_att)
if opt.distill in ['VTop','hinTop','hybrid']:
output_t, att_map_t, v_list_t = output_list_t
att_map_t = [att.detach() for att in att_map_t]
v_list_t = [v.detach() for v in v_list_t]
elif opt.distill == 'onlymse':
output_t = output_list_t[0]
with torch.cuda.amp.autocast():
#import pdb; pdb.set_trace()
output_list = model(videos, bool_masked_pos, is_att = opt.is_att)
if opt.distill in ['VTop','hinTop','hybrid']:
outputs, att_map_s,v_list_s = output_list
elif opt.distill == 'onlymse':
outputs = output_list[0]
if opt.onlykd:
pass
else:
batchsize, patch, _ = outputs.shape
abs_t = abs(output_t).sum(-1)
margin_t = torch.topk(
abs_t, opt.num_f, dim=-1
)[0][:, -1]
bool_topk_pos_t = abs_t >= margin_t.unsqueeze(-1)
if opt.alpha != 0:
temperature_s = opt.temperature_s#0.1
temperature_t = opt.temperature_t#0.05
len = bool_topk_pos_t.sum()
sd = outputs[bool_topk_pos_t]
td = output_t[bool_topk_pos_t]
# Angle loss
with torch.no_grad():
td = torch.nn.functional.normalize(td, p=2, dim=-1)
td = torch.einsum('cd, ed->ce',
td,
td)
td[range(len), range(len)] = -1000
# sd = student
sd = torch.nn.functional.normalize(sd, p=2, dim=-1)
sd = torch.einsum('cd, ed->ce',
sd,
sd)
sd[range(len), range(len)] = -1000
p_s = torch.nn.functional.log_softmax(sd/temperature_s, dim=-1)#be
p_t = torch.nn.functional.softmax(td/temperature_t, dim=-1)#to be
loss_div = torch.nn.functional.kl_div(p_s, p_t, reduction='sum') / (batchsize * opt.num_f )#MM_relation
output_t = (output_t * bool_topk_pos_t.unsqueeze(-1))
outputs = (outputs * bool_topk_pos_t.unsqueeze(-1))
loss_mse = loss_func(output_t,outputs) * patch / opt.num_f#MM_hint
if opt.distill == 'hinTop':
criterion_kd = HinTop(num_k=opt.num_k)
att_s = att_map_s[-1]
att_t = att_map_t[-1]
v_s = v_list_s[-1]
v_t = v_list_t[-1]
loss_kd = criterion_kd(att_s, att_t, v_s,v_t,t=opt.kd_T)
elif opt.distill == 'VTop':
criterion_kd = VTop(num_k=opt.num_k)
att_s = att_map_s[-1]
att_t = att_map_t[-1]
v_s = v_list_s[-1]
v_t = v_list_t[-1]
loss_kd = criterion_kd(att_s, att_t, v_s,v_t,t=opt.kd_T)
elif opt.distill == 'hybrid':
criterion_kd1 = HinTop(num_k=opt.num_k)
criterion_kd2= VTop(num_k=opt.num_k)
att_s1 = att_map_s[-1]
att_t1 = att_map_t[-1]
v_s = v_list_s[-1]
v_t = v_list_t[-1]
att_s2 = att_map_s[-1].clone()
att_t2 = att_map_t[-1].clone()
loss_kd1 = criterion_kd1(att_s1, att_t1, v_s,v_t,t=opt.kd_T)
loss_kd2 = criterion_kd2(att_s2, att_t2, v_s,v_t,t=opt.kd_T)
loss_kd = opt.beta_kd1 * loss_kd1 + opt.beta_kd2 * loss_kd2#MM_hidden
elif opt.distill == 'onlymse':
pass
else:
raise NotImplementedError(opt.distill)
if opt.distill == 'onlymse' and opt.alpha != 0:
loss_all = opt.gamma * loss_mse + opt.alpha * loss_div
elif opt.distill == 'onlymse':
loss_all = opt.gamma * loss_mse
elif opt.onlykd:
loss_all = opt.beta * loss_kd
elif opt.alpha != 0:
loss_all = opt.gamma * loss_mse + opt.beta * loss_kd + opt.alpha * loss_div
else:
loss_all = opt.gamma * loss_mse + opt.beta * loss_kd
loss_value = loss_all.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(
optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss_all,
optimizer,
clip_grad=max_norm,
parameters=model.parameters(),
create_graph=is_second_order)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(loss_scale=loss_scale_value)
if opt.onlykd:
pass
else:
metric_logger.update(loss_mse=loss_mse.item())
if opt.distill == 'onlymse':
pass
elif opt.distill == 'hybrid':
metric_logger.update(loss_kd=loss_kd.item())
metric_logger.update(loss_kd1=loss_kd1.item())
metric_logger.update(loss_kd2=loss_kd2.item())
else:
metric_logger.update(loss_kd=loss_kd.item())
if opt.alpha != 0:
metric_logger.update(loss_div=loss_div.item())
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
if opt.onlykd:
pass
else:
log_writer.update(loss=loss_mse.item(), head="loss_mse")
if opt.alpha != 0:
log_writer.update(loss=loss_div.item(), head="loss_div")
if opt.distill == 'onlymse':
pass
elif opt.distill == 'hybrid':
log_writer.update(loss=loss_kd.item(), head="loss_kd")
log_writer.update(loss=loss_kd1.item(), head="loss_kd1")
log_writer.update(loss=loss_kd2.item(), head="loss_kd2")
else:
log_writer.update(loss=loss_kd.item(), head="loss_kd")
log_writer.update(loss_scale=loss_scale_value, head="opt")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.set_step()
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}